库尔勒香梨(Pyrus brestschneideri Rehd.)简称香梨,属于蔷薇科梨亚科的白梨系统[1],为西洋梨和新疆梨自然杂交所产生的后代,以其独特的口感和丰富的营养价值广受消费者的喜爱,是新疆主栽的梨品种[2]。
库尔勒香梨分为宿萼果(公梨)和脱萼果(母梨),形态口感差异大[3]。宿萼果萼端凸起,果皮粗糙,果形不正,脱萼果萼端凹陷,果形端正,此差异由库尔勒香梨在盛花期花萼的萼片部位是否脱落决定。影响脱萼的因素包括砧木、光照、树龄、温度、水分、营养、授粉品种、花序序位和植物激素等[4]。
在果树的不同生长发育阶段,对营养元素的需求及利用率是不同的。在苹果、枸杞和柑橘的相关研究中,在控制施肥量的同时也将施肥时期作为重要的控制变量[5-7]。氮是果树生长的必需元素,对果树生长发育有重要的影响,与植物细胞木质化程度有关。李付国等[8]的研究表明,桃经过施氮处理后坐果率显著高于不追施氮肥的处理。Meng 等[9]研究表明,铵态氮处理提高了甘薯贮藏根形成过程中根系的PAL 和POD 活性,促进了木质素的合成,增强了根系的活性。在小麦孕穗期追施氮肥能提高茎秆中PAL、TAL、POD 活性和木质素含量[10]。PAL、POD、PPO等酶在木质素合成中发挥着关键作用,其酶活性直接影响木质素的合成[11-13]。在梨果实中,木质素含量与各合成酶的活性之间存在显著相关性[14-16]。与此同时,有研究者发现植物器官脱落与氮元素同样存在相当程度的关联性[17]。在大豆相关研究中发现,在植株叶片衰老脱落的同时,植株自身氮含量显著降低[18]。而在甘蓝型油菜的相关研究中,研究者发现脱落叶片中积累了大量氮元素。脱落叶片由于氮元素利用效率低,释放出缺少氮元素的错误信号,导致植物体不断向叶片输送氮元素[19]。在狼尾草种粒脱落的相关研究中,通过对全长转录组分析,得出植物器官脱落与木质素直接相关。此外,研究者发现玫瑰花瓣脱落过程中,在POD 表达水平显著上调的同时,木质素沉积[20]。
笔者在本研究中以萼筒为研究对象,通过测定萼筒全氮、木质素含量及PAL、POD、PPO 等酶的活性,旨在筛选库尔勒香梨适宜的施氮策略,为生产提供理论依据。
试验前期处理于2023 年3—4 月在新疆生产建设兵团第一师阿拉尔市塔里木大学库尔勒香梨园进行,该地属暖温带大陆干旱荒漠气候,年蒸发量约1 403.65 mm,降水量44.3 mm。试验地土壤厚实,无植被覆盖物,主要为砂质土壤,光照充足,昼夜温差大,常年采用大水漫灌,以砀山酥梨为授粉树进行自然授粉。选用长势一致、株高约4.5 m的库尔勒香梨树为试材,南北排列,树龄25 a(年),株行距为2 m×4 m。试验肥料选择一次性施尿素0.24 kg·株-1 处理,选用尿素作为施用的氮肥。
试验选取24 株长势相近的库尔勒香梨树,在不同的生长阶段休眠期1(3 月1 日)、休眠期2(3 月15日)、花芽膨大期(3 月26 日)、大蕾期(4 月1 日)、盛花期(4 月10 日),分别选取4 株树进行施氮肥处理(尿素0.24 kg·株-1),并分别标记为T1、T2、T3、T4、T5,并设置4 株树不施氮肥为对照组(CK),每处理间隔1 株树进行隔离。鉴于库尔勒香梨幼果萼片离区在盛花期出现,而在盛花期后10 d 萼片完全脱落。在盛花期(4 月10 日)当天施氮前和盛花期后10 d(4 月20 日)两个时间点,分别采集T5 处理的宿萼果和脱萼果,并从中提取花萼样品。
1.3.1 库尔勒香梨花序坐果率和脱萼率的调查 在4 月1 日,分别从休眠期1、休眠期2、花芽膨大期、大蕾期和盛花期各选取5 枝花序调查5 个施肥处理和对照库尔勒香梨的开花数量,统计花朵数。4 月30日,调查5 个施肥处理和对照的坐果率。5 月10 日,统计坐果花序果实总数和脱萼果数量,最终统计每个处理的脱萼率。
1.3.2 萼筒全氮含量的测定 将盛花期和盛花期后10 d 的库尔勒香梨萼筒样品带回实验室,洗涤顺序为自来水→0.1%洗涤剂→自来水→蒸馏水,洗涤时间不超过2 min。吸去多余水分,在105 ℃干燥箱中杀青20 min,80 ℃烘至恒质量,研磨并过筛。花萼全氮含量用微量凯氏定氮法测量,采用王冠力[21]和李嘉欣[22]的方法并加以改进。
1.3.3 木质素含量的测定 使用北京索莱宝科技有限公司的试剂盒进行测定。
1.3.4 萼筒PAL、POD、PPO 等酶活性的测定 将超低温冰箱中的试验样品加液氮研磨至粉末,使用北京索莱宝科技有限公司的试剂盒(微量法)进行测定。
试验数据采用Microsoft Excel 2019 和DPS 7.05进行分析,用LSD 法评估显著性(p<0.05)。用Origin 2021 软件对各项指标进行相关性分析,采用GraphPad Prism 9绘制图片。
2.1.1 施氮时期对库尔勒香梨坐果率的影响 由图1 可知,不同时期施氮后库尔勒香梨坐果率先升后降。T1、T2、T3、T4处理与对照有显著差异,而T5与对照无显著差异。5 种施氮处理的坐果率均高于对照,其中T3 处理坐果率最高,为35.30%,比对照增加了6.95%。可见,花芽膨大期施氮肥有利于库尔勒香梨坐果。
图1 不同施氮时期对库尔勒香梨坐果率的影响
Fig. 1 Effects of different periods of nitrogen application on fruit set of Kuerlexiangli pear
2.1.2 施氮时期对库尔勒香梨脱萼率的影响 由图2 可知,不同时期施氮后库尔勒香梨脱萼率先降后升再降。对照脱萼率为50.50%,T1、T3、T4、T5 处理的脱萼率显著低于对照,T2 处理与对照无差异,T1~T5 处理的脱萼率分别下降了8.37%、1.94%、16.80%、21.50%、21.23%。说明施氮处理不利于库尔勒香梨花萼的脱落,越延后施氮肥,脱萼率越低。
图2 不同施氮时期对库尔勒香梨脱萼率的影响
Fig. 2 Effects of different periods of nitrogen application on the rate of decalcification of Kuerlexiangli pear
由图3可知,T1、T2、T3、T4、T5处理和对照的萼筒全氮含量呈先升后降趋势,除T1 时期盛花期后10 d 宿萼全氮含量与对照无显著差异外,施氮处理的萼筒全氮含量均显著高于对照。盛花期和盛花期后10 d 宿萼的全氮含量普遍高于脱萼。T4 处理的宿萼与脱萼萼筒全氮含量(w,后同)均高于其他处理,分别为5.48、5.27、6.14、5.88 g·kg-1。
图3 不同施氮时期对库尔勒香梨萼筒全氮含量的影响Fig.3
Effects of different periods of nitrogen application on the total nitrogen content of the calyx cylinder of Kuerlexiangli pear
2.3.1 施氮时期对库尔勒香梨萼筒木质素含量的影响 由图4 可知,不同施氮处理盛花期及盛花期后10 d的萼筒木质素含量呈现先升后降再上升再下降的趋势,且宿萼萼筒的木质素含量高于脱萼萼筒。在盛花期和盛花期后10 d,T1、T3、T4、T5处理与对照组相比,萼筒的木质素含量均显著增加,其中T3处理的宿萼木质素含量增幅最大,达到21.28 mg·g-1,而T2处理则导致木质素含量下降4.90 mg·g-1;脱萼萼筒中,T3 处理的木质素含量增幅最大,达到21.41 mg·g-1,T2处理下降2.03 mg·g-1。在盛花期10 d后,宿萼木质素含量增幅最大的为T3 处理,达到26.87 mg·g-1,而T2处理的木质素含量下降0.65 mg·g-1;T3和T4处理脱萼木质素含量的增幅最大,分别为16.10 mg·g-1和16.08 mg·g-1,T2 处理则下降3.98 mg·g-1。综上所述,在T1、T3、T4 和T5 时期施氮增加萼筒木质素含量,在T2时期施用降低木质素含量。
图4 不同施氮时期对库尔勒香梨花萼萼筒木质素含量的影响
Fig. 4 Effeets of different nitrogen application periods on lignin content in sepals of Kuerlexiangli pear
2.3.2 施氮时期对萼筒木质素合成相关酶活性的影响 由图5 可知,不同施氮处理萼筒木质素合成相关酶活性均存在显著差异。由图5-A 可知,盛花期和盛花期后10 d,T1、T3、T4 和T5 处理的宿萼萼筒PAL 活性显著增强,T4 增幅最大为33.76% 和35.79%,T2处理显著下降8.15%和8.30%;脱萼萼筒的PAL 活性在T4 处理下增幅最大,为36.21%和35.83%,T2处理显著下降14.73%和12.33%。由图5-B可知,在盛花期和盛花期后10 d,T1、T3、T4、T5施氮处理的PPO 活性显著高于对照,且宿萼萼筒的PPO活性高于脱萼萼筒。T3 处理在两个时期中的PPO活性最高,分别为12.94、11.30、14.03、12.37 U·g-1,T2处理显著下降0.67 U·g-1和0.70 U·g-1。由图5-C 可知,施氮处理显著提高了宿萼与脱萼萼筒的POD活性,T3 处理的增幅最大,其中宿萼萼筒的POD 活性分别在盛花期和盛花期后10 d 达到64.11%和80.68%的增幅,脱萼萼筒的POD 活性在盛花期和盛花期后10 d 达到67.16%和60.65%的增幅。
图5 不同施氮时期对库尔勒香梨萼筒 PAL、PPO、POD 活性的影响
Fig. 5 Effects of different periods of nitrogen application on the activities of PAL, PPO and PODin the calyx cylinder of Kuerlexiangli pear
由图6 可知,盛花期和盛花期后10 d 的萼筒全氮含量与库尔勒香梨萼片坐果率呈极显著正相关(r>0.707 9)。盛花期POD 活性与坐果率呈显著(0.576 0<r<0.707 9)正相关。
图6 坐果率、脱萼率与萼筒全氮、木质素含量及相关酶活性的相关性分析
Fig. 6 Correlation analysis of fruit set and decalcification rate on total nitrogen, lignin content and related enzyme activities of calyx tube
盛花期和盛花期后10 d的萼筒全氮含量与库尔勒香梨萼片脱萼率之间存在极显著负相关(r>0.707 9)。盛花期和盛花期后10 d 木质素含量与萼片脱萼率呈显著负相关(0.576 0<r<0.707 9)。盛花期和盛花期后10 d的PAL活性与脱萼率呈极显著负相关(r>0.707 9);盛花期和盛花期后10 d 的PPO活性与脱萼率呈极显著负相关(r>0.707 9)。
相关研究表明,氮素是植物生长发育过程中至关重要的矿质元素之一[23],不仅对植物的营养生长和生殖生长产生影响,更是决定作物产量的关键因素[24]。骆建珍[25]发现,当偏施氮肥时,黄金梨树脱萼率较低,于新刚等[26]也认为施氮肥时梨树的脱萼率降低,笔者在本研究中发现施氮处理可以提高库尔勒香梨的坐果率,研究结果与前人研究基本一致。笔者在本研究中注意到施氮处理增加了库尔勒香梨花萼的全氮含量,刘卫星等[27]发现施氮量可影响不同土壤肥力条件下冬小麦叶片全氮含量,与不施氮肥相比,施氮处理显著增加了顶三叶的全氮含量,这与本试验研究结果一致。本研究结果表明,施氮有助于库尔勒香梨坐果,但会增加宿萼果,降低脱萼率。
木质素是细胞壁重要成分,木质次生细胞壁在植物生长中起关键作用,对植物体内水分、营养输送、生物和非生物胁迫的抵抗能力至关重要[28]。章霄云等[29]在研究中指出,PAL、POD、PPO 在木质素合成过程中具有关键的调控作用。氮素影响植物体内酶活性,调控木质素、纤维素合成,直接参与木质化过程。
笔者在本研究中发现不同施氮时期处理的库尔勒香梨花萼木质素含量均高于未施氮处理。萧长亮等[30]的研究结果表明,氮素对水稻的抗倒伏性能具有显著影响,刘笑鸣[31]研究发现,不同施氮处理玉米节间木质素含量均高于不施氮处理,这与本试验研究结果一致。高珍妮等[32]证实,适量地施氮可提高胡麻作物茎秆的PAL、POD 活性。黄秀兰[33]认为,PAL、PPO、POD 酶活性的激活对木质素的积累有重要作用,且梨果实中相关合成酶活性与木质素含量之间存在显著相关关系。笔者在本研究中发现,PAL、PPO 和POD 活性与木质素含量之间存在正相关性,其次是与脱萼率之间同样呈现负相关性。
施氮对库尔勒香梨花萼脱萼有显著影响。适量施氮可提高坐果率,但可能会导致宿萼果增多,从而降低花萼的正常脱萼。在花芽膨大期进行施氮处理可以增加萼筒的木质素含量,盛花期宿萼木质素含量为115.64 mg·g-1,脱萼为112.49 mg·g-1;盛花期后10 d 宿萼木质素含量为125.73 mg·g-1,脱萼为103.69 mg·g-1。木质素含量的增加可能增强萼筒的结构,有利于水分的运输,从而提高香梨的坐果率,而不利于萼片的脱落。盛花期和盛花期后10 d库尔勒香梨萼筒木质素含量、PAL 活性、PPO 活性、POD活性与坐果率呈正相关,但与脱萼率呈负相关,这些酶在木质素的生物合成过程中起着关键作用,进而影响花萼脱落。
[1] 玉山·库尔班,齐曼·尤努斯,李疆,覃伟铭. 库尔勒香梨脱萼、宿萼正常果和粗皮果的品质比较[J]. 新疆农业科学,2012,49(6):1028-1034.Yusan·Kurban,Qiman·Yunus,LI Jiang,QIN Weiming. Comparison of fruit quality of normal and roughbark pear in persistent calyx and dropping calyx of Korla fragrant pear[J]. Xinjiang Agricultural Sciences,2012,49(6):1028-1034.
[2] 田雯,张校立,陈励坤,何临梓,王永鹏. 库尔勒香梨研究进展[J]. 分子植物育种,2024,22(16):5459-5468.TIAN Wen,ZHANG Xiaoli,CHEN Likun,HE Linzi,WANG Yongpeng. Research progress of Korla fragrant pear[J]. Molecular Plant Breeding,2024,22(16):5459-5468.
[3] 田嘉,李鹏,赛静忆,蒲小秋,李疆. 库尔勒香梨脱萼、宿萼果果实发育动态及大小差异分析[J]. 新疆农业大学学报,2018,41(1):11-17.TIAN Jia,LI Peng,SAI Jingyi,PU Xiaoqiu,LI Jiang. Analysis of the development dynamics and size difference of Korla fragrant pear deciduous calyx fruit and persistent calyx fruit[J].Journal of Xinjiang Agricultural University,2018,41(1):11-17.
[4] 郝志超,温玥,田嘉,邵白俊杰,杨丁花,张峰. 库尔勒香梨萼片脱落与离区不同部位植物激素的关系[J]. 植物生理学报,2022,58(7):1369-1380.HAO Zhichao,WEN Yue,TIAN Jia,SHAO Baijunjie,YANG Dinghua,ZHANG Feng. Relationship between sepal abscission and phytohormones in diferent parts of Korla fragrant pear[J].Plant Physiology Journal,2022,58(7):1369-1380.
[5] CSIHON Á,GONDA I,SIPOS M,HOLB I J. Impacts of N-P-KMg fertilizer combinations on tree parameters and fungal disease incidences in apple cultivars with varying disease susceptibility[J]. Plants,2024,13(9):1217.
[6] WANG C,QI G P,MA Y L,YIN M H,WANG J H,KANG Y X,JIA Q,GAO Y L,TIAN R R,ZHANG R,LU Q,XIAO F. Effects of water and nitrogen control on the growth physiology,yields,and economic benefits of Lycium barbarum plants in a Lycium barbarum + alfalfa system[J]. Plants,2024,13(8):1095.
[7] 余高,陈芬,卢心,滕明欢,田霞,罗有亮. 不同施肥对幼龄柑橘园土壤养分及酶活性变化的影响[J]. 江苏农业科学,2023,51(20):218-223.YU Gao,CHEN Fen,LU Xin,TENG Minghuan,TIAN Xia,LUO Youliang. Effects of different fertilization on soil nutrients and enzyme activities in young citrus orchards[J]. Jiangsu Agricultural Sciences,2023,51(20):218-223.
[8] 李付国,孟月华,贾小红,陈清,许雪峰,韩振海. 供氮水平对‘八月脆’桃产量、品质和叶片养分含量的影响[J]. 植物营养与肥料学报,2006,12(6):918-921.LI Fuguo,MENG Yuehua,JIA Xiaohong,CHEN Qing,XU Xuefeng,HAN Zhenhai. Effects of nitrogen applied rate on fruit yield,quality and leaf nutrient content of ‘Bayuecui’ peach[J].Plant Nutrition and Fertilizer Science,2006,12(6):918-921.
[9] MENG Y Y,WANG N,SI C C. The application of nitrogen source in regulating lignin biosynthesis,storage root development and yield of sweet potato[J]. Agronomy,2022,12(10):2317.
[10] 卢昆丽,尹燕枰,王振林,李勇,彭佃亮,杨卫兵,崔正勇,杨东清,江文文. 施氮期对小麦茎秆木质素合成的影响及其抗倒伏生理机制[J]. 作物学报,2014,40(9):1686-1694.LU Kunli,YIN Yanping,WANG Zhenlin,LI Yong,PENG Dianliang,YANG Weibing,CUI Zhengyong,YANG Dongqing,JIANG Wenwen. Effect of nitrogen fertilization timing on lignin synthesis of stem and physiological mechanism of lodging resistance in wheat[J]. Acta Agronomica Sinica,2014,40(9):1686-1694.
[11] XU Q,WANG W Q,ZENG J K,ZHANG J,GRIERSON D,LI X,YIN X R,CHEN K S. A NAC transcription factor,EjNAC1,affects lignification of loquat fruit by regulating lignin[J]. Postharvest Biology and Technology,2015,102:25-31.
[12] LI D,CHENG Y D,DONG Y,SHANG Z L,GUAN J F. Effects of low temperature conditioning on fruit quality and peel browning spot in ‘Huangguan’ pears during cold storage[J]. Postharvest Biology and Technology,2017,131:68-73.
[13] JIAO W X,LI X X,WANG X M,CAO J K,JIANG W B. Chlorogenic acid induces resistance against Penicillium expansum in peach fruit by activating the salicylic acid signaling pathway[J].Food Chemistry,2018,260:274-282.
[14] 刘盼盼. 硼肥对梨木质素代谢酶及石细胞合成的影响研究[D].南京:南京农业大学,2016.LIU Panpan. Effects of boron on lignin metabolism related enzymes and stone cell formation in pear[D]. Nanjing:Nanjing Agricultural University,2016.
[15] 刘玉倩. 刺梨果实中木质素合成及相关基因的表达分析[D].贵阳:贵州大学,2015.LIU Yuqian. Lignin biosynthesis and the expression ofrelated genes in Rosa roxburghii Tratt[D]. Guiyang:Guizhou University,2015.
[16] 陶书田. 梨(Pyrus)果实石细胞的结构成分分析及相关酶基因的克隆[D]. 南京:南京农业大学,2009.TAO Shutian. Characterization of sclereid structure and composition and coloning of sclereid related enzyme genes in pear (Pyrus) fruit[D]. Nanjing:Nanjing Agricultural University,2009.
[17] BENNETT E,ROBERTS J A,WAGSTAFF C. Manipulating resource allocation in plants[J]. Journal of Experimental Botany,2012,63(9):3391-3400.
[18] DENG J C,HUANG X Q,CHEN J H,VANHOLME B,GUO J Y,HE Y Y,QIN W T,ZHANG J,YANG W Y,LIU J. Shade stress triggers ethylene biosynthesis to accelerate soybean senescence and impede nitrogen remobilization[J]. Plant Physiology and Biochemistry,2024,210:108658.
[19] DESCLOS-THÉVENIAU M,COQUET L,JOUENNE T,ETIENNE P. Proteomic analysis of residual proteins in blades and petioles of fallen leaves of Brassica napus[J]. Plant Biology,2015,17(2):408-418.
[20] JIANG C Y,JIANG T H,DENG S N,YUAN C L,LIANG Y,LI S S,MA C,GAO Y R. Integrative analysis of transcriptome,proteome,and ubiquitome changes during rose petal abscission[J].Frontiers in Plant Science,2022,13:1041141.
[21] 王冠力. 主干形苹果树定量施肥应用研究及氮素营养近红外光谱分析[D]. 阿拉尔:塔里木大学,2023.WANG Guanli. Application research on quantitative fertilization of trunk-shaped apple trees and near infrared spectroscopy analysis of nitrogen nutrition[D]. Alar:Tarim University,2023.
[22] 李嘉欣. 主干形灰枣定量施肥应用研究及氮素营养近红外光谱分析[D]. 阿拉尔:塔里木大学,2023.LI Jiaxin. Application research on quantitative fertilization of main shape jujube tree and near infrared spectroscopy analysis of nitrogen nutrition[D]. Alar:Tarim University,2023.
[23] 彭福田,姜远茂,顾曼如,束怀瑞. 落叶果树氮素营养研究进展[J]. 果树学报,2003,20(1):54-58.PENG Futian,JIANG Yuanmao,GU Manru,SHU Huairui.Advances in research on nitrogen nutrition of deciduous fruit crops[J]. Journal of Fruit Science,2003,20(1):54-58.
[24] 李洪娜,许海港,任饴华,丁宁,姜翰,姜远茂. 不同施氮水平对矮化富士苹果幼树生长、氮素利用及内源激素含量的影响[J]. 植物营养与肥料学报,2015,21(5):1304-1311.LI Hongna,XU Haigang,REN Yihua,DING Ning,JIANG Han,JIANG Yuanmao. Effect of different N application rates on plant growth,15N-urea utilization and hormone content of dwarf apple trees[J]. Plant Nutrition and Fertilizer Science,2015,21(5):1304-1311.
[25] 骆建珍. 促使黄金梨脱萼的五项技术措施[J]. 烟台果树,2009(4):52.LUO Jianzhen. Five technical measures to promote calyx abscission of golden pear[J]. Yantai Fruits,2009(4):52.
[26] 于新刚,孙蕾. 几个日韩砂梨品种果实脱萼技术[J]. 山西果树,2007(6):17-18.YU Xingang,SUN Lei. Fruit calyx removal technology of several Japanese and Korean pear cultivars[J]. Shanxi Fruits,2007(6):17-18.
[27] 刘卫星,王家瑞,王晨阳,卢红芳,康娟,申圆心. 施氮量对不同土壤肥力条件下冬小麦光合特性和产量的影响[J]. 麦类作物学报,2021,41(5):604-612.LIU Weixing,WANG Jiarui,WANG Chenyang,LU Hongfang,KANG Juan,SHEN Yuanxin. Effect of nitrogen application rates on photosynthetic characteristics and yield of winter wheat under different soil fertility conditions[J]. Journal of Triticeae Crops,2021,41(5):604-612.
[28] BOUDET A M,KAJITA S,GRIMA-PETTENATI J,GOFFNER D. Lignins and lignocellulosics:A better control of synthesis for new and improved uses[J]. Trends in Plant Science,2003,8(12):576-581.
[29] 章霄云,郭安平,贺立卡,孔华. 木质素生物合成及其基因调控的研究进展[J]. 分子植物育种,2006,4(3):431-437.ZHANG Xiaoyun,GUO Anping,HE Lika,KONG Hua. Advances in study of lignin biosynthesis and its genetic manipulation[J].Molecular Plant Breeding,2006,4(3):431-437.
[30] 萧长亮,解保胜,王安东,王士强,李春光,那永光. 氮和稀效唑调控对寒地水稻倒伏和产量的影响[J]. 作物杂志,2017(6):96-103.XIAO Changliang,XIE Baosheng,WANG Andong,WANG Shiqiang,LI Chunguang,NA Yongguang. Effects of nitrogen and uniconazole regulation on lodging resistance and yield of rice in cold region[J]. Crops,2017(6):96-103.
[31] 刘笑鸣. 高密种植下黑龙江春玉米对氮素和化控的生理生态响应及温室气体排放的影响[D]. 哈尔滨:东北农业大学,2023.LIU Xiaoming. Physiological and ecological response of spring maize to nitrogen fertilizer and chemical regulation under high density planting and its impact on greenhouse gas emissions in Heilongjiang Province[D]. Harbin:Northeast Agricultural University,2023.
[32] 高珍妮,郭丽琢,李丽,郭芳,牛俊义. 氮肥对胡麻茎秆木质素合成酶活性及其抗倒性的影响[J]. 中国油料作物学报,2014,36(5):610-615.GAO Zhenni,GUO Lizhuo,LI Li,GUO Fang,NIU Junyi. Effects of nitrogen on oilseed flax stem lignin and relative enzyme and lodging resistance[J]. Chinese Journal of Oil Crop Sciences,2014,36(5):610-615.
[33] 黄秀兰. 猕猴桃抗褐斑病机理初步研究[D]. 雅安:四川农业大学,2019.HUANG Xiulan. Preliminary study on the resistance mechanism of kiwifruit against Corynespora cassiicola[D]. Ya’an:Sichuan Agricultural University,2019.
Effects of nitrogen application time on fruit setting rate and lignin accumulation during sepal development of Kuerlexiangli pear