不同锥栗农家品种幼树生长、光合和叶绿素荧光特性比较

许 斌,吴静逸,吴键枫,苏新宇,赵君茹,朱周俊*,李建新*

(铜仁学院农林工程与规划学院·贵州省梵净山地区生物多样性保护与利用重点实验室,贵州铜仁 554300)

摘 要:【目的】阐明锥栗农家品种的光合特性,为筛选适宜黔东北地区引种栽培的优良品种提供依据。【方法】以8个2年生锥栗农家品种嫁接树为试材,运用Li-6800便携式光合测定仪测定光合及叶绿素荧光参数,采用Mantel test进行相关性分析,并对光合生理指标进行主成分分析。【结果】油榛表现最优,株高、地径、叶面积均最大,分别为96.18 cm、20.79 cm、76.15 cm2。8个锥栗农家品种的光合生理参数均存在显著差异(P<0.05),油榛最大净光合速率(Pnmax)和电子传递速率(ETR)均最高,分别为12.525 μmol·m-2·s-1、114.677。相关性分析表明,PnmaxFmFv/FmFv/F0Fv'/Fm'呈极显著正相关(P<0.01)。主成分分析表明,油榛、大尖嘴和乌壳长芒具有相似的光合生理特性。【结论】油榛生长表现良好,光能利用率高,在黔东北地区有较强的适应性。

关键词:锥栗;农家品种;生长指标;光合特性;叶绿素荧光;相关性分析

锥栗(Castanea henryi)属壳斗科(Fagaceae)栗属(Castanea)植物,为中国特有种,是我国重要的木本粮食和“铁杆庄稼”,野生种广布于中国秦岭南坡以南、五岭以北各地,栽培种主要在闽北和浙南地区,近年来因其特殊的营养价值和经济价值引起南方部分省份关注[1-2]。贵州省作为锥栗的新兴产区,已形成显著的地区发展差异。目前,贵州省锥栗产业尚处起步阶段,主要栽植区域为铜仁市、黔东南州、黔南州和黔西南州等地区,栽培总面积667 hm2以上,栽植品种均为从福建引进的锥栗农家品种(大白露、长芒仔、处暑红和油榛等),适应性还有待验证。

植物光合特性能够反映植物的生长潜力与环境适应力[3-4]。光响应和叶绿素荧光参数作为植物的“内在探针”,可有效表征植物生理状态、胁迫响应及光能利用效率等关键信息[5]。目前,有关锥栗光合特性的研究主要集中于光合作用的限制因子及提高作物光合效率的途径方面。王璐等[6]研究表明,8 ℃低温和38 ℃高温胁迫均会导致锥栗幼苗光合作用减弱;李艳丽等[7]发现锥栗嫁接苗对光的适应性和光合利用能力强于实生苗;范晓明等[8]发现开心形锥栗树体在光能利用效率方面优于自然圆头形和小冠疏层形,有利于锥栗增产;刘智强等[9]于锥栗初花期和盛花期分别喷施0.30%硼,发现可提高光合效率;王璐等[10]发现砧木年龄越大,越有利于提高光合能力和光能利用效率。针对贵州地区引种锥栗光合特性方面的研究鲜有报道,导致引种工作存在较大盲目性,农家品种对生境适应性不足,严重制约了优质锥栗农家品种的筛选进程。因此,笔者通过测定8 个黔东北地区引种锥栗农家品种的光合生理指标,分析其需光特性,以期为贵州省黔东北地区锥栗品种合理栽植和区域性试验提供参考依据。

1 材料和方法

1.1 试验地概况

试验地位于贵州省铜仁市碧江区铜仁学院木本粮油试验基地(北纬27°47′30″,东经109°13′16″,海拔466.2 m),属中亚热带季风湿润气候,年日照时数1 044.7~1 266.2 h,年平均气温15.6 ℃,年平均降水量1260 mm,无霜期290 d,土壤为酸性黄壤土。

1.2 材料

供试材料为8个2年生锥栗农家品种嫁接树,分别为油榛、大尖嘴、长芒仔、乌壳长芒、处暑红、白露仔、大白露、黑栗,株行距4 m×4 m,生长健壮且长势一致,常规土肥水管理。

1.3 方法

1.3.1 生长指标测定 采用卷尺测定株高,采用游标卡尺测定地径,5株为1个小区,3次重复;选取每株树冠上、中、下层各3 片成熟向阳叶片并标记,采用SPAD-502Plus 手持叶绿素仪测定叶绿素相对含量,测定部位为叶长1/2及叶宽1/4处(避开叶脉);采用Li-3000C叶面积仪测定叶面积、叶长、叶宽。

1.3.2 光响应曲线测定 采用Li-6800 便携式光合测定仪的LED 红蓝光源叶室对标记叶片在1200 μmol·m-2·s-1光强下进行充分的光诱导后(20 min以上直至Pn数值稳定)开始测定净光合速率,3次重复。测定时间为:上午08:30—11:30。测定环境:气温约36.5 ℃,相对湿度(RH)设置为60%,叶室CO2的浓度设置为400 μmol·m-2·s-1。流速(Flow)设置为500 μmol·s-1,风扇转速10 000 r·min-1。光合有效辐射梯度设定为:1200、1000、800、600、400、200、100、80、50、20、0 μmol·m-2·s-1,每个叶片在每个光照度下适应100~250 s。采用直角双曲线的修正模型拟合Pn-PAR曲线[11],计算出最大净光合速率(Pnmax)、光饱和点(LSP)、光补偿点(LCP)、表观量子效率(AQY)和暗呼吸速率(Rd)等光合参数。

1.3.3 叶绿素荧光参数测定 采用LI-6800便携式光合测定仪对上述已标记的叶片进行测定,测定时间、叶室参数与测定光响应曲线的设定相同,测定前一晚用锡箔纸包裹叶片,充分暗适应,然后进行至少30 min 的光适应。测定初始荧光(F0)、最大荧光(Fm[12],通过计算得到PSⅡ最大光化学量子效率(Fv/Fm)、PSⅡ潜在活性(Fv/F0)、实际光化学效率(Fv'/Fm')、光化学淬灭系数(qP)、电子传递速率(ETR)及非光化学淬灭系数(NPQ)[13]

1.4 数据处理

使用Excel 软件对生长和光合特性参数进行数据整理和分析,使用SPASS27.0 进行差异显著性分析;采用Origin2024软件绘制光响应曲线;光合参数和叶绿素荧光参数主成分分析用R4.4.1软件的ade4包、vegan 包、gclus 包、missMDA 包、FactoMineR 包、ggplot2 包、ggrepel 包、ggthemes 包、ggExtra 包、cluster 包绘制;生长特性和光合特性相关性分析用R4.4.1 软件的vegan 包、dplyr 包、devtools 包、linkET包、ggplot2包、ggcor包绘制Mantel test图。

2 结果与分析

2.1 8个锥栗农家品种幼树生长特性比较

不同锥栗农家品种幼树生长存在明显差异(表1)。油榛的株高(96.18 cm)、地径(20.79 mm)、叶面积(76.15 cm2)、叶宽(5.89 cm)均显著高于其他农家品种。处暑红的叶长与大尖嘴、油榛差异不显著,但显著高于其他5个农家品种。油榛与大尖嘴的叶绿素相对含量显著高于其他农家品种,分别为45.12 和43.26。综上所述,油榛的生长表现优于其他农家品种。

表1 不同锥栗农家品种幼树生长参数特征
Table 1 Characterization of growth parameters for saplings of different C.henryi native cultivars

注:同列不同小写字母表示差异显著(P<0.05)。下同。
Note:Different small letters in the same column indicate significant difference at 0.05 level.The same blow.

农家品种Native cultivars株高Plant height/cm地径Ground diameter/mm叶面积Leaf area/cm2叶长Leaf length/cm叶宽Leaf width/cm油榛Youzhen大尖嘴Dajianzui长芒仔Changmangzi乌壳长芒Wukechangmang处暑红Chushuhong白露仔Bailuzi大白露Dabailu黑栗Heili叶绿素相对含量Relative chlorophyll content 45.12±0.96 a 43.26±0.88 a 30.72±0.76 d 38.71±0.80 b 40.24±0.79 b 28.89±0.70 d 34.19±1.01 c 34.31±0.49 c 96.18±2.40 a 91.41±0.96 b 70.74±1.47 c 73.01±1.45 c 74.33±0.42 c 62.12±0.73 d 58.41±1.74 d 49.33±1.82 e 20.79±0.79 a 17.75±0.11 b 15.25±0.35 c 17.66±0.66 b 16.10±0.21 c 11.96±0.43 e 15.74±0.05 c 13.57±0.51 d 76.15±1.70 a 61.54±1.02 b 41.64±0.85 e 48.56±1.71 d 61.88±1.04 b 39.67±1.48 e 39.51±2.11 e 56.55±1.30 c 18.01±0.61 ab 19.73±0.89 a 13.62±0.74 c 13.57±0.29 c 19.87±0.72 a 12.49±0.39 c 13.89±0.28 c 16.54±0.67 b 5.89±0.11 a 5.39±0.17 b 4.36±0.19 c 5.05±0.09 b 5.26±0.19 b 4.33±0.11 c 4.06±0.09 c 5.17±0.03 b

2.2 8 个不同锥栗农家品种幼树光合-光响应特征比较

8 个不同锥栗农家品种幼树,所绘制的拟光合作用响应曲线表现出了相似的变化趋势(图1)。在低光合有效辐射时(0~200 μmol·m-2·s-1),净光合速率随着光合有效辐射(PAR)的增加而迅速升高,基本呈线性增长;当PAR 高于400 μmol·m-2·s-1时,白露仔出现光抑制现象而后趋于稳定,当PAR>600 μmol·m-2·s-1时,长芒仔、大尖嘴和乌壳长芒的净光合速率达到最大值(Pnmax),随着PAR 的不断升高随后表现出光抑制现象,当PAR>800 μmol·m-2·s-1时,处暑红和油榛达到Pnmax,而后出现光抑制现象,当PAR>1000 μmol·m-2·s-1时,黑栗和大白露达到Pnmax

图1 不同锥栗农家品种幼树光响应拟合曲线
Fig.1 Fitted curves light response of C.henryi saplings of different native cultivars

不同农家品种锥栗幼树光响应特征参数存在显著差异(表2)。油榛、大尖嘴和乌壳长芒的AQY显著高于其他农家品种;白露仔的Pnmax 最低,为2.582 μmol·m-2·s-1,比最高的油榛(12.525 μmol·m-2·s-1)显著降低79.38%;黑栗的LSP、LCP 和Rd显著高于其他7 个农家品种,分别为995.556 μmol·m-2·s-1、127.425 μmol·m-2·s-1和4.644 μmol·m-2·s-1

表2 不同锥栗农家品种幼树的光响应特征参数
Table 2 Characteristics parameters of light response curves for saplings of different C.henryi native cultivars

农家品种Native cultivars油榛Youzhen大尖嘴Dajianzui长芒仔Changmangzi乌壳长芒Wukechangmang处暑红Chushuhong白露仔Bailuzi大白露Dabailu黑栗Heili表观量子效率AQY 0.059±0.002 a 0.059±0.001 a 0.042±0.001 c 0.057±0.003 a 0.046±0.001 bc 0.050±0.002 b 0.048±0.000 b 0.043±0.001 c最大净光合速率Pnmax/(μmol·m-2·s-1)12.525±0.396 a 7.921±0.509 d 6.370±0.295 e 10.503±0.717 b 8.780±0.429 cd 2.582±0.396 f 7.779±0.327 d 9.676±0.374 bc光饱和点LSP/(μmol·m-2·s-1)750.659±44.024 bc 548.938±7.355 d 568.958±1.159 d 676.264±23.387 cd 752.985±96.836 bc 520.342±73.733 d 843.184±14.323 b 995.556±38.578 a光补偿点LCP/(μmol·m-2·s-1)41.427±5.215 cd 42.750±4.233 cd 34.113±3.309 d 38.480±5.233 cd 78.934±9.120 b 52.998±4.361 c 73.166±2.872 b 127.425±3.582 a暗呼吸速率Rd/(μmol·m-2·s-1)2.260±0.240 c 2.248±0.182 c 1.322±0.084 d 2.002±0.185 c 3.208±0.364 b 1.839±0.099 cd 3.567±0.136 b 4.644±0.135 a

2.3 8个不同锥栗农家品种幼树叶绿素荧光参数比较

8个不同锥栗农家品种幼树的叶绿素荧光参数存在显著差异(表3)。白露仔的F0和NPQ均显著高于其他农家品种,分别为287.796 和0.949。油榛的Fm最高,为1 374.700,比最低的白露仔(887.915)显著提高54.82%。不同农家品种Fv/Fm在0.75~0.85范围内(除白露仔外),白露仔的Fv/Fm最低,为0.668,其他农家品种Fv/Fm均显著高于白露仔。此外,油榛与处暑红的Fv/F0差异不显著,但油榛显著高于其他6 个农家品种,其中白露仔最低,为2.039。黑栗的qP 最高,为0.899,白露仔的qP 最低,为0.624;油榛与大尖嘴的ETR差异不显著,但油榛显著高于其他6个农家品种,且最低的白露仔(53.636)较最高的油榛(114.677)显著降低53.23%。

表3 不同锥栗农家品种幼树叶绿素荧光参数
Table 3 Chlorophyll fluorescence parameters for saplings of different C.henryi native cultivars

农家品种Native cultivars油榛Youzhen大尖嘴Dajianzui长芒仔Changmangzi乌壳长芒Wukechangmang处暑红Chushuhong白露仔Bailuzi大白露Dabailu黑栗Heili F0 Fm 252.982±6.084 b 240.288±3.369 b 241.125±3.048 b 254.650±2.909 b 240.964±7.351 b 287.796±24.957 a 239.154±2.740 b 256.306±7.867 b 1 374.700±15.785 a 1 156.485±74.550 bc 1 072.975±3.565 c 1 174.585±1.244 bc 1 285.275±20.181 ab 887.915±126.587 d 1 140.135±50.065 bc 1 279.145±26.827 ab Fv/Fm 0.816±0.002 a 0.790±0.011 ab 0.775±0.004 b 0.783±0.004 b 0.813±0.003 a 0.668±0.019 c 0.789±0.007 ab 0.800±0.002 ab Fv/F0 4.439±0.068 a 3.803±0.243 cd 3.453±0.071 d 3.611±0.058 cd 4.341±0.079 ab 2.039±0.176 e 3.762±0.155 cd 3.995±0.049 bc Fv'/Fm'0.755±0.017 ab 0.765±0.003 ab 0.713±0.002 c 0.721±0.002 c 0.773±0.004 ab 0.509±0.016 d 0.742±0.013 bc 0.777±0.001 a qP 0.806±0.011 bc 0.831±0.003 b 0.733±0.022 d 0.710±0.033 d 0.764±0.020 cd 0.624±0.019 e 0.844±0.016 ab 0.899±0.001 a NPQ 0.537±0.054 b 0.213±0.027 de 0.393±0.041 c 0.395±0.006 c 0.276±0.005 d 0.949±0.044 a 0.298±0.037 cd 0.146±0.005 e ETR 114.677±3.332 a 107.148±0.826 ab 88.124±2.851 d 86.343±4.323 d 99.529±2.126 bc 53.636±3.353 e 91.707±4.238 cd 58.853±0.050 e

2.4 8个锥栗农家品种幼树生长指标和光合生理指标相关性分析

光响应参数与叶绿素荧光参数之间存在不同程度的相关性(图2)。PnmaxFmFv/FmFv/F0Fv'/Fm'呈极显著正相关;Rd与LSP、LCP、qPFv'/Fm'呈极显著正相关,与FmFv/FmFv/F0呈显著正相关。LSP 与Pnmax呈极显著正相关,与FmFv/F0Fv'/Fm'和qP呈显著正相关。Fv/FmFv/F0Fv'/Fm'三者间呈极显著正相关;qPFmFv/FmFv/F0呈显著正相关,与Fv'/Fm'呈极显著正相关;NPQ与Fv'/Fm'和qP呈极显著负相关。

图2 不同锥栗农家品种幼树生长指标和光合生理指标的相关性分析
Fig.2 Correlation analysis of growth indexes and photosynthetic physiological indexes in saplings of different C.henryi native cultivars

Mantel’s r 代表光合生理特性矩阵和生长指标矩阵相关性,Mantel’s P 代表光合生理特性矩阵和生长指标矩阵相关性的显著性,Spearman’s r 是指光合生理特性之间的相关性。*和**分别表示在P<0.05 和P<0.01 水平的相关性显著和极显著。
Mantel’s r represents the correlation between photosynthetic physiological characteristics matrix and growth indexes matrix,Mantel’s P represents the significance of the correlation between photosynthetic physiological characteristics matrix and growth indexes matrix,and Spearman’s r refers to the correlation between photosynthetic physiological characteristics.*and**indicate significant and highly significant correlations at the P<0.05 and P<0.01 level.

生长参数与光合生理特性参数之间也存在不同程度的相关性(图2)。株高与ETR、AQY、LSP、LCP和Rd呈极显著正相关;地径与FmFv/FmFv/F0Fv'/Fm'、qP、NPQ、ETR、AQY和Pnmax呈极显著正相关;叶面积与FmFv/F0、ETR和Pnmax呈极显著正相关,与Fv/FmFv'/Fm'、NPQ 和AQY 呈显著正相关;叶长与Fv/FmFv/F0Fv'/Fm'和ETR 呈极显著正相关,与FmqP、NPQ和Pnmax呈显著正相关;SPAD与FmFv/FmFv/F0Fv'/Fm'、NPQ、ETR、AQY 和Pnmax呈极显著正相关,与qP呈显著正相关。

2.5 8个锥栗农家品种幼树光合生理指标主成分分析

通过对8个农家锥栗品种幼树的光合生理指标进行主成分分析(PCA),以特征值大于1为标准,选取了2个主成分进行研究(图3)。结果表明,前两个主成分总共解释了77%以上的变异。其中,第1 主成分解释了53.72%的变异,Fv/FmFv/F0Fv'/Fm'的贡献较大;第2 主成分解释了23.73%的变异,LSP 和ETR贡献较大。PCA 分析表明,黑栗和白露仔与其他6 个品种相距较远,光合生理特性存在明显差异。油榛、大尖嘴和乌壳长芒相距较近,光合生理特性存在一定相似性。黑栗和长芒仔在PC1上数据分布较为集中,大白露在PC2上数据分布较为集中。

图3 不同锥栗农家品种幼树光合生理指标主成分分析
Fig.3 Principal component analysis of photosynthetic physiological indexes in saplings of different C.henryi native cultivars

上侧的山脊图展示了在PC1 方向上的数据密度分布,右侧的山脊图则展示了在PC2 方向上的数据密度分布。X1~X13 分别代表F0FmFv/F0Fv/FmFv'/Fm'、qP、NPQ、ETR、AQY、Pnmax、LCP、LSP 和Rd
The ridge plot on the upper side displays the density distribution of data along the PC1 direction,while the ridge plot on the right side displays the density distribution of data along the PC2 direction.X1 to X13 represents F0,Fm,Fv/F0,Fv/Fm,Fv'/Fm',qP,NPQ,ETR,AQY,Pnmax,LCP,LSP and Rd,respectively.

3 讨 论

光合-光响应反映了植物对光的利用程度和内部的生理状态,由其拟合得到的光合参数阐明了植物利用光能资源的能力,对研究植物光合机制具有重要意义。Pnmax是探究植物光合潜能的重要参数,反映植物叶片的最大光合能力,本研究中锥栗农家品种Pnmax范围为2.582~12.525 μmol·m-2·s-1,其中油榛(12.525 μmol·m-2·s-1)能够表现出较强的光合性能,与宗思洁[14]研究结果相似。AQY、LCP和Rd均反映植物对弱光的利用能力[15]。表观量子效率(AQY)是反映植物光能利用效率的指标,一般植物在适宜生长环境下的AQY 为0.03~0.05[16],AQY 值越高,表明在自然弱光环境下捕获光合作用光子的能力越强[17]。本研究中,各锥栗农家品种AQY 为0.042~0.059,略小于张丽[18]的研究结果(0.047~0.066),可能与品种有关。LCP和LSP是反映植物对强弱光利用能力的重要指标[19]。LCP代表植物净光合速率与其呼吸消耗相等时的光照度阈值。较低的LCP 标志着植物即便在微弱的光照环境下,也能有效地维持光合作用与呼吸作用间的动态平衡[20]。本研究中长芒仔的LCP最低(34.113 μmol·m-2·s-1),表明其利用弱光能力相对较强,适合在光强较弱的环境下生长。LSP 则表示植物利用强光的能力,黑栗的LSP最高(995.556 μmol·m-2·s-1),表明黑栗在强光条件下具有更强的光合作用能力,适合在光照较强的环境下生长。Rd反映了植物在黑暗条件下的呼吸作用强度,Rd越低,生理活动所消耗的物质能量越小,积累干物质的能力越强[21]。本研究中长芒仔的Rd最低,为1.322 μmol·m-2·s-1,表明其干物质积累最多,黑栗的Rd最高,为4.644 μmol·m-2·s-1,表明其生理活动需要消耗更多的光合产物,可能会导致生长效率降低。在本研究中,大尖嘴和油榛光响应特征大体相似(除Pnmax和LSP),大尖嘴的Pnmax(7.921 μmol·m-2·s-1)和LSP(548.938 μmol · m-2 · s-1)比油榛的Pnmax(12.525 μmol·m-2·s-1)和LSP(750.659 μmol·m-2·s-1)低,推测大尖嘴可能更适合海拔较低的地区栽培,该结论还有待进一步验证。

叶绿素荧光参数可以在一定程度上反映光合作用机制中一系列重要的调控过程[22],不同物种在不同光环境下的叶绿素荧光存在显著差异。通过深入研究植物叶片叶绿素荧光特性,揭示植物的光化学反应活性及其自我防护机制,对农家品种的选择和筛选具有重要意义。F0表示PSⅡ反应中心处于完全开放时的荧光产量[23]F0越高,说明植物对光能的利用效率越低,反之则越高[24],而白露仔具有最高的F0,表明其对光能利用效率最低。Fv/Fm的显著变化常被用作应激的指标[25]Fv/Fm是指PSⅡ原初光能转化效率,在适宜条件下处于0.75~0.85之间[26]。已有研究表明,Fv/Fm不受物种的影响,非胁迫条件下,该参数的变化极小[27];在本试验中,各锥栗农家品种(除白露仔外)的Fv/Fm均处于0.75~0.85,表明白露仔受到环境胁迫的影响明显,这与实际观测一致,生产中白露仔适合栽培在海拔1000 m 以上的地区。实际光化学效率(Fv'/Fm')和电子传递速率(ETR)均能反映植物的光合作用能力,可作为植物叶片光合作用电子传递速率快慢的相对指标[28]Fv'/Fm'反映了光适应条件下PSⅡ的有效光化学量子产量,表示在光下PSⅡ反应中心部分开放时的光化学效率[29],ETR则表示叶片的电子传递速率[30],ETR越高,表明叶片具有越强的光合电子传递能力,油榛、大尖嘴的Fv'/Fm'和ETR 相对较高,表明其能够为光合碳同化提供更多的NADPH 和ATP,更利于形成可供植物生长利用的光合产能。非光化学荧光淬灭系数(NPQ)是代表光保护的重要指标,反映植物将消耗过剩光能转化为热能的能力[31]。在本研究中,油榛和大尖嘴叶绿素荧光参数相似,但大尖嘴的NPQ(0.213)明显低于油榛(0.537),说明大尖嘴更适合较低海拔地区,而油榛具有良好的光保护机制,更适合较高海拔地区,与光响应的研究结果一致。白露仔Fv/Fm较低,NPQ 较高,受到一定程度的环境胁迫,具体原因及内在机制有待进一步深入研究。

生长指标与光合特性之间存在密切的关系[32-34]。本研究中,叶面积和叶长与ETR 呈极显著正相关,与NPQ 呈显著正相关,这与徐薪璐等[35]等的研究结果相似。SPAD 与FmFv/FmFv/F0Fv'/Fm'、Pnmax呈极显著正相关,与李丹等[36]的研究结果相似,推测叶绿素相对含量可能在评估植物光合性能时具有重要作用。值得注意的是,目前已有研究表明,幼树的生长指标与光合特性的关联性能够反映成龄树的基础特征[37]。幼树与幼苗光合特性变化趋势相似,树龄差异主要体现在参数绝对值而非变化趋势上[38],进一步证实了幼龄树生长特性与光合生理特性指标对成龄树适应性的预测价值。叶绿素荧光与光合作用各反应环节紧密相关,逆境对光合作用的影响可通过叶绿素荧光诱导动力学变化反映出来[39]。在本研究中,PnmaxFmFv/FmFv/F0Fv'/Fm'呈极显著正相关。目前,已在黑麦草[40]、水稻[41]、济菊[42]中发现在非生物胁迫下,Pnmax的降低可以通过叶绿素荧光参数Fv/FmFv'/Fm'和NPQ 反映出来(Fv/FmFv'/Fm'降低,而NPQ 呈上升趋势)[43]。此外,LSP、LCP 以及Rd与叶绿素荧光参数相关性和Pnmax大体一致。同样,Fv/FmFv/F0以及Fv'/Fm'之间彼此呈极显著正相关,与qP和ETR呈显著正相关,与NPQ呈负相关。这与在非生物胁迫下朱槿[44]、芹菜[45]、青萍[46]和生物胁迫下茄子[47]、枸杞[48]试验中具有相似的结论。综上,本研究可为深入探究锥栗在胁迫环境下的光合生理状态提供一定的参考依据。

4 结 论

通过对8 个不同锥栗农家品种幼树生长、光合和叶绿素荧光参数进行比较及相关性分析,初步推断出油榛相比其他7 个锥栗农家品种生长发育良好,光能利用率高,在贵州省黔东北地区有较强的适应性。

参考文献References:

[1] 何扬清,朱国斌,范小良.4 个锥栗品种坚果品质比较[J].湖北林业科技,2022,51(5):18-22.HE Yangqing,ZHU Guobin,FAN Xiaoliang. Comparative analysis on nut qualities of four Castanea henryi cultivars[J]. Hubei Forestry Science and Technology,2022,51(5):18-22.

[2] 李嘉.锥栗果实主要营养成分及糖合成基因家族鉴定与分子标记开发[D].福州:福建农林大学,2024.LI Jia. Gene families for fruit nutrient and sugar synthesis and molecular marker development in Castanea henryi[D]. Fuzhou:Fujian Agriculture and Forestry University,2024.

[3] ALBERTO F J,AITKEN S N,ALÍA R,GONZÁLEZMARTÍNEZ S C,HÄNNINEN H,KREMER A,LEFÈVRE F,LENORMAND T,YEAMAN S,WHETTEN R,SAVOLAINEN O. Potential for evolutionary responses to climate changeevidence from tree populations[J]. Global Change Biology,2013,19(6):1645-1661.

[4] TIAN L R,CHEN J H. Photosystem I:A paradigm for understanding biological environmental adaptation mechanisms in cyanobacteria and algae[J].International Journal of Molecular Sciences,2024,25(16):8767.

[5] 宝音满达,李兆佳,刘晓东,王旭,邓文剑,周光益,皮志豪.不同种源光皮树叶绿素荧光特性及其光合响应能力[J].经济林研究,2023,41(2):205-213.Baoyinmanda,LI Zhaojia,LIU Xiaodong,WANG Xu,DENG Wenjian,ZHOU Guangyi,PI Zhihao. Chlorophyll fluorescence characteristics and their photosynthetic capacity in response to different provenance sources of Swida wilsoniana[J].Non-wood Forest Research,2023,41(2):205-213.

[6] 王璐,李艳丽,熊欢,袁德义,张勖,邹锋.温度胁迫对锥栗幼苗叶片结构及光合特性的影响[J].江西农业大学学报,2020,42(4):692-699.WANG Lu,LI Yanli,XIONG Huan,YUAN Deyi,ZHANG Xu,ZOU Feng. Effect of temperature stress on leaf structure and photosynthesis of chinquapin (Castanea henryi)[J]. Acta Agriculturae Universitatis Jiangxiensis,2020,42(4):692-699.

[7] 李艳丽,熊欢,彭小博,邹锋,袁德义.锥栗嫁接苗与实生苗叶片解剖特征及光合特性比较[J].西南农业学报,2019,32(4):792-797.LI Yanli,XIONG Huan,PENG Xiaobo,ZOU Feng,YUAN Deyi. Comparison on leaf anatomical structure and photosynthetic characteristics of grafted seedlings and seedlings in Castanea henryi[J]. Southwest China Journal of Agricultural Sciences,2019,32(4):792-797.

[8] 范晓明,袁德义,杨斐翔,田晓明,唐静,张旭辉,朱周俊.锥栗不同树体结构对光的响应[J]. 生态学报,2015,35(22):7426-7434.FAN Xiaoming,YUAN Deyi,YANG Feixiang,TIAN Xiaoming,TANG Jing,ZHANG Xuhui,ZHU Zhoujun. Effects of different tree shapes on light use in Castanea henryi[J]. Acta Ecologica Sinica,2015,35(22):7426-7434.

[9] 刘智强,袁德义,邹锋,朱周俊,王刚,卢江泽.花期喷硼对锥栗光合作用和空苞率的影响[J]. 江西农业大学学报,2017,39(3):485-491.LIU Zhiqiang,YUAN Deyi,ZOU Feng,ZHU Zhoujun,WANG Gang,LU Jiangze. Effects of spraying borax at flowering stage on photosynthesis and empty shell rate in Castanea henryi[J].Acta Agriculturae Universitatis Jiangxiensis,2017,39(3):485-491.

[10] 王璐,邢刚,陈雨晴,邹锋,袁德义,熊欢.砧木年龄对锥栗嫁接苗生长及光合特性的影响[J]. 西南农业学报,2021,34(7):1407-1412.WANG Lu,XING Gang,CHEN Yuqing,ZOU Feng,YUAN Deyi,XIONG Huan. Effects of rootstocks ages on growth and photosynthetic characteristics of Castanea henryi[J]. Southwest China Journal of Agricultural Sciences,2021,34(7):1407-1412.

[11] YE Z P,SUGGETT D J,ROBAKOWSKI P,KANG H J. A mechanistic model for the photosynthesis-light response based on the photosynthetic electron transport of photosystem II in C3 and C4 species[J].New Phytologist,2013,199(1):110-120.

[12] 蔡建国,韦孟琪,章毅,魏云龙.遮阴对绣球光合特性和叶绿素荧光参数的影响[J].植物生态学报,2017,41(5):570-576.CAI Jianguo,WEI Mengqi,ZHANG Yi,WEI Yunlong. Effects of shading on photosynthetic characteristics and chlorophyll fluorescence parameters in leaves of Hydrangea macrophylla[J].Chinese Journal of Plant Ecology,2017,41(5):570-576.

[13] 陈天笑,白晓刚,张志威,何茜,胡冰,曾炳山,陆钊华.不同种源顶果木幼苗生长、光合和叶绿素荧光特性比较[J].生态学杂志,2023,42(11):2561-2568.CHEN Tianxiao,BAI Xiaogang,ZHANG Zhiwei,HE Qian,HU Bing,ZENG Bingshan,LU Zhaohua. Comparison of growth,photosynthetic,and chlorophyll fluorescence characteristics for different provenances of Arcocarpus fraxinifolius[J]. Chinese Journal of Ecology,2023,42(11):2561-2568.

[14] 宗思洁.锥栗6 个优系开花结实及光合特性研究[D].长沙:中南林业科技大学,2022.ZONG Sijie. Study on flowering and fruiting and photosynthetic characteristics of six Castanea henryi superior strains[D].Changsha:Central South University of Forestry & Technology,2022.

[15] 梁惠,史艳财,韦霄,邓丽丽.5 种异裂菊属植物光响应模型拟合及光合特性研究[J].广西林业科学,2023,52(6):700-706.LIANG Hui,SHI Yancai,WEI Xiao,DENG Lili.Light response model fitting and photosynthetic characteristics of five Heteroplexis plants[J].Guangxi Forestry Science,2023,52(6):700-706.

[16] GAO M L,LIU Y,DONG Y M,SONG Z G. Physiological responses of wheat planted in fluvo-aquic soils to di (2-ethylhexyl) and di-n-butyl phthalates[J]. Environmental Pollution,2019,244:774-782.

[17] LIU K,TANG C F,ZHOU S B,WANG Y P,ZHANG D,WU G W,CHANG L L. Comparison of the photosynthetic characteristics of four Lycoris species with leaf appearing in autumn under field conditions[J].Photosynthetica,2012,50(4):570-576.

[18] 张丽.不同砧木对锥栗嫁接苗生长及光合的影响[D].长沙:中南林业科技大学,2019.ZHANG Li.Effects of different rootstocks on growth and photosynthesis of grafted Castanea henryi seedlings[D]. Changsha:Central South University of Forestry&Technology,2019.

[19] ZHAO H Y,GUAN J L,LIANG Q,ZHANG X Y,HU H L,ZHANG J.Effects of cadmium stress on growth and physiological characteristics of Sassafras seedlings[J]. Scientific Reports,2021,11:9913.

[20] 母贵琴,张力文,陈静.宝兴鼠尾草的光合特性研究[J].中国农学通报,2011,27(13):42-48.MU Guiqin,ZHANG Liwen,CHEN Jing.Study on the leaf photosynthetic characteristics of Salvia paohsingensis[J]. Chinese Agricultural Science Bulletin,2011,27(13):42-48.

[21] 陈虹宇,任子蓓,黄炳旭,李雪娇,任士福.不同地域连翘的光合特性研究[J].林业与生态科学,2023,38(2):218-226.CHEN Hongyu,REN Zibei,HUANG Bingxu,LI Xuejiao,REN Shifu. Study on photosynthetic characteristics of Forsythia suspensa in different regions[J]. Forestry and Ecological Sciences,2023,38(2):218-226.

[22] ZHANG B B,XU J L,ZHOU M,YAN D H,MA R J. Effect of light quality on leaf photosynthetic characteristics and fruit quality of peach (Prunus persica L. Batch)[J]. Photosynthetica,2018,56(4):1113-1122.

[23] 张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,34(4):444-448.ZHANG Shouren. A discussion on chlorophyll fluorescence kinetics parameters and their significance[J]. Chinese Bulletin of Botany,1999,34(4):444-448.

[24] WAN Y L,ZHANG Y X,ZHANG M,HONG A Y,YANG H Y,LIU Y. Shade effects on growth,photosynthesis and chlorophyll fluorescence parameters of three Paeonia species[J]. PeerJ,2020,8:e9316.

[25] BHAGOOLI R,MATTAN-MOORGAWA S,KAULLYSING D,LOUIS Y D,GOPEECHUND A,RAMAH S,SOONDUR M,PILLY S S,BEESOO R,WIJAYANTI D P,BACHOK Z B,MONRÁS V C,CASARETO B E,SUZUKI Y,BAKER A C.Chlorophyll fluorescence:A tool to assess photosynthetic performance and stress photophysiology in symbiotic marine invertebrates and seaplants[J]. Marine Pollution Bulletin,2021,165:112059.

[26] PENG J F,FENG Y H,WANG X K,LI J,XU G L,PHONENASAY S,LUO Q X,HAN Z L,LU W.Effects of nitrogen application rate on the photosynthetic pigment,leaf fluorescence characteristics,and yield of indica hybrid rice and their interrelations[J].Scientific Reports,2021,11:7485.

[27] 成向荣,舒骏,刘佳,王婉,虞木奎.不同光环境对紫背天葵和白背三七生长及光合荧光特性的影响[J]. 西北植物学报,2014,34(7):1426-1431.CHENG Xiangrong,SHU Jun,LIU Jia,WANG Wan,YU Mukui. Growth,photosynthesis and fluorescence characteristics of Begonia fimbristipula and Gynura divaricata under different light conditions[J]. Acta Botanica Boreali-Occidentalia Sinica,2014,34(7):1426-1431.

[28] 杜鹏珍,廖绍波,孙冰,陈勇,罗水兴,陈雷,黄应锋.班克木幼苗的光合色素及叶绿素荧光特性[J].中南林业科技大学学报,2014,34(9):49-54.DU Pengzhen,LIAO Shaobo,SUN Bing,CHEN Yong,LUO Shuixing,CHEN Lei,HUANG Yingfeng. Photosynthetic pigments and chlorophyll fluorescent characteristics of 17 provenances of Banksia seedlings[J].Journal of Central South University of Forestry&Technology,2014,34(9):49-54.

[29] 何炎红,白玉娥,王海燕,林涛,田有亮.光胁迫对沙冬青叶绿素荧光特征和光呼吸的影响[J].西北农业学报,2015,24(10):124-130.HE Yanhong,BAI Yu’e,WANG Haiyan,LIN Tao,TIAN Youliang.Effect of light stress on chlorophyll fluorescence and photorespiration of Ammopiptanthus mongolicus[J]. Acta Agriculturae Boreali-Occidentalis Sinica,2015,24(10):124-130.

[30] 涂志华,卢仁锋,潘瑞,洪雪沿,荣俊冬,陈礼光,郑郁善.沿海沙地10 个竹种叶绿素荧光特征比较[J]. 福建林学院学报,2012,32(2):131-135.TU Zhihua,LU Renfeng,PAN Rui,HONG Xueyan,RONG Jundong,CHEN Liguang,ZHENG Yushan. Comparisons of chlorophyll fluorescence characteristics among 10 species of bamboo in the seashore dene[J]. Journal of Fujian College of Forestry,2012,32(2):131-135.

[31] 陈霞,王习政,苏文娟,谢荟清,陈尚钘,刘娟.嫁接方法与套袋处理对山苍子生长、光合特性及叶绿素荧光特征的影响[J].西北农林科技大学学报(自然科学版),2024,52(3):51-61.CHEN Xia,WANG Xizheng,SU Wenjuan,XIE Huiqing,CHEN Shangxing,LIU Juan. Effects of grafting methods and bagging on growth,photosynthetic and chlorophyll fluorescence characteristics of Litsea cubeba[J].Journal of Northwest A&F University(Natural Science Edition),2024,52(3):51-61.

[32] 吕志海,叶荣,汤景明,余义,吴杰,方炎明,熊俊.不同种源白花泡桐光合特性及与生长量相关性分析[J].湖北林业科技,2020,49(5):5-9.LÜ Zhihai,YE Rong,TANG Jingming,YU Yi,WU Jie,FANG Yanming,XIONG Jun. Comparative research on light response characterwastics of photosyntheswas and growth of thirty-seven Paulownia spp.[J]. Hubei Forestry Science and Technology,2020,49(5):5-9.

[33] 肖石红,孙红斌,张卫强,黄芳芳,甘先华,唐成波.干旱胁迫对银叶树幼苗光合生理特性的影响[J].森林与环境学报,2021,41(6):584-592.XIAO Shihong,SUN Hongbin,ZHANG Weiqiang,HUANG Fangfang,GAN Xianhua,TANG Chengbo. Effect of drought stress on photosynthetic physiology of Heritiera littoralis seedlings[J]. Journal of Forest and Environment,2021,41(6):584-592.

[34] 张俊杰,刘青,韦霄,张建军,郭庭鸿.光强对金丝李幼苗生长及光合特性的影响[J].林业科学,2022,58(5):53-64.ZHANG Junjie,LIU Qing,WEI Xiao,ZHANG Jianjun,GUO Tinghong. Influence of light intensity on growth and photosynthetic characteristics of Garcinia paucinervis seedlings[J].Scientia Silvae Sinicae,2022,58(5):53-64.

[35] 徐薪璐,孔淑鑫,吕卓,江帅君,赵婉琪,林树燕.靓竹叶色表型叶片形态、结构与光合特性相关性研究[J].南京林业大学学报(自然科学版),2025,49(1):145-154.XU Xinlu,KONG Shuxin,LÜ Zhuo,JIANG Shuaijun,ZHAO Wanqi,LIN Shuyan. The relationship of appearance,structure and photosynthetic characteristics of different leaf color phenotypes of Sasaella glabra‘Albostriata’[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2025,49(1):145-154.

[36] 李丹,胡德越,赵红霞,路兴慧,王杰慧.6 种观赏竹光合特性和叶绿素荧光特性研究[J].山东农业科学,2023,55(7):34-41.LI Dan,HU Deyue,ZHAO Hongxia,LU Xinghui,WANG Jiehui. Study on photosynthetic and chlorophyll fluorescence characteristics of six ornamental bamboo species[J].Shandong Agricultural Sciences,2023,55(7):34-41.

[37] 李威.东北红豆杉幼树和幼苗光合生理适应性研究[D].哈尔滨:东北林业大学,2012.LI Wei. Study on acclimation of seeding and sapling foliage of Japanese yew (Taxus cuspidata) to different light intensity[D].Harbin:Northeast Forestry University,2012.

[38] 史智欣,武胜利,管文轲,韩玮,岳永江,何宇翔.不同树龄对胡杨叶片水势与光合特征的影响[J].新疆农业科学,2022,59(5):1119-1127.SHI Zhixin,WU Shengli,GUAN Wenke,HAN Wei,YUE Yongjiang,HE Yuxiang.Effects of different tree ages on leaf water potential and photosynthetic characteristics of Populus euphratica[J]. Xinjiang Agricultural Sciences,2022,59(5):1119-1127.

[39] 崔晓伟,高健,张志坚,岳祥华,马艳军.5 种地被竹叶绿素荧光特性研究[J].江西农业大学学报,2011,33(4):726-730.CUI Xiaowei,GAO Jian,ZHANG Zhijian,YUE Xianghua,MA Yanjun. Chlorophyll fluorescence characteristics of five dwarf bamboos[J].Acta Agriculturae Universitatis Jiangxiensis,2011,33(4):726-730.

[40] 洪莹,毛建越,赵树兰,多立安.氧化石墨烯对多年生黑麦草逆境生理及光合特征的影响[J].广西植物,2022,42(5):886-893.HONG Ying,MAO Jianyue,ZHAO Shulan,DUO Li’an. Effects of graphene oxide on stress physiological and photosynthetic characteristics of Lolium perenne[J]. Guihaia,2022,42(5):886-893.

[41] 周根友,翟彩娇,邓先亮,张蛟,张振良,戴其根,崔士友.盐逆境对水稻产量、光合特性及品质的影响[J]. 中国水稻科学,2018,32(2):146-154.ZHOU Genyou,ZHAI Caijiao,DENG Xianliang,ZHANG Jiao,ZHANG Zhenliang,DAI Qigen,CUI Shiyou. Performance of yield,photosynthesis and grain quality of japonica rice cultivars under salinity stress in micro-plots[J]. Chinese Journal of Rice Science,2018,32(2):146-154.

[42] 高秋美,任丽华,韩加坤,米真如,刘洪冲,董秋颖.干旱胁迫对‘济菊’生长及光合生理特性的影响[J].中国农学通报,2024,40(28):51-56.GAO Qiumei,REN Lihua,HAN Jiakun,MI Zhenru,LIU Hongchong,DONG Qiuying. Effects of drought stress on growth and photosynthetic physiological characteristics of Chrysanthemum morifolium‘Jiju’[J]. Chinese Agricultural Science Bulletin,2024,40(28):51-56.

[43] SHIN Y K,BHANDARI S R,JO J S,SONG J W,LEE J G. Effect of drought stress on chlorophyll fluorescence parameters,phytochemical contents,and antioxidant activities in lettuce seedlings[J].Horticulturae,2021,7(8):238.

[44] 徐传保,郑伟兵,戴庆敏,赵承森.干旱胁迫条件下朱槿叶绿素荧光特性[J].安徽农业科学,2024,52(6):110-113.XU Chuanbao,ZHENG Weibing,DAI Qingmin,ZHAO Chengsen.Chlorophyll fluorescence characteristics of Hibiscus rosa-sinensis under drought stress[J].Journal of Anhui Agricultural Sciences,2024,52(6):110-113.

[45] 虎丽霞,张婧,高彦强,毛尔晔,韩康宁,杨滟,颉建明.长时间镁胁迫对芹菜叶绿素荧光特性与抗氧化能力的影响[J].浙江农业学报,2024,36(2):295-307.HU Lixia,ZHANG Jing,GAO Yanqiang,MAO Erye,HAN Kangning,YANG Yan,XIE Jianming.Effects of long-term magnesium stress on chlorophyll fluorescence characteristics and antioxidant properties of celery[J]. Acta Agriculturae Zhejiangensis,2024,36(2):295-307.

[46] 钟智遥,胡良,王香莲,高桂青,樊后保,孙珑,胡晨阳,胡盛明.砷胁迫对青萍PSⅡ荧光参数和光响应的影响[J].南昌工程学院学报,2022,41(4):23-28.ZHONG Zhiyao,HU Liang,WANG Xianglian,GAO Guiqing,FAN Houbao,SUN Long,HU Chenyang,HU Shengming. Effects of arsenic stress on PSⅡfluorescence parameters and light response of Lemna minor L.[J].Journal of Nanchang Institute of Technology,2022,41(4):23-28.

[47] 王冰林,徐广宾,李媛媛.根结线虫侵染对茄子叶片叶绿素荧光特性的影响[J].中国农学通报,2013,29(1):94-97.WANG Binglin,XU Guangbin,LI Yuanyuan. Effects of Meloidogyne incognita infection on chlorophyll fluorescence characteristics in eggplant leaves[J]. Chinese Agricultural Science Bulletin,2013,29(1):94-97.

[48] 李捷,冯丽丹,王有科,何静,陈秀蓉.尖镰孢菌(Fusarium oxysporum)侵染对枸杞光合和荧光参数的影响[J]. 中国沙漠,2015,35(6):1565-1572.LI Jie,FENG Lidan,WANG Youke,HE Jing,CHEN Xiurong.Effects of infection by Fusarium oxysporum on photosynthetic and chlorophyll fluorescence parameters of Lycium sp.[J]. Journal of Desert Research,2015,35(6):1565-1572.

Comparison of growth, photosynthetic, and chlorophyll fluorescence characteristics of different native cultivars in Castanea henryi

XU Bin,WU Jingyi,WU Jianfeng,SU Xinyu,ZHAO Junru,ZHU Zhoujun*,LI Jianxin*
(College of Agroforestry Engineering and Planning, Tongren University/Guizhou Provincial Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region,Tongren 554300,Guizhou,China)

Abstract:【Objective】The production of Castanea henryi is a new industry in Guizhou province of China.Many native cultivars have been introduced from Fujian province in resent years.Their adaptability remains unclear. The study systematically evaluated the photosynthetic characteristics and chlorophyll fluorescence parameters of 8 C.henryi native cultivars from Fujian in order to provide a scientific basis for the cultivation of C. henryi in Qiandongbei region of Guizhou province.【Methods】This experiment was conducted in mid-July at the Woody Oil Crop Base of Tongren University(27°47′30″N,109°13′16″E,altitude 466.2 m).The two-year-old grafted trees of 8 native cultivars of C.henryi introduced from Fujian were used as experimental materials.The density of the trees were 4 m×4 m in the plot under conventional irrigation and fertilization management. The relative chlorophyll content (SPAD) was measured using a SPAD-502Plus chlorophyll meter. The leaf area, length, and width were then measured with a Li-3000C portable leaf area meter.The photosynthetic parameters were measured between 08:30 and 11:30 on clear days using an Li-6800 portable photosynthesis system.The target leaves were marked and subsequently photoinduced at a light intensity of 1200 μmol·m-2·s-1 for at least 20 minutes until stabilization of the net photosynthetic rate (Pn). The light-response curves were fitted through a rectangular hyperbolic correction model, with parameters recorded including maximum net photosynthetic rate (Pnmax), light saturation point (LSP), apparent quantum efficiency (AQY), light compensation point (LCP), and dark respiration rate (Rd). The chlorophyll fluorescence analysis was conducted through overnight dark-adaptation of the leaves achieved by aluminum foil wrapping.With the Li-6800 system maintained at identical chamber settings to those used for light-response curve measurements,a 30-minute light adaptation was performed before parameter determination.The recorded parameters included:initial fluorescent light (F0); maximal fluorescence (Fm), PSⅡprimary light energy conversion efficiency(Fv/Fm),potential efficiency of primary conversion of PSⅡ(Fv/F0),actual photochemical efficiency of PSⅡ(Fv'/Fm'), photochemical quenching coefficient (qP), electron transport rate (ETR), and non-photochemical quenching (NPQ). The Mantel test was applied to conduct correlation analysis for examining the relationships among growth parameters,photosynthetic parameters,and chlorophyll fluorescence parameters. The principal component analysis was applied to identify dominant characteristic parameters between photosynthetic parameters and chlorophyll fluorescence parameters.【Results】The significant growth variations were observed in the growth indexes of different native cultivars of C.henryi. Among all tested cultivars, Youzhen exhibited superior performance in plant height (96.18 cm),ground diameter (20.79 mm), and leaf area (76.15 cm2), all significantly higher than those of the other cultivars(P<0.05).The SPAD values of Youzhen and Dajianzui were significantly higher than those of the other cultivars(P<0.05).Although the 8 cultivars displayed similar trends in light-response curves,they differed significantly in the key photosynthetic parameters.The AQY ranged from 0.042 to 0.059,with Youzhen and Dajianzui exhibiting the highest values of 0.059.The Pnmax of Bailuzi was significantly lower than that of other cultivars. Changmangzi exhibited the lowest Rd, while Heili had the highest Rd. Meanwhile, Heili had the highest LCP and LSP. The significant variations in chlorophyll fluorescence parameters were observed among 8 C. henryi cultivars. The initial fluorescent light (F0) of Bailuzi was significantly higher than that of other cultivars(P<0.05).The correlation analysis revealed that plant height had a highly significant and positive correlation(P<0.01)with ETR,AQY,LSP,LCP,and Rd.The Pnmax was positively correlated with Fm,Fv/Fm,Fv/F0,and Fv'/Fm',while it was negatively correlated with NPQ. Furthermore, the Fv/Fm, Fv/F0, and Fv'/Fm' showed a highly significant and positive correlation(P<0.05).The chlorophyll fluorescence parameters of Youzhen and Dajianzui were similar,but the NPQ value of Dajianzui was significantly lower than that of Youzhen.Additionally, both Youzhen and Dajianzui showed relatively high values of the Fv'/Fm' and ETR. The Fv'/Fm' of Youzhen was 0.755 and the ETR was 114.677,while those of Dajianzui were 0.765 and 107.148,respectively.The Fv/F0 of Youzhen was not significantly different from that of Chushuhong, but was significantly higher than that of the other 6 cultivars (P<0.05). The principal component analysis (PCA) grouped the 13 photosynthetic physiological characteristics into two principal components with a cumulative contribution rate of 77.48%, among them, the first principal component was closely related to Fv/Fm, Fv/F0, and Fv'/Fm', with a contribution rate of 53.72%, while the second principal component was related to LSP and ETR, with a contribution rate of 23.76%. Based on the analysis of the data distribution related to the growth and physiological characteristics of C.henryi cultivars,Youzhen,Dajianzui,and Wukechangmang were closely clustered together in the data distribution pattern.In contrast,Heili and Bailuzi were located far away from the other six native cultivars in the same data distribution context.【Conclusion】The significant variations in growth parameters and photosynthetic physiological characteristics were observed among different C.henryi native cultivars from Fujian.The Youzhen cultivar demonstrated superior growth performance and high light-use efficiency, consistent with its growth parameter performance,indicating better adaptability in the Qiandongbei region of Guizhou province.

Key words:Castanea henryi;Native cultivars;Growth indexes;Photosynthetic characteristics;Chlorophyll fluorescence;Correlation analysis

中图分类号:S664.2

文献标志码:A

文章编号:1009-9980(2025)08-1786-11

DOI:10.13925/j.cnki.gsxb.20240702

收稿日期:2025-01-10

接受日期:2025-04-21

基金项目:铜仁学院博士科研启动基金项目(trxyDH2324);铜仁学院2024硕士研究生创新基金项目(trxyyc-202421);贵州省重点实验室项目(黔科合平台人才〔2020〕2003号)

作者简介:许斌,男,在读硕士研究生,研究方向为经济林栽培与育种。E-mail:15626686867@163.com

*通信作者Author for correspondence. E-mail:trxyngyzzj@163.com;E-mail:675999792@qq.com