有核、无核沃柑落花落果期内源激素和矿质养分差异研究

董建梅1,李 晶1,杨 笛1,李进学2,赖新朴1,刘红明1,付小猛1,杨虹霞1,杜玉霞1*

1云南省农业科学院热带亚热带经济作物研究所,云南保山 678000; 2滇西科技师范学院,云南临沧 677000)

摘 要:【目的】探明有核沃柑和无核沃柑在落花落果期矿质养分和内源激素的含量变化,为沃柑保花保果提供理论支撑。【方法】以有核沃柑和无核沃柑为材料,从盛花期开始每10 d采集一次花、果和叶片,测定其矿质养分和内源激素的含量。【结果】无核沃柑叶片和果实的生长素(IAA)、赤霉素(GA3)含量在前期均低于有核沃柑,IAA含量在后期高于有核沃柑,第30 天花果脱落酸(ABA)含量显著高于有核沃柑,第50 天叶片和花果茉莉酸(JA-me)含量显著高于有核沃柑;无核沃柑春梢叶前期N、P、Mg 含量低于有核沃柑,但后期高于有核沃柑,无核沃柑春梢叶的Ca 含量较低,秋梢叶的Fe、Mn、Cu、Zn含量低于有核沃柑。【结论】无核沃柑落花落果是IAA、GA3含量低和ABA、JA-me含量高共同作用的结果,其矿质养分含量也有所差异。

关键词:有核沃柑;无核沃柑;内源激素;矿质养分

沃柑是坦普尔橘橙和丹西红橘的杂交种,具有晚熟、高糖、高酸的特点,因其产量高、品质佳、种植适宜区广[1],近年来种植面积不断攀升,截至2023年全国面积超过20 万hm2,其中云南产业发展规模较快,种植面积接近6.67万hm2[2]。沃柑虽然有优质丰产的优点,但其种子数量多影响了商品价值。无核沃柑是中国柑桔研究所通过辐射育种方法从有核沃柑中选育出的新品种,保留了有核沃柑的优良品质特性,克服了有核沃柑多籽的缺点[3],在水果市场上深受广大消费的喜爱,但在生产管理中,无核沃柑落花落果严重,保果技术困难,导致其产量较低。因此,结合沃柑落花落果的特点,深入研究落花落果关键时期理化性质的差异,研究防止无核沃柑落花落果的措施,对无核沃柑的稳定、可持续发展有着重要的意义。

柑橘花量大,但花果在蕾期、花期及幼果期容易大量脱落,导致其坐果率低。沃柑的落花落果主要发生在第一次生理落果期,落果率最高,超过59.00%[4],而生产中无核沃柑在第一次生理落果期的落花落果现象较有核沃柑更为严重[5]。目前,关于柑橘落花落果成因的研究较多,受精情况不佳、花器官发育不良、梢果矛盾、树体营养失衡、内源激素水平失调等都会导致落花落果。其中,树体营养和内源激素的失衡因直接影响柑橘的坐果情况而备受关注。植物内源激素是植物体内产生的一些微量而能调节自身生理过程的有机化合物,包括生长素(IAA)、赤霉素(GA3)、脱落酸(ABA)、细胞分裂素(CTK)、乙烯、油菜素甾醇六大类,在柑橘落花落果过程中发挥着重要的作用。生长素有抑制器官脱落的作用[6],董倩倩等[7]对处于采前落果期的柑橘进行不同组织部位内源激素分析,发现果柄中的IAA 含量可能对采前落果也有重要影响。GA3在促进细胞增长、形成无核果实及减少植物器官脱落等方面有重要作用[8-9],在甜橙[10]、沃柑[4]、脐橙[11]等柑橘上外施赤霉素能显著提高坐果率。果实生长发育前期主要受到内源赤霉素与生长素的影响,而脱落酸主要调控果实发育后期,W-默科特在幼果期产生生长类激素,避免了胚珠败育,产生较多ABA,减少了生理落果[12]。ABA 介导乙烯合成[13-14],促进花果脱落。矿质养分的平衡对坐果也至关重要,开花挂果期柑橘树需要消耗大量的营养元素,N、P、K、Ca、Mg、B 的缺乏都会严重导致落花落果[15-16]。柑橘落果中大量元素N、P、K 含量较高,Ca 含量远低于适宜值,微量元素Fe、Zn、B 含量也较高[17],在幼花幼果期补充养分可以就近提供花果生长发育的养分,有效提高坐果率[18]

雌性不育、受精受阻或胚早期败育均可能是无核沃柑无核的成因[19],胚囊的败育势必会影响树体内源激素的变化,学者们对柑橘落花落果的原因做了大量的研究。有核沃柑和无核沃柑有着很近的亲缘关系,与有核沃柑相比,尚不清楚无核沃柑内源激素在落花落果关键期如何变化,以及是否影响到养分的吸收,从而导致无核沃柑大量落花落果,仍需进一步研究。笔者在本研究中以有核沃柑和无核沃柑为材料,通过在盛花期至第二次生理落果期,对比花、叶、果的矿质养分和内源激素变化动态,旨在找出其变化的关键因子和关键时期,明确外施养分和生长调节剂的种类和时期,为制定无核沃柑的保花保果技术方案提供科学指导。

1 材料和方法

1.1 供试材料

2022 年,以种植在云南省农科院热带亚热带经济作物研究所瑞丽站示范园内的3 年生有核沃柑和无核沃柑为材料,均以香橙为砧木。每个品种选择树体大小、长势、花量中等且一致的代表性植株,单株小区,3 次重复。果园种植株行距为3 m×4 m,土壤基本情况为:pH 6.29、有机质含量(w,后同)1.04%、碱解氮含量149.70 mg·kg-1、速效磷含量58.40 mg·kg-1、速效钾含量319.80 mg·kg-1、有效钙含量1 982.00 mg·kg-1、速效镁含量391.30 mg·kg-1、有效铁含量170.30 mg·kg-1、有效铜含量4.10 mg·kg-1、有效锌含量3.90 mg·kg-1、有效硼含量3.90 mg·kg-1,常规管理。供试沃柑的盛花期为3月14日至4月1日,谢花期为4月2日至4月18日,第一次生理落果期为4 月12 日至5 月26 日,无核沃柑第一次生理落果期结束后树上没有果实,有核沃柑第二次生理落果期为5月22日至6月25日。

1.2 采样方法

于盛花期(3 月14 日)后每10 d 为1 次生长期,采集较一致花(花期采集)、果(待有幼果产生时采集,不再额外采集花)、春梢叶(当年2—3 月抽发叶)、秋梢叶(上年8—10 月抽发叶),花、果、部分春梢叶样品采集后快速用液氮速冻,置于-80 ℃超低温冰箱保存,用于内源激素的测定;另一部分春梢叶以及秋梢叶参照庄伊美等[20]的方法经过清洗、杀青、75 ℃恒温烘干、粉碎后密封保存用于测定矿质养分含量。

1.3 测定指标

1.3.1 叶片矿质养分 叶片矿质养分含量测定参照鲍士旦[21]的方法:叶片全氮含量使用自动凯氏定氮仪/SKD-200,采用H2SO4-H2O2消煮·凯氏定氮法测定;全磷含量使用紫外-可见光分光光度计/752 自动,采用H2SO4-H2O2消煮后,使用钼锑黄比色法测定;全钾含量使用原子吸收分光光度计/990F,采用H2SO4-H2O2消煮·原子吸收法测定;钙、镁、铜、铁、锰、锌含量使用原子吸收分光光度计/990F,采用HNO3-HClO4消煮·原子吸收法测定。

1.3.2 叶片和花果激素含量 IAA、GA3、ABA、玉米素核苷(ZR)、茉莉酸(JA-me)的含量采用酶联免疫吸附法(ELISA)测定[22],使用液氮冷冻、研磨叶片、花、果组织,按照步骤提取激素,在酶联免疫分光光度计上用490 nm 波长依次测定各样品的吸光度,并根据标准曲线计算样本的激素含量。

1.4 数据处理

使用Excel 2016 对试验数据进行统计和预处理;用SPSS 25.0 中的独立样本T 检验分别对有核沃柑和无核沃柑的叶片、花、果内源激素含量数据进行差异显著性分析(p<0.05),其他矿质数据采用SPSS 25.0 进行单因素方差分析,用Duncan 检验法(p<0.05)分别检验不同处理间的差异显著性,采用Pearson 相关系数法进行相关性分析;使用Origin 2022软件绘图。

2 结果与分析

2.1 有核、无核沃柑内源激素含量差异分析

2.1.1 有核、无核沃柑IAA 含量差异 由图1 可知,有核沃柑和无核沃柑花果和叶片的IAA含量有明显差异。在盛花后20~30 d 无核沃柑叶片IAA 含量极显著低于有核沃柑;有核、无核沃柑花果IAA含量整体来说呈现出升高的趋势,无核沃柑的IAA 含量在花后10~40 d显著或极显著低于有核沃柑,在盛花期后第50天显著高于有核沃柑。

图1 有核沃柑和无核沃柑生长素含量
Fig. 1 IAA content of seedy and seedless Orah mandarins

2.1.2 有核、无核沃柑GA3含量差异 由图2 可以看出,有核沃柑和无核沃柑GA3 含量存在明显差异。在盛花后的10~40 d,无核沃柑叶片GA3含量均低于有核沃柑,其中在第10、30、40 天显著或极显著低于有核沃柑,而在盛花后50 d,无核沃柑GA3含量极显著高于有核沃柑;盛花后不同时期的有核沃柑和无核沃柑花果GA3含量均呈现出先升高后降低再升高的趋势,盛花后20~50 d,无核沃柑的GA3含量均低于有核沃柑,并在花后第30天和第40天极显著低于有核沃柑。

图2 有核沃柑和无核沃柑赤霉素含量
Fig. 2 GA3 content of seedy and seedless Orah mandarins

2.1.3 有核、无核沃柑ABA 含量差异 由图3 可知,开花后不同时期的有核、无核沃柑叶片ABA 含量整体上呈现下降的趋势,无核沃柑叶片ABA 含量在整个时期均低于有核沃柑,并在第20~40 天显著低于有核沃柑;有核沃柑和无核沃柑花果ABA 含量均呈现出先升高后降低的趋势,但在第30 天无核沃柑花果ABA含量极显著高于有核沃柑花果,在第40天无核沃柑花果ABA 含量极显著低于有核沃柑花果。

图3 有核沃柑和无核沃柑脱落酸(ABA)含量
Fig. 3 ABA content of seedy and seedless Orah mandarins

2.1.4 有核、无核沃柑ZR 含量差异 由图4 可知,开花后有核、无核沃柑叶片ZR 含量在整体上呈现出先升高后降低再增加的趋势,在开花后第40天无核沃柑叶片的ZR含量显著低于有核沃柑,在开花后第50 天无核沃柑叶片的ZR 含量极显著高于有核沃柑。开花后有核、无核沃柑花果ZR 含量变化幅度较大,但无核沃柑和有核沃柑花果的ZR含量并无显著差异。

图4 有核沃柑和无核沃柑玉米素核苷含量
Fig. 4 ZR content of seedy Orah mandarin and seedless Orah mandarin

2.1.5 有核、无核沃柑JA-me含量差异 由图5可知,开花后有核、无核沃柑叶片JA-me 含量在10~40 d 逐渐降低,到第50天又呈现升高的趋势,而且在10~40 d有核沃柑叶片JA-me 含量显著或极显著高于无核沃柑叶片,在第50 天无明显差异;开花后不同时期的有核、无核沃柑花果JA-me 含量整体呈现出逐渐下降的趋势,在10~40 d 有核、无核沃柑花果JA-me 含量无显著差异,在第50 天有核沃柑花果JA-me 含量显著低于无核沃柑花果。

图5 有核沃柑和无核沃柑茉莉酸含量
Fig. 5 JA-me content of seedy and seedless Orah mandarins

2.1.6 有核、无核沃柑(Zr+GA3+IAA)/ABA 差异在盛花期后50 d内,沃柑叶片和花果内的(Zr+GA3+IAA)/ABA 比值持续上升;盛花后20~50 d无核沃柑叶片中(Zr+GA3+IAA)/ABA 比值显著高于有核沃柑,但有核沃柑花果中的(Zr+GA3+IAA)/ABA 比值在盛花期后10~30 d 高于无核沃柑,在40~50 d 显著低于无核沃柑(表1)。

表1 有核无核沃柑(Zr+GA3+IAA)/ABA 比值
Table 1 (Zr+GA3+IAA)/ABA of seedy and seedless Orah mandarins

材料Materials有核沃柑叶片The leaves of seedy Orah mandarin无核沃柑叶片The leaves of seedless Orah mandarin有核沃柑花果The flowers and fruits of seedy Orah mandarin无核沃柑花果The flowers and fruits of seedless Orah mandarin盛花后时间 Time after bloom/d 10 0.22±0.004 a 0.23±0.002 a 0.21±0.008 b 0.19±0.002 c 20 0.32±0.014 b 0.49±0.014 a 0.26±0.023 c 0.22±0.009 d 30 0.34±0.010 c 0.44±0.006 b 0.67±0.064 a 0.26±0.004 d 40 0.61±0.011 c 0.84±0.041 a 0.76±0.044 b 0.92±0.064 a 50 0.93±0.042 d 1.09±0.037 c 1.32±0.146 b 1.75±0.031 a

2.2 有核、无核沃柑养分含量差异分析

2.2.1 有核、无核沃柑叶片N、P、K 元素差异 由表2 可以看出,在盛花后60 d 内叶片N 元素含量总体表现为先下降后升高的趋势;无核沃柑春梢叶片N元素含量在盛花后10~20 d显著低于有核沃柑,但在盛花后60 d 显著高于有核沃柑;无核沃柑秋梢叶片N 元素含量在盛花后10、50 d 显著高于有核沃柑。有核沃柑春梢叶片P元素含量表现为前期高后期低的特点;无核沃柑春梢叶的P元素含量在盛花后10~20 d显著低于有核沃柑,而在开花后40~50 d显著高于有核沃柑;无核沃柑秋梢叶片P 元素含量在盛花后10~30 d、50 d 均显著高于有核沃柑。叶片的K 元素含量在开花前期含量较高,但伴随着花期推进,含量逐步降低;无核沃柑春梢叶片K 元素含量在盛花后10~20 d、50~60 d显著高于有核沃柑;无核沃柑秋梢叶片K 元素含量在盛花后10~50 d 显著高于有核沃柑。

表2 有核沃柑和无核沃柑叶片N、P、K 含量
Table 2 N, P, K contents of leaves in seedy and seedless Orah mandarins ( g·kg-1

元素Element N品种Variety有核沃柑Seedy Orah mandarin盛花后时间 Time after bloom/d 10 20.03±0.66 a 20 19.03±0.85 a部位Part春梢Spring shoot秋梢Autumn shoot春梢Spring shoot秋梢Autumn shoot春梢Spring shoot秋梢Autumn shoot春梢Spring shoot秋梢Autumn shoot春梢Spring shoot秋梢Autumn shoot春梢Spring shoot秋梢Autumn shoot 30 13.24±0.07 c 40 15.59±0.30 a 50 17.41±1.04 a 60 15.88±0.37 c 14.32±0.29 d 15.71±0.11 b 15.27±0.46 b 14.87±1.08 a 15.08±0.71 b 17.42±0.92 b无核沃柑Seedless Orah mandarin 17.92±0.88 b 15.96±0.54 b 12.65±0.30 c 15.79±0.22 a 16.74±0.54 a 19.41±0.25 a 16.35±0.57 c 15.82±0.03 b 15.91±0.30 a 14.77±0.36 a 16.77±0.06 a 16.92±0.44 bc P 有核沃柑Seedy Orah mandarin 1.30±0.06 a 1.22±0.04 a 0.86±0.04 a 0.66±0.05 b 0.65±0.01 c 0.73±0.03 a 0.40±0.01 d 0.73±0.03 d 0.51±0.15 b 0.53±0.05 c 0.80±0.06 b 0.78±0.03 a无核沃柑Seedless Orah mandarin 1.18±0.02 b 1.03±0.04 b 0.80±0.05a 0.88±0.03 a 0.85±0.05 b 0.88±0.11 a 0.85±0.05 c 0.89±0.01 c 0.88±0.03 a 0.43±0.01 d 1.07±0.05 a 0.78±0.01 a K 有核沃柑Seedy Orah mandarin 3.16±0.03 b 2.11±0.06 b 1.92±0.08 a 1.39±0.06 a 0.95±0.02 c 0.78±0.01 c 1.35±0.08 d 0.63±0.03 d 0.72±0.02 c 0.58±0.04 c 0.65±0.03 d 0.99±0.01 b无核沃柑Seedless Orah mandarin 3.73±0.20 a 2.71±0.09 a 1.89±0.06 a 1.41±0.03 a 1.12±0.02 b 1.08±0.03 a 2.07±0.23 c 1.54±0.05 c 1.27±0.02 b 1.10±0.03 b 1.30±0.04 a 0.98±0.04 b

2.2.2 有核、无核沃柑Ca、Mg 元素差异 由表3 可知,秋梢叶的Ca 元素含量高于春梢叶;无核沃柑春梢叶片Ca 元素含量在盛花后10 d 显著高于有核沃柑,而在30~60 d,其Ca 元素含量显著低于有核沃柑春梢叶片,处于极度缺乏的状态,但无核沃柑的秋梢叶Ca 元素含量在30~50 d 却显著高于有核沃柑;无核沃柑春梢叶片Mg 元素含量在盛花后50~60 d 显著高于有核沃柑春梢叶片;无核沃柑秋梢叶片Mg元素含量在盛花后20~50 d显著高于有核沃柑。

表3 有核沃柑和无核沃柑叶片Ca、Mg 含量
Table 3 Ca, Mg contents of leaves in seedy and seedless Orah mandarins ( g·kg-1

元素Element Ca Mg品种Variety有核沃柑Seedy Orah mandarin无核沃柑Seedless Orah mandarin有核沃柑Seedy Orah mandarin无核沃柑Seedless Orah mandarin部位Part春梢 Spring shoot秋梢Autumn shoot春梢Spring shoot秋梢Autumn shoot春梢Spring shoot秋梢Autumn shoot春梢Spring shoot秋梢Autumn shoot盛花后时间 Time after bloom/d 10 4.43±0.34 d 38.89±1.59 a 7.23±0.19 c 22.18±1.44 b 3.57±0.06 c 5.76±0.19 a 3.99±0.10 b 3.80±0.09 b 20 6.46±0.36 b 5.60±0.12 b 6.07±0.09 b 70.24±8.15 a 4.12±0.10 b 4.32±1.86 b 3.39±0.09 b 11.12±0.16 a 30 24.74±0.60 b 9.05±0.78 c 3.35±0.12 d 42.36±1.02 a 3.83±0.13 b 3.57±0.12 c 3.24±0.07 d 6.35±0.11 a 40 26.75±0.56 b 16.16±0.94 c 7.71±0.14 d 39.67±1.27 a 4.14±0.13 b 4.14±0.09 b 4.07±0.06 b 6.08±0.60 a 50 22.32±0.26 b 22.60±0.53 b 10.12±0.22 c 30.54±1.13 a 3.82±0.08 d 5.02±0.04 b 4.40±0.20 c 6.34±0.33 a 60 28.14±0.78 b 30.78±1.29 a 12.05±0.38 c 30.60±1.56 a 3.60±0.12 c 4.55±0.07 b 5.09±0.10 a 4.47±0.17 b

2.2.3 有核、无核沃柑Fe、Mn、Cu、Zn元素差异 由表4 可知,沃柑秋梢叶片的Fe、Mn、Cu 元素含量高于春梢叶片。无核沃柑秋梢叶片的Fe、Mn、Cu、Zn元素含量除盛花后60 d Mn 元素含量无差异外,其余各个时期均显著低于有核沃柑;无核沃柑春梢叶片的Fe、Mn 元素含量在第20、40 天显著低于有核沃柑,Cu 含量在盛花后第10、40、60 天显著低于有核沃柑,无核沃柑在Fe、Mn、Cu、Zn 元素的吸收和转运上低于有核沃柑,在生产中更需要补充微量元素。

表4 有核沃柑和无核沃柑叶片Fe、Mn、Cu、Zn 元素含量
Table 4 Fe, Mn, Cu, Zn contents of leaves in seedy and seedless Orah mandarins ( mg·kg-1

元素Element Fe品种Variety有核沃柑Seedy Orah mandarin盛花后时间 Time after bloom/d 10 62.62±0.75 d 20 181.64±4.96 a部位Part春梢Spring shoot秋梢Autumn shoot春梢Spring shoot秋梢Autumn shoot春梢Spring shoot秋梢Autumn shoot春梢Spring shoot秋梢Autumn shoot春梢Spring shoot秋梢Autumn shoot春梢Spring shoot秋梢Autumn shoot春梢Spring shoot秋梢Autumn shoot春梢Spring shoot秋梢Autumn shoot 30 55.40±2.79 c 40 63.71±1.52 c 50 67.87±2.10 d 60 90.59±0.98 d 163.63±2.37 a 182.59±1.43 a 198.93±7.91 a 170.45±3.68 a 162.24±4.01 a 143.07±2.59 a无核沃柑Seedless Orah mandarin 91.47±1.29 c 77.43±7.62 c 55.55±3.32 c 52.76±3.27 d 75.74±1.57 c 103.45±3.76 c 138.46±8.85 b 143.06±3.77 b 133.29±14.55 b 118.92±2.16 b 116.23±3.53 b 115.61±1.89 b Mn 有核沃柑Seedy Orah mandarin 4.42±0.21 c 7.41±0.23 c 95.41±2.81 c 76.59±1.78 c 46.65±1.33 c 96.52±8.13 b 73.97±4.10 a 67.22±3.21 a 219.38±9.74 a 137.90±10.75 a 96.09±6.93 a 124.89±10.90 a无核沃柑Seedless Orah mandarin 2.47±0.15 c 3.55±0.20 d 106.45±3.96 bc 60.49±5.92 d 73.32±2.70 b 88.29±5.16 b 46.38±3.28 b 57.83±2.49 b 108.29±6.36 b 91.97±1.99 b 67.21±1.17 b 115.87±6.19 a Cu 有核沃柑Seedy Orah mandarin 56.97±3.78 b 16.20±0.32 c 12.68±0.35 c 106.60±5.28 b 62.16±2.68 b 44.39±2.59 b 94.77±0.85 a 55.29±3.00 a 95.92±4.88 a 134.82±3.20 a 97.38±6.44 a 75.98±0.54 a无核沃柑Seedless Orah mandarin 41.14±0.48 c 19.75±0.91 c 6.82±0.43 c 95.27±4.88 c 64.53±2.47 b 36.11±2.92 c 42.13±0.59 c 37.16±2.76 b 34.96±4.45 b 86.19±0.72 d 48.11±1.06 c 48.24±2.55 b Zn 有核沃柑Seedy Orah mandarin 27.37±0.14 a 21.75±1.57 a 21.95±0.46 b 18.33±1.59 b 18.50±0.32 b 18.42±0.28 b 20.33±0.45 c 17.45±2.02 b 26.27±3.26 a 25.81±1.75 a 23.77±0.40 a 21.73±2.05 a无核沃柑Seedless Orah mandarin 21.92±0.83 b 19.62±1.01 ab 17.83±1.12 c 15.03±0.22 c 18.51±0.33 b 15.68±0.22 c 17.08±0.40 d 12.32±0.60 c 22.37±0.38 b 17.73±0.19 b 15.98±0.12 c 18.93±0.18 b

2.3 内源激素、矿质养分含量相关性分析

花果中的GA3、ABA 和JA-me 含量与叶片激素含量存在极显著的相关性,若要提升花果内的GA3、ABA 和JA-me 含量,可以通过在叶片中补充对应的激素含量来实现(表5)。叶片中IAA 含量与果实中ZR 含量呈显著负相关,与JA-me 含量呈显著正相关;叶片中的GA3含量与果实中的IAA 和GA3含量呈显著正相关;叶片中的ABA 含量与果实中的IAA、GA3、ZR 含量呈极显著负相关,与ABA、JA-me含量呈极显著正相关;叶片中的ZR含量与果实中的IAA、GA3含量呈极显著正相关,与JA-me 含量呈显著负相关;叶片中的JA-me 含量与果实中的IAA、ZR 含量呈显著负相关,与ABA、JA-me 含量呈极显著正相关。

表5 沃柑春梢叶片与花果内源激素间的相关性
Table 5 Correlation analysis of endogenous hormones in spring leaves and flower-fruits

器官与激素Organ and endogenous hormone IAA-叶片 IAA-Leaves GA3-叶片 GA3-Leaves ABA-叶片 ABA-Leaves ZR-叶片 ZR-Leaves JA-me-叶片 JA-me-Leaves IAA-花果IAA-Flowers and fruits-0.137 0.394*-0.730**0.521**-0.461*GA3-花果GA3-Flowers and fruits-0.084 0.472**-0.543**0.547**-0.235 ABA-花果ABA-Flowers and fruits 0.085 0.063 0.675**-0.198 0.581**ZR-花果ZR-Flowers and fruits-0.368*0.227-0.563**0.235-0.457*JA-me-花果JA-me-Flowers and fruits 0.434*-0.200 0.891**-0.415*0.739**

叶片中的大量元素N、P、K 主要影响IAA、ABA和JA-me含量,并且除N与IAA 相关性不显著外,其余均存在显著或极显著正相关关系;微量元素Mn、Cu 与ABA、JA-me 含量存在显著或极显著负相关;微量元素Zn 与IAA、ABA、JA-me 含量呈极显著正相关(表6)。

表6 沃柑春梢叶片内源激素与养分含量间相关性分析
Table 6 Correlation analysis of mineral nutrient in spring leaves and autumn leaves

内源激素与养分Endogenous hormone and mineral nutrient IAA GA3 ABA ZR JA-me N P K Ca Mg Fe Mn Cu Zn 0.262 0.060 0.443*-0.213 0.596**0.440*0.000 0.817**-0.318 0.804**0.375*-0.195 0.874**-0.426*0.688**0.032 0.070-0.326 0.118-0.281 0.076 0.276-0.238 0.331-0.223 0.109 0.386*0.240 0.304 0.270-0.278-0.024-0.543**0.277-0.608**-0.352-0.095-0.384*-0.216-0.362*0.610**0.081 0.861**-0.301 0.962**

3 讨 论

内源激素水平在很大程度上影响果实坐果,骏枣中GA3、IAA 含量的过低导致第一次生理落果,而第二次生理落果主要是ABA 含量急剧上升[23],未授粉W-默科特ABA 含量较高,但GA3、IAA 含量明显低于授粉柑橘[24],导致更易落果。Iglesias 等[6]研究表明生长素在早期对器官脱落起抑制作用,一旦感知脱落信号后,就可以加速器官脱落。在本研究中无核沃柑花果、叶的IAA 含量在花后30 d 内均显著低于有核沃柑,但花果在IAA 含量在后期高于有核沃柑,无核沃柑生长素含量的前期低后期高是导致前期落花的重要因素之一,生产中应在开花前补充外源生长素。在拟南芥中受精激发了胚珠中IAA的生物合成,进而介导了GA 的生物合成[25],在本研究中,无核沃柑的GA3含量低于有核沃柑,尤其在盛花后30~40 d,是第一次花果脱落的主要原因,因此在谢花期应及时喷施外源赤霉素,此措施已广泛应用于沃柑[5]、枣[26]的保果。受精胚珠或幼嫩种子是合成植物生长促进类物质的主要场所[27],无核沃柑在花期受精受阻、胚早期败育,因此其促进类激素(IAA、GA3、ZR)含量在关键时期低于有核沃柑,导致更容易落花落果。ABA 和JA-me 是植物体内的抑制类激素,ABA/IAA 比值增加,促进ETH 的生物合成,间接地诱导脱落发生[13,28],在桃[29]、砂糖橘[30]研究中ABA 含量高时,落果率也相应地升高。在本研究中第30 天无核沃柑花果的ABA 含量及第50 天JA-me 含量均显著高于有核沃柑,是导致后期大量落果的因素之一。此外,正值无核沃柑第一次生理落果期,无核沃柑促进生长激素与抑制生长激素的比值在盛花后30 d 明显低于有核沃柑,说明了植物器官脱落是激素间共同调控的结果[31]

除了内源激素外,矿质营养的丰缺也是落花落果的重要因素。柑橘开花期是结果树对N、P需求最高的时候[32],花和幼果的形成需要消耗大量养分,在落花、落果中还会损耗Ca、Fe、B 等元素[33],养分的不平衡会导致花果的脱落。本研究中有核和无核沃柑叶片中N、P、K 含量都表现为前期较高,随着花期的推进含量逐渐降低,推测后期叶片中的养分向花、果中转移;琯溪蜜柚花的养分含量与生长发育进程密切相关,N 含量随着花芽生长发育显著下降,K 含量则显著上升,而P 含量则呈现出先下降后升高的变化趋势[16],与本试验结果有所差异,这可能是取样的部位和时间不同导致。有核沃柑春梢叶前期N、P、Mg 含量高于无核沃柑,但后期低于无核沃柑,这和有核沃柑树上可以保留更多的果实需要消耗更多养分有关,因此在生产管理中需要在花前补充氮、磷、钾肥,在果实坐稳后还应根据不同树体的挂果量来确定施肥量。试验中无核沃柑秋梢叶片中P、K、Ca、Mg 含量高于有核沃柑,推测原因主要是无核沃柑在上一年挂果量较有核沃柑少,树体整体养分消耗少。本研究中花蕾期沃柑春梢出现了缺Ca 的现象,与王男麒等[33]在纽荷尔脐橙、兴津温州蜜柑和沙田柚上的研究结果一致。因此,在此时期要注意通过叶面喷施的方式重点补充钙肥,同时注意补充Fe、Mn、Cu。此外,笔者在本研究中发现花果期无核沃柑老叶的Ca 含量较高,但新叶的Ca 含量较低,这是因为Ca 和B 的大量吸收需要受精作用的刺激[34],与彭抒昂等[35]在梨上研究结果相一致,因此在生产中无核沃柑在花果期更需要补充钙肥。但Ca元素在幼果和叶片间的转运特征、受精作用对Ca元素吸收的调控机制尚不清楚,需进一步研究。此外,后续将增大样本量,通过建立坐果率与相关生理、生化指标之间的关系,更为准确地找出落果防控和保花保果关键因子。

4 结 论

无核沃柑落果的主要原因是体内激素的不平衡,前期落花落果的原因主要是IAA、GA3含量较低和ABA含量高共同作用,后期落果还与茉莉酸含量的升高有很大的关系;无核沃柑和有核沃柑的矿质养分含量也有差异。基于本研究中的发现以及结合生产经验,花前需重点补充氮肥,合理补充磷、钾肥,花期应通过叶面喷施的方式重点补充钙肥,以及叶面喷施外源激素,如GA3,减少无核沃柑生理落果。

参考文献References:

[1] 黄其椿,刘吉敏,何新华,黄克,冉志林,吴荣伦,罗捷,李初英. 晚熟杂柑‘沃柑’在广西武鸣的栽培表现初报[J]. 中国南方果树,2014,43(3):86-88.HUANG Qichun,LIU Jimin,HE Xinhua,HUANG Ke,RAN Zhilin,WU Ronglun,LUO Jie,LI Chuying. Preliminary report on cultivation performance of late- maturing hybrid citrus‘Orah’ in Wuming,Guangxi[J]. South China Fruits,2014,43(3):86-88.

[2] 吴雅诺,刘园,孔佳涛,胡哲辉,陈明华,吴俊琛,张红艳,蒋友武,徐娟,陈嘉景. 基于模糊建模解析不同产地沃柑果实感官品质差异[J]. 中国农业科学,2024,57(10):2010-2022.WU Yanuo,LIU Yuan,KONG Jiatao,HU Zhehui,CHEN Minghua,WU Junchen,ZHANG Hongyan,JIANG Youwu,XU Juan,CHEN Jiajing. Basing fuzzy modeling to evaluate sensory quality differences of ‘Orah’ mandarin fruits from various production regions[J]. Scientia Agricultura Sinica,2024,57(10):2010-2022.

[3] 黄其椿,江唐鑫,覃阳,李德光,刘吉敏,张兰,施平丽,廖惠红,刘要鑫,陈东奎. 091 无核沃柑在广西南宁的试种表现[J]. 中国南方果树,2020,49(3):17-20.HUANG Qichun,JIANG Tangxin,QIN Yang,LI Deguang,LIU Jimin,ZHANG Lan,SHI Pingli,LIAO Huihong,LIU Yaoxin,CHEN Dongkui. Performance of 091 seedless orha in Nanning,Guangxi[J]. South China Fruits,2020,49(3):17-20.

[4] 张社南,刘冰浩,贺申魁,梅正敏,唐燕玲,区善汉. 沃柑落花落果及果实生长发育规律观察[J]. 南方园艺,2022,33(1):1-6.ZHANG Shenan,LIU Binghao,HE Shenkui,MEI Zhengmin,TANG Yanling,OU Shanhan. Observation on flower and fruit drop and fruit growth and development of Orah mandarin[J].Southern Horticulture,2022,33(1):1-6.

[5] 王煜轩. 喷施赤霉素和细胞分裂素对无核沃柑保果效果的研究[D]. 武汉:华中农业大学,2022.WANG Yixuan. Effects of spraying gibberellin and cytokinin on fruit preservation of seedless Orah mandarin[D]. Wuhan:Huazhong Agricultural University,2022.

[6] IGLESIAS D J,TADEO F R,PRIMO-MILLO E,TALON M.Carbohydrate and ethylene levels related to fruitlet drop through abscission zone A in citrus[J]. Trees,2006,20(3):348-355.

[7] 董倩倩,龚桂芝,彭祝春,李一兵,侯艳红,洪棋斌. 柑橘采前落果与果实不同部位内源激素含量关系分析[J]. 植物生理学报,2018,54(10):1569-1575.DONG Qianqian,GONG Guizhi,PENG Zhuchun,LI Yibing,HOU Yanhong,HONG Qibin. Analysis on the relationship between pre-harvest fruit drops and content of endogenous hormone in different parts of fruit in citrus[J]. Plant Physiology Journal,2018,54(10):1569-1575.

[8] HEDDEN P,SPONSEL V. A century of gibberellin research[J].Journal of Plant Growth Regulation,2015,34(4):740-760.

[9] MESEJO C,YUSTE R,REIG C,MARTÍNEZ-FUENTES A,IGLESIAS D J,MUÑOZ-FAMBUENA N,BERMEJO A,GERMANÀ M A,PRIMO-MILLO E,AGUSTÍ M. Gibberellin reactivates and maintains ovary-wall cell division causing fruit set in parthenocarpic Citrus species[J]. Plant Science,2016,247:13-24.

[10] CHEN H Q,DEKKERS K L,CAO L H,BURNS J K,TIMMER L W,CHUNG K R. Evaluation of growth regulator inhibitors for controlling postbloom fruit drop (PFD) of citrus induced by the fungus Colletotrichum acutatum[J]. HortScience,2006,41(5):1317-1321.

[11] EMAN A A,EL-MONEIM A,ABD E M M M,OMAYMA A,ISMAIL M M. GA3 and zinc sprays for improving yield and fruit quality of Washington navel orange trees grown under sandy soil condition[J]. Research Journal of Agriculture and Biological Sciences,2007,3(5):498-503.

[12] 董倩倩. 柑橘生理落果与果实各部位4 种内源激素含量关系分析[D]. 重庆:西南大学,2019.DONG Qianqian. Analysis on the relationship between physiological fruit drop and content of four endogenous hormones in different parts of fruit in citrus[D]. Chongqing:Southwest University,2019.

[13] MISHRA A,KHARE S,TRIVEDI P K,NATH P. Effect of ethylene,1-MCP,ABA and IAA on break strength,cellulase and polygalacturonase activities during cotton leaf abscission[J].South African Journal of Botany,2008,74(2):282-287.

[14] WILMOWICZ E,FRANKOWSKI K,KUĆKO A,ŚWIDZIŃSKI M,DE DIOS ALCHÉ J,NOWAKOWSKA A,KOPCEWICZ J. The influence of abscisic acid on the ethylene biosynthesis pathway in the functioning of the flower abscission zone in Lupinus luteus[J]. Journal of Plant Physiology,2016,206:49-58.

[15] 谭祖国,万蜀渊,张月娟. 脐橙叶片施用15N 和32P 同位素的运转分配规律和坐果机制的研究[J]. 湖北农业科学,1998,37(3):46-48.TAN Zuguo,WAN Shuyuan,ZHANG Yuejuan. Study on interrelation between mineral distribution and fruit set when apply 15N and 32P isotopes to leaves of orange[J]. Hubei Agricultural Sciences,1998,37(3):46-48.

[16] 刘俊松,张上隆. 柑橘花芽分化期结果和未结果树矿质元素和碳水化合物含量变化[J]. 西南大学学报(自然科学版),2010,32(2):26-32.LIU Junsong,ZHANG Shanglong. Variation in mineral element and carbohydrate contents in bearing and non-bearing mandarin trees during flower-bud differentiation[J]. Journal of Southwest University (Natural Science Edition),2010,32(2):26-32.

[17] 张利军,罗自威,王玉雯,王晓华,徐凯悦,许修柱,吴良泉,李延,郭九信. 琯溪蜜柚落花落果特性及养分损失定量化研究[J]. 果树学报,2021,38(4):520-529.ZHANG Lijun,LUO Ziwei,WANG Yuwen,WANG Xiaohua,XU Kaiyue,XU Xiuzhu,WU Liangquan,LI Yan,GUO Jiuxin.A study on the characteristics of dropped flower and fruit and their nutrient loss in Guanximiyou pomelo[J]. Journal of Fruit Science,2021,38(4):520-529.

[18] ABD-ALLAH A. Effect of spraying some macro and micro nutrients on fruit set,yield and fruit quality of Washington navel orange trees[J]. Journal of Applied Sciences Research,2006,2(11):1059-1063.

[19] 陈传武,牛英,付慧敏,刘冰浩,范七君,蒋海兰. “无核沃柑”无核成因研究[J]. 中国南方果树,2022,51(2):1-7.CHEN Chuanwu,NIU Ying,FU Huimin,LIU Binghao,FAN Qijun,JIANG Hailan. Studies on the seedless mechanism of seedless orha tangor[J]. South China Fruits,2022,51(2):1-7.

[20] 庄伊美,王仁玑,谢志南,许文宝. 柑桔、龙眼、荔枝营养诊断标准研究[J]. 福建果树,1995(1):6-9.ZHUANG Yimei,WANG Renji,XIE Zhinan,XU Wenbao.Study on nutritional diagnostic criteria of citrus,longan and litchi[J]. Fujian Fruits,1995(1):6-9.

[21] 鲍士旦. 土壤农化分析[M]. 3 版. 北京:中国农业出版社,2000:257-282.BAO Shidan. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing:China Agriculture Press,2000:257-282.

[22] 何钟佩. 农作物化学控制实验指导[M]. 北京:北京农业大学出版社,1993:60-68.HE Zhongpei. Guidelines for crop chemical control experiments[M]. Beijing:Beijing Agricultural University Press,1993:60-68.

[23] 于婷,李建贵,侍瑞,张俊,王娜,曹玉江. 骏枣果实中的内源激素含量与其生理落果的关系[J]. 经济林研究,2016,34(2):45-49.YU Ting,LI Jiangui,SHI Rui,ZHANG Jun,WANG Na,CAO Yujiang. Relationship between endogenous hormone content in Jun jujube and physiological fruit drop[J]. Nonwood Forest Research,2016,34(2):45-49.

[24] 董倩倩,龚桂芝,彭祝春,侯艳红,罗艾,洪棋斌. W-默科特单性结实能力与果实不同部位四种内源激素含量的关系[J]. 分子植物育种,2020,18(4):1326-1337.DONG Qianqian,GONG Guizhi,PENG Zhuchun,HOU Yanhong,LUO Ai,HONG Qibin. Relation ship between parthenocarpy ability and content of 4 endogenous hormones in different fruit parts of W-Murcott tangor[J]. Molecular Plant Breeding,2020,18(4):1326-1337.

[25] DORCEY E,URBEZ C,BLÁZQUEZ M A,CARBONELL J,PEREZ-AMADOR M A. Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis[J]. The Plant Journal,2009,58(2):318-332.

[26] 樊丁宇. GA3 诱导枣坐果的调控机理研究[D]. 乌鲁木齐:新疆农业大学,2022.FAN Dingyu. Study on the mechanism of gibberellin-induced fruit set in jujube (Ziziphus jujuba Mill.)[D]. Urumqi:Xinjiang Agricultural University,2022.

[27] GARCÍA-MARTINEZ J L,SANTES C,CROKER S J,HEDDEN P. Identification,quantitation and distribution of gibberellins in fruits of Pisum sativum L. cv. Alaska during pod development[J]. Planta,1991,184(1):53-60.

[28] YUAN R C,KENDER W J,BURNS J K. Young fruit and auxin transport inhibitors affect the response of mature ‘Valencia’ oranges to abscission materials via changing endogenous plant hormones[J]. Journal of the American Society for Horticultural Science,2003,128(3):302-308.

[29] 杨波,车玉红,郭春苗,龚鹏,徐叶挺,孙涛,刘河疆. 扁桃生理落果期不同组织激素浓度的动态变化及其对落果的影响[J].西北植物学报,2015,35(1):118-124.YANG Bo,CHE Yuhong,GUO Chunmiao,GONG Peng,XU Yeting,SUN Tao,LIU Hejiang. Dynamic change of hormones in the different tissue of almond during the physiological fruit drop and its effect on fruit drop[J]. Acta Botanica Boreali-Occidentalia Sinica,2015,35(1):118-124.

[30] 黄永敬,马培恰,吴文,陈杰忠,李娟,唐小浪,刘翔宇. 砂糖橘夏梢生长对果实糖代谢及脱落的影响[J]. 园艺学报,2013,40(10):1869-1876.HUANG Yongjing,MA Peiqia,WU Wen,CHEN Jiezhong,LI Juan,TANG Xiaolang,LIU Xiangyu. Effects of summer shoot growth on sugar metabolism and abscission of fruitlet in‘Shatangju’ Mandarin[J]. Acta Horticulturae Sinica,2013,40(10):1869-1876.

[31] 郝志超,温玥,田嘉,邵白俊杰,杨丁花,张峰. 库尔勒香梨萼片脱落与离区不同部位植物激素的关系[J]. 植物生理学报,2022,58(7):1369-1380.HAO Zhichao,WEN Yue,TIAN Jia,SHAO Baijunjie,YANG Dinghua,ZHANG Feng. Relationship between sepal abscission and phytohormones in different parts of Korla fragrant pear[J].Plant Physiology Journal,2022,58(7):1369-1380.

[32] 马进川,王强,孙万春,丁潮洪,周大云,陈照明,林辉,马军伟. ‘红美人’柑橘结果树的营养需求特征研究[J]. 上海农业学报,2021,37(2):92-96.MA Jinchuan,WANG Qiang,SUN Wanchun,DING Chaohong,ZHOU Dayun,CHEN Zhaoming,LIN Hui,MA Junwei.Nutrition demand characteristic of fruit-bearing tree of ‘Hongmeiren’ citrus[J]. Acta Agriculturae Shanghai,2021,37(2):92-96.

[33] 王男麒,彭良志,邢飞,周薇,曹立,黄翼,江才伦. 柑橘落花落果的营养元素含量及其脱落损耗[J]. 园艺学报,2013,40(12):2489-2496.WANG Nanqi,PENG Liangzhi,XING Fei,ZHOU Wei,CAO Li,HUANG Yi,JIANG Cailun. Nutrient element content in dropped flowers and young fruits and nutrient losses caused by their drops in citrus[J]. Acta Horticulturae Sinica,2013,40(12):2489-2496.

[34] 肖家欣,彭抒昂. 柑橘开花前后子房(幼果)钙、硼营养与IAA、GA1/3动态研究[J]. 果树学报,2004,21(2):132-135.XIAO Jiaxin,PENG Shu’ang. Studies on dynamics of calcium,boron nutrients and IAA,GA1/3 in ovary (fruitlet) around citrus flowering[J]. Journal of Fruit Science,2004,21(2):132-135.

[35] 彭抒昂,岩堀修一. 梨果实发育中Ca2+在果肉细胞的定位及变化研究[J]. 园艺学报,2001,28(6):497-503.PENG Shu’ang,Iwahori Shuichi. Studies on localization and change of Ca2+ in fruit flesh cells during fruit development of pear[J]. Acta Horticulturae Sinica,2001,28(6):497-503.

Differences in endogenous hormones levels and mineral nutrient contents between seedy and seedless Orah mandarins during the flower and fruit abscission stages

DONG Jianmei1, LI Jing1, YANG Di1, LI Jinxue2, LAI Xinpu1, LIU Hongming1, FU Xiaomeng1, YANG Hongxia1, DU Yuxia1*
(1Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, Yunnan, China; 2West Yunnan University, Lincang 677000, Yunnan, China)

Abstract:【Objective】 The seedless Orah mandarin represents a novel cultivar derived from the seedy Orah mandarin via radiation-induced mutagenesis. This seedless variant exhibits a propensity for floral and fruit abscission, resulting in diminished yield during cultivation. The lack of clarity regarding the physiological alterations occurring throughout the flowering and fruiting phases of the seedless Orah mandarin complicates efforts to effectively preserve its flowers and fruits. This study sought to examine the variations in mineral nutrient and endogenous hormone contents between seedy and seedless Orah mandarins during the flowering and fruiting stages. Additionally, it aimed to identify the primary factors influencing flower and fruit drop in seedless Orah mandarins, with the objective of providing theoretical support for the protection of flowers and fruits in seedless Orah mandarins. 【Methods】 In this study,three-year-old Orah mandarin trees, both seedy and seedless, grafted onto Fragrant Citrus rootstocks,were utilized as experimental materials. Representative specimens exhibiting moderate and consistent tree size, growth vigor and flower amount were selected for analysis. Samples of flowers, fruits, spring leaves and fall leaves were collected at ten-day intervals commencing from the full bloom period. The spring and fall leaves were subsequently analyzed to determine their concentrations of nitrogen (N),phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), copper(Cu) and zinc (Zn). Flowers, fruits and spring leaves were analyzed to determine the contents of auxin(IAA), gibberellin (GA3), abscisic acid (ABA), zeaxanthin nucleoside (ZR) and jasmonic acid (JA-me).Subsequently, a correlation analysis was conducted. 【Results】 IAA content in seedless Orah mandarin leaves was significantly lower than that in seedy Orah mandarin leaves from 20 to 30 days post-flowering. Similarly, the IAA content in seedless Orah mandarin flowers and fruits were lower than those in seedy Orah mandarins from 10 to 40 days post-flowering, but higher on the 50th day. The GA3 content in the leaves of seedless Orah mandarin was observed to be lower than that in seedy Orah mandarin over the period of 10 to 40 days. Similarly, the GA3 content in the flowers and fruits of seedless Orah mandarin were found to be lower than those in seedy Orah mandarin between 20 and 50 days. Additionally, the ABA content in the leaves of seedless Orah mandarin consistently remained lower throughout the entire observation period. In the context of flowers and fruits, ABA levels in seedless Orah mandarins exhibited a significant increase on the 30th day, surpassing the levels recorded in the same cultivar on earlier days. Conversely, no significant variation was detected in the ZR content of flowers and fruits between seedy and seedless Orah mandarins. Furthermore, the JA-me content in leaves, flowers and fruits showed a gradual decline starting from the full-bloom period. There was no statistically significant difference in JA-me content between seedy and seedless Orah mandarins from day 10 to day 40.The JA-me content in seedless Orah mandarin was notably higher than that in seedy Orah mandarin on the 50th day post full bloom. The (Zr+GA3+IAA)/ABA ratio demonstrated a progressive increase in leaves, flowers and fruits. However, a significantly lower ratio was recorded in seedless Orah mandarin compared to seedy Orah mandarin on the 30th day. During the early stages of development, the contents of nitrogen (N), phosphorus (P) and potassium (K) increased in both seedy and seedless Orah mandarin leaves. Conversely, a gradual decline in these nutrient levels was observed during the later stages of the flowering period. In the early growth stage, the contents of nitrogen, phosphorus, and magnesium (Mg)in the spring leaves of the seedless Orah mandarin were found to be lower compared to those in the seedy Orah mandarin. However, during the later growth stage, these nutrient levels were higher in the seedless variety. Conversely, the calcium (Ca) content in the autumn leaves of the seedless Orah mandarin exceeded that of the seedy variant, whereas in the spring leaves, the Ca concentration was lower in the seedless Orah mandarin compared to the seedy counterpart. The concentrations of phosphorus, potassium, calcium and magnesium in the autumn leaves of seedless Orah mandarin were higher than those observed in the same leaves of seedless Orah mandarin. In contrast, the concentrations of iron(Fe), manganese (Mn), copper (Cu) and zinc (Zn) were lower in the autumn leaves of seedless Orah mandarin compared to the same reference. Furthermore, a significant positive correlation was identified among the ABA, ZR and JA-me contents in the leaves, flowers and fruits of mandarins. Furthermore, a notable positive correlation was identified in the JA-me content of seedless Orah mandarin. A significant positive correlation was also observed among the concentrations of potassium, manganese and copper in the leaves during both spring and autumn. 【Conclusion】 The principal cause of flower and fruit drop was determined to be the low concentrations of IAA and GA3 observed during the early developmental stages. The initial physiological fruit drop can be attributed to the combined effects of reduced IAA and GA3 levels and increased ABA and JA-me concentrations. Furthermore, significant variations in mineral nutrient contents existed between seedless and seedy mandarin varieties. From a production standpoint, it is advisable to supplement nitrogen fertilizer before the flowering stage, while phosphorus and potassium fertilizers should be applied in appropriate amounts. For seedless Orah mandarins, it is recommended to apply calcium fertilizer and trace elements through foliar spraying during the flowering period.

Key words:Seedy Orah mandarin; Seedless Orah mandarin; Endogenous hormone; Mineral nutrient

中图分类号:S666.1

文献标志码:A

文章编号:1009-9980(2025)03-0617-12

DOI:10.13925/j.cnki.gsxb.20240503

收稿日期:2024-09-25

接受日期:2024-11-13

基金项目:云南省科技人才与平台计划(202205AD160055);现代农业(柑橘)产业技术体系建设专项(CARS-26);云南省创新引导与科技型企业培育计划(202304BT090030-2);国家重点研发计划(2022YFD1601807);德宏州“英才兴边计划”(2022RC006)

作者简介:董建梅,女,助理研究员,研究方向为柑橘栽培与品质调控。E-mail:1342083075@qq.com

*通信作者 Author for correspondence. E-mail:duyuxia117@163.com