【目的】可溶性固形物含量(SSC)是评价猕猴桃果实品质的关键指标。旨在利用高光谱技术构建猕猴桃果实SSC预测方案,实现无损、准确评估果实内部品质。【方法】以米良一号猕猴桃果实为研究对象,对高光谱图像进行白板校正、感兴趣区域提取;采用MSC、SG平滑、SG-MSC和SG-SNV方法进行光谱数据预处理以消除噪声影响,并通过PLSR模型确定最优方法;结合CARS、SPA和RF算法分别提取与果实SSC相关的特征波段;建立PLSR、SVR、RFR、BPNN模型,比较特征波段与SSC实测值之间的耦合关系,选出最优模型,并利用PSO算法优化其预测精度,以实现果实内部品质的泛化预测。【结果】MSC方法在全波段回归中表现最佳;CARS算法有效简化模型并提取关键特征波段;SVR模型预测精度最高,经PSO优化后训练集和测试集决定系数分别为R2c=0.949,R2P=0.913;均方根误差分别为RMSEC=0.3412,RMSEP=0.3649。【结论】相比于单一环节的算法优化,MSC+CARS+PSO-SVR的组合模型在猕猴桃果实可溶性固形物含量预测方面表现更优,研究结果可为果品品质监测和分级分选提供技术支持。