149份山楂种质资源果实总酚、黄酮、花青苷含量差异分析

赵柏棚1,崔茗淇1,孙馨宇1,汪 宇1,王祥旭1,刘月学1,2,张 枭1,2*

1沈阳农业大学园艺学院,沈阳 110866; 2国家山楂种质资源圃(沈阳),沈阳 110866)

摘 要:【目的】山楂作为食药同源植物,具有抗炎等药学潜能。为了开发山楂中的活性物质、选育山楂新品种,通过评估149 份山楂种质资源中总酚、黄酮和花青苷含量的多样性来筛选优异种质资源。【方法】以国家山楂种质资源圃(沈阳)中保存的149 份山楂种质资源为试验材料,分析果实中总酚、总黄酮和花青苷的含量,并通过聚类分析和隶属函数分析对这些资源进行分类和筛选。【结果】总酚、总黄酮和花青苷含量存在显著差异。总酚含量(w,后同)野圃8 号为最高(1.531 mg·g-1),而桓仁向阳最低(0.110 mg·g-1)。总黄酮含量野圃8 号为最高(56.434 mg·g-1),紫珍珠-1最低(19.763 mg·g-1)。花青苷含量野生山里红-3最高(720.218 μg·g-1),黄果最低(19.187 μg·g-1)。聚类分析显示了五类山楂资源,其中第一类的总酚(0.557~1.531 mg·g-1)和总黄酮(28.848~56.434 mg·g-1)含量平均值最高。利用百分位数分析初步建立了山楂3 种活性成分的分级标准。【结论】根据隶属函数值和聚类分析结果筛选出15份优异山楂种质资源,为后期筛选适宜鲜食和加工的品种以及今后选育优质山楂新品种提供相关依据。百分位数分析建立的分级标准可用于山楂种质资源成熟果实总酚、总黄酮和花青苷含量的系统性评价。

关键词:山楂;果实品质;总酚;总黄酮;花青苷;聚类分析;隶属函数

蔷薇科(Rosaceae)梨亚科苹果族山楂属(Crataegus L.),是目前蔷薇科中最大的属之一[1]。山楂属植物广泛分布于亚洲、欧洲、中北美洲及南美洲北部[2]。我国是山楂属植物的起源中心之一,种质资源丰富[3]。野生山楂从2000多年前就发现可以被食用。我国山楂的栽培历史已有1700 余年[4],栽培山楂广泛分布于东北、京津、辽冀、太行山区和山东等五大栽培产区,其中主要用于栽培生产推广的有4个种,包括羽裂山楂、湖北山楂、云南山楂和伏山楂[5]

山楂作为一种在传统医学和现代食品具有重要地位的植物[6],近年来,随着科学研究的深入,研究的重点从果实外观形态转向了内在的生物活性成分[7-10]。酚类化合物及其黄酮类化合物作为山楂果实中的主要活性成分,已被证实具有治疗心血管[11]、抗氧化[12]、抗炎[13]、降血脂[14]等多种生物活性[15-16]。花青苷作为一类特殊的黄酮类化合物,不仅赋予了山楂果实色泽,还具有抗氧化和抗肿瘤等药学效能[17]

总酚、总黄酮与花青苷含量作为果蔬评价的重要指标,已有不少学者利用其含量对植物进行评价[18]。杨迎东等[19]利用总酚、总黄酮、花青苷等活性成分含量对百合品质进行评价,徐子媛等[20]利用总酚等活性物质含量从73 份桃种质资源中筛选出特异种质资源。山楂种类繁多,不同品种山楂果实间活性成分的含量差异较大[21],基于这3 种活性物质的评价较为少见,在《作物种质资源鉴定评价技术规范 山楂》[22]中将总黄酮含量(干果实)大于4%的资源归为优良种质资源,关于总酚和花青苷含量缺乏系统性评价。因此,笔者系统评估来自国家山楂种质资源圃(沈阳)的149 份山楂资源果实总酚、总黄酮和总花青苷3 种活性成分含量的多样性,并基于这3 种活性成分的含量采用聚类分析、隶属函数等方法对149份山楂资源进行分类,旨在为筛选鲜食、加工的适宜品种及为今后选育优异山楂新品种奠定基础。

1 材料和方法

1.1 材料

笔者所用的试材为国家山楂种质资源圃(沈阳)中保存的149 份山楂种质资源(表1),取样时间为2023年9月下旬至10月上旬,在果实着色后,对植株进行观察,当确认植株上75%的果实均已达到成熟状态时,即可采摘[22]。每个品种从长势一致的3棵山楂树上选取10 个大小和成熟度一致的果实,削块后低温液氮处理,放入-80 ℃冰箱保存,用于后续的测定。

表1 供试山楂种质资源信息
Table 1 Information of germplasm resources of hawthorn

编号Code名称Name编号Code名称Name编号Code名称Name编号Code名称Name 1 2 3 4 5 6 7 8 9 1 0 28 55聂家峪2号Niejiayu No. 2蟹子石3号Xiezishi No. 3银冶岭7号Yinyeling No. 7卧龙岗2号-1 Wolonggang No. 2-1蟹子石Xiezishi海棠Haitang蟹子石-2 Xiezishi - 2卧龙岗2号-2 Wolonggang No. 2-2京短1号Jingduan No.1蟹子石4号-1 Xiezishi No. 4-1西坟实生Xifenshisheng劈破石2号Piposhi No. 2西坟5号Xifen No. 5银冶岭9号Yinyeling No. 9佳甜Jiatian 795507 82 29 56 83 30 57 84 31 58 85 32 59 86 33 60 87 34 61 88 35 62 89 36 63 90 37 64 91 11 38 65 92 12 39 66 93 13 40 67 94 14 41 68 95 15 42 69 96 16 43 70 97 17 44燕瓤青Yanrangqing兴红二号Xinghong No.2兴红三号-1 Xinghong No.3-1兴红三号-2 Xinghong No.3-1燕瓤红Yanranghong隆化795801 Longhua 795801黄宝峪2号Huangbaoyu No. 2滦红Luanhong芦龙大山楂Lulong Dashanzha燕果红Yanguohong百泉7903 Baiquan 7903豫8002 Yu 8002百泉7901 Baiquan 7901百泉7807 Baiquan 7807百泉7801 Baiquan 7801辉县大红孔杞Huixian Dahongkongqi 7910 71 98 18 45 72辽红Liaohong沈农山里红Shennong Shanlihong沈78213 Shen 78213西丰红Xifeng Hong闾山红Lüshan Hong上砖白楂Shangzhuan Baizha山城2号Shancheng No. 2短枝山里红Duanzhi Shanlihong鞍山紫肉-1 Anshan Zirou - 1磨盘Mopanshan西丰铜台白野生Xifeng Tongtai Baiyesheng马家粉肉Majia Fenrou建昌山楂Jianchang Shanzha桓仁向阳Huanren Xiangyang牛心台1号Niuxintai No. 1东陵青口Dongling Qingkou鞍山紫肉-2 Anshan Zirou - 2 792204 99 19 46 73 100 20紫珍珠-1 Zizhenzhu - 1紫珍珠-2 Zizhenzhu - 2遵化33 Zunhua 33 795507 47 74 101甜水Tianshui山城1号Shancheng No. 1开原红Kaiyuan Hong晚秋山里红Wanqiu Shanlihong小糖球Xiaotangqiu软肉山里红2号Ruanrou Shanlihong No. 2通辽红Tongliao Hong黄果Huangguo牧狐梨-1 Muhuli - 1牧孤梨-2 Muhuli - 2大黄Dahuang超金星-1 Chaojinxing - 1益都红口Yidu Hongkou大五楞Dawuleng白瓤棉Bairangmian万宝地大金星-1 Wanbaodi Dajinxing - 1莱芜黑红-1 Laiwu Heihong - 1小棉球Xiaomianqiu红瓤棉Hongrangmian甜香玉 Tianxiangyu 21 48 75 102 22 49 76 103 23 50 77 104 24 51 78 105 25 52 79 106 26 53豫北红Yubei Hong牡丹峰山里红Mudanfeng Shanlihong湖北山楂Hubei Shanzha湖北1号Hubei No. 1湖北2号-1 Hubei No. 2-1湖北2号-2 Hubei No. 2-2太平山楂-1 Taiping Shanzha - 1太平山楂-2 Taiping Shanzha - 2 Early hawthorn 80 107 27涞水大金星Laishui Dajinxing黄宝峪1号-1 Huangbaoyu No. 1-1自根系Zigenxi黄宝峪1号-2 Huangbaoyu No. 1-2隔红Gehong兴隆紫肉Xinglong Zirou隆化795502 Longhua 795502 54野圃6号Yepu No. 6 81野圃8号Yepu No. 8开原软籽Kaiyuan Ruanzi甜水Tianshui马刚早红Magang Zaohong沈78201 Shen 78201砖台山楂Zhuantai Shanzha本溪7号Benxi No. 7秋金星Qiujinxing向阳2号Xiangyang No. 2 108蒙阴大金星-1 Mengyin Dajinxing - 1万宝地大金星-2 Wanbaodi Dajinxing - 2莱芜黑红-2 Laiwu Heihong - 2万宝地实生4号Wanbaodi Shisheng No. 4红石榴Hongshiliu益都敞口-1 Yidu Changkou - 1蒙阴大金星-2 Mengyin Dajinxing - 2

表1 (续) Table 1 (Continued)

注:编号为15、47、75、90、91 为湖北山楂(Crataegus hupehensis Sarg.);编号为51、52、62、74、87 为羽裂山楂(C. pinnatifida Bge.);编号为49、50、124、142 无法确定种名;其余均为羽裂山楂大果变种(C. pinnatifida Bge. var. major N. E. Br.)。
Note:The materials numbered 15, 47, 75, 90 and 91 were C. hupehensis Sarg.. The materials numbered 51, 52, 62, 74 and 87 were C. pinnatifida Bge.. The materials with numbers 49, 50, 124 and 142 could not determine their specific names. All remaining materials belong to C. pinnatifida Bge.var. major N. E. Br..

编号Code名称Name编号Code名称Name编号Code名称Name编号Code名称Name 109 120 131 142 110 121 132 143 111 122 133 144 112 123 134 145 113 124 135 146 114 125 136 147 115 126 137 148 116 127 138晋县大红小楂Jinxian Dahong Xiaozha绛县789201 Jiangxian 789201安泽大果-1 Anze Daguo - 1安泽大果-2 Anze Daguo - 2安泽大果-3 Anze Daguo - 3临汾1号Linfen No. 1綘县山楂Jiangxian Shanzhi 798202 149八棱Baleng无名山楂-1 Wuming Shanzhi - 1无名山楂-2 Wuming Shanzhi - 2无名山楂-3 Wuming Shanzhi - 3无名山楂-4 Wuming Shanzhi - 4野生山里红-1 Yesheng Shanlihong - 1野生山里红-2 Yesheng Shanlihong - 2野生山里红-3 Yesheng Shanlihong - 3 117 128 139 118 129 140山西田生Shanxi Tiansheng 8321 119枣行小果Zaoxing Xiaoguo益都敞口-2 Yidu Changkou - 2水营山楂Shuiying Shanzhi枣行早红Zaoxing Zaohong蒙阴金星Mengyin Jinxing山东红面楂-1 Shandong Hongmianzha - 1大糖球Datangqiu小金星Xiaojinxing面楂Mianzha百花裕大金星Baihuayu Dajinxing山东红面楂-2 Shandong Hongmianzha - 2 130万宝地实生Wanbaodi shisheng福山铁球Fushan Tieqiu枣行小金星Zaohang Xiaojinxing旧寨山楂Jiuzhai Shanzhi松山村实生Songshancun Shisheng超金星-2 Chaojinxing - 2歪把红Waibahong甜红Tianhong费县紫肉-1 Feixian Zirou - 1费县紫肉-2 Feixian Zirou - 2陈沟大红Chengou Dahong 141五台山山里红Wutaishan Shanlihong

142 份品种资源,编号1~15 的山楂种质资源产地为北京;16~37 为河北;38~45 为河南;46 为黑龙江;47~50 为湖北;51~52 为吉林;53:为捷克;54~87为辽宁;88 为内蒙古;89~129 为山东;130~141 为山西;142~149为野生。

1.2 方法

1.2.1 总酚的提取及其含量测定 山楂总酚含量的测定参考曹建康等[23]的方法,并作适当改动。以没食子酸标准品(源叶生物,B20851)为标样,分别测定不同浓度下标准品溶液的OD280 nm 吸光值。以OD280 nm吸光值为横坐标x,浓度为纵坐标y 绘制标准曲线:y=8.956 7x+0.025 6(R2=0.992 6)。

使用1%盐酸-甲醇溶液作空白参比调零,取上清液测定OD280 nm吸光值。山楂果实总酚含量(mg·g-1)=C×V/M,其中C 为标准曲线计算结果,V 为提取液体积,M为果实鲜质量。

1.2.2 总黄酮、花青苷含量的测定 山楂总黄酮含量的测定[22],以芦丁标准品(源叶生物,B20771)为标样,分别测定不同浓度下标准品溶液的OD325 nm吸光值。以OD325 nm吸光值为横坐标x,浓度为纵坐标y绘制标准曲线:y=0.586 1x-0.434 4(R2=0.993 3)。

山楂总黄酮含量的提取步骤与总酚相同,以1%盐酸-甲醇溶液作空白参比调零,取上清液测定OD325 nm吸光值。山楂果实总黄酮含量(mg·g-1)=C×V/M,其中C 为标准曲线计算结果,V为提取液体积,M为果实鲜质量。

山楂总花青苷含量的测定[22],以矢车菊素-3-O-葡萄糖苷(源叶生物,B21171)为标样,分别测定不同浓度下标准品溶液的OD530 nm、OD600 nm 吸光值。根据所得结果,以OD530 nm-OD600 nm吸光值之差为横坐标x、浓度为纵坐标y,绘制标准曲线:y=(15.219x-0.014 1)×1000(R2=0.997 7)。

山楂花青苷含量的提取与总酚相同,以1%盐酸-甲醇溶液作空白调零,取上清液分别于OD530 nm和OD600 nm处测定溶液的吸光值。山楂果实花青苷含量(μg·g-1)=C×V/M,其中C 为标准曲线计算结果,V为提取液体积,M为果实鲜质量。

1.3 数据分析

利用Excel 2016 进行数据平均值、标准偏差、变异系数、隶属函数等计算。采用SPSS v26.0 软件进行描述统计和频率分析并作图,TBtools-Ⅱ软件进行聚类分析并作图。数据分析所用公式如下[24]

其中i为样本序号(i=1,2,3…n);j为指标序号(j=1,2,3);μXi为总酚等3个指标的隶属函数值;XminXmax为总酚等3 个指标最小值和最大值;Wj为第j 个综合指标在所有综合指标中所占的权重;Pj为山楂种质资源第j 个指标的贡献率;Di为第i 个山楂种质资源的综合评价值。

百分位数计算公式[25]

其中Pr为第r 个百分位数;d 为百分位数r 在样本中的具体位置;[d]为取d 的整数部分;X[d]、X[d+1]分别为位次为[d]、[d+1]上的数据;n 为样本总数;r为百分位数数值。

2 结果与分析

2.1 山楂种质资源果实总酚、总黄酮、花青苷含量的分析

149 份山楂种质资源果实的总酚、总黄酮和花青苷含量如表2 所示,山楂果实中总酚含量分布为0.110~1.531 mg·g-1,其中含量最高的为野圃8 号,最低的为桓仁向阳;总黄酮含量分布在19.763~56.434 mg·g-1,最高资源为野圃8号,最低为紫珍珠-1;花青苷含量分布在19.187~720.218 μg·g-1,最高资源为野生山里红-4,最低资源为黄果。总酚、总黄酮和花青苷含量的变异系数分别为45.2%、17.4%、52.5%,总黄酮含量变异系数小于总酚和花青苷含量,说明总酚和花青苷含量的遗传多样性更为丰富。149份山楂种质资源果实的总酚、总黄酮、花青苷含量均值分别为0.495 mg·g-1、26.536 mg·g-1、205.450 μg·g-1

表2 149 份山楂种质资源果实总酚、总黄酮、花青苷含量
Table 2 Analysis of total phenols, flavonoids, and anthocyanin contents in 149 hawthorn germplasm resources

成分Component w(总酚)Total phenols content/(mg·g-1)w(总黄酮)Total flavonoids content/(mg·g-1)w(花青苷)Anthocyanin content/(μg·g-1)平均值Mean 0.495标准差SD 0.224变异系数CV/%45.2最大值Max.1.531最小值Min.0.110百分位数 Percentile 10%0.260 26.536 4.623 17.4 56.434 19.763 22.242 50%0.453 25.441 75%0.587 28.103 205.450 107.930 52.5 720.218 19.187 99.875 191.603 249.819

根据149 份山楂种质资源果实总酚、总黄酮、花青苷含量的百分位数分析(表2)建立分级标准,总酚含量低于0.260 mg·g-1为低含量,0.260~0.587 mg·g-1为中等含量,高于0.587 mg·g-1为高含量;总黄酮含量低于22.242 mg·g-1为低含量,22.242~28.103 mg·g-1为中等含量,高于28.103 mg·g-1为高含量;花青苷含量低于99.875 μg·g-1为低含量,99.875~249.819 μg·g-1为中等含量,高于249.819 μg·g-1为高含量。50%的山楂种质资源果实总酚含量不超过0.453 mg·g-1、总黄酮含量不超过25.441 mg·g-1、花青苷含量不超过191.603 μg·g-1,这些含量均低于平均值,说明大部分山楂种质资源的总酚、总黄酮和花青苷含量较低,高含量存在但较少。149 份山楂种质资源果实总酚、总黄酮、花青苷含量的频率分布均呈正偏态(图1)。其中共有98份山楂资源总酚含量在0.251~0.532 mg·g-1,有112 份山楂资源总黄酮含量在22.581~29.440 mg·g-1,98 份山楂资源花青苷含量在104.146~249.819 μg·g-1。频率分布结果和百分位数分级结果较为接近,说明两种分析方法准确可靠。

图1 149 份山楂种质资源总酚、总黄酮、花青苷含量频率分布
Fig. 1 Frequency distribution of total phenols, flavonoids, and anthocyanin contents in 149 hawthorn germplasm resources

2.2 总酚、总黄酮、花青苷含量的综合评价

根据隶属函数公式计算总酚、总黄酮和花青苷含量的隶属函数值μ1μ2μ3表3),无名山楂-4 的μ1为1.00,表明所有被测资源中无名山楂-4 总酚含量最高,而紫珍珠-1 的μ1为0.00,表明所有被测资源中紫珍珠-1 的总酚含量最低。根据权重公式计算出3个指标的权重分别为W1 = 0.715 75、W2 = 0.229 36、W3 = 0.054 89。对149 份山楂资源进行综合评价并根据综合评价值大小排序(表3),其中软肉山里红2号、野圃8 号、晚秋山里红、无名山楂-4、野生山里红-3等为排名前15的优异资源。

表3 149 份山楂种质资源的隶属函数值μ 和综合评价值D
Table 3 The membership function values μ and comprehensive evaluation values D of 149 hawthorn germplasm resources

编号Code隶属函数值MFV μ1μ2μ3综合评价值D编号Code隶属函数值MFV μ1μ2μ3综合评价值D编号Code隶属函数值MFV μ1μ2μ3综合评价值D 146 73 149 87 53 26 74 46 10 85 142 117 39 86 41 145 43 60 61 119 127 59 34 84 125 75 129 132 25 33 83 140 138 14 139 82 37 120 106 80 0.93 1.00 0.58 0.73 0.46 0.44 0.49 0.50 0.45 0.53 0.42 0.41 0.54 0.42 0.48 0.35 0.41 0.31 0.35 0.40 0.36 0.34 0.33 0.35 0.36 0.31 0.27 0.29 0.29 0.35 0.31 0.29 0.33 0.32 0.34 0.29 0.29 0.29 0.26 0.31 0.54 0.08 1.00 0.39 0.86 0.80 0.59 0.48 0.57 0.34 0.49 0.56 0.00 0.43 0.09 0.47 0.29 0.56 0.54 0.33 0.46 0.54 0.48 0.48 0.43 0.54 0.66 0.56 0.64 0.42 0.49 0.53 0.42 0.44 0.48 0.49 0.46 0.43 0.61 0.44 0.39 1.00 0.45 0.38 0.53 0.60 0.29 0.29 0.45 0.29 0.50 0.32 0.79 0.46 0.78 0.63 0.51 0.73 0.23 0.54 0.42 0.42 0.70 0.37 0.39 0.48 0.44 0.62 0.31 0.41 0.50 0.62 0.39 0.42 0.05 0.46 0.53 0.67 0.34 0.36 0.81 0.79 0.67 0.63 0.56 0.53 0.50 0.48 0.48 0.48 0.44 0.44 0.43 0.43 0.41 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.38 0.38 0.38 0.37 0.37 0.37 0.37 0.37 0.36 0.36 0.36 0.35 0.35 0.35 0.34 0.34 0.34 0.34 45 114 122 118 147 77 12 105 137 29 81 143 148 35 121 38 136 40 71 72 63 126 128 49 101 116 123 31 62 50 11 144 109 79 91 124 69 78 51 6 0.29 0.30 0.29 0.29 0.28 0.28 0.25 0.34 0.26 0.29 0.29 0.34 0.23 0.23 0.25 0.38 0.23 0.38 0.23 0.27 0.28 0.19 0.18 0.29 0.32 0.25 0.21 0.26 0.25 0.23 0.20 0.23 0.26 0.17 0.35 0.16 0.22 0.21 0.25 0.23 0.47 0.36 0.45 0.40 0.49 0.42 0.47 0.25 0.48 0.42 0.49 0.29 0.54 0.54 0.47 0.08 0.47 0.17 0.44 0.41 0.35 0.58 0.64 0.31 0.25 0.43 0.54 0.48 0.37 0.45 0.50 0.45 0.33 0.54 0.04 0.60 0.44 0.49 0.40 0.40 0.51 0.68 0.39 0.55 0.26 0.57 0.68 0.48 0.52 0.34 0.08 0.07 0.46 0.49 0.48 0.43 0.71 0.00 0.82 0.43 0.51 0.69 0.42 0.37 0.27 0.43 0.42 0.02 0.59 0.44 0.62 0.44 0.48 0.69 0.42 0.64 0.47 0.36 0.21 0.44 0.34 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.32 0.32 0.32 0.32 0.32 0.32 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.29 0.29 0.29 0.29 0.29 0.29 0.28 0.28 0.28 0.28 0.28 0.28 65 44 134 5 135 52 27 67 13 70 103 4 88 58 90 9 112 66 115 2 36 131 108 3 57 113 7 24 68 110 141 107 23 30 48 8 133 28 98 1 0.21 0.17 0.21 0.19 0.17 0.20 0.18 0.19 0.16 0.15 0.23 0.16 0.19 0.22 0.30 0.17 0.19 0.17 0.17 0.18 0.21 0.19 0.18 0.17 0.20 0.17 0.12 0.17 0.10 0.17 0.16 0.12 0.16 0.13 0.15 0.12 0.16 0.14 0.15 0.12 0.42 0.57 0.44 0.43 0.49 0.44 0.40 0.45 0.55 0.50 0.34 0.44 0.42 0.35 0.08 0.48 0.39 0.46 0.48 0.40 0.31 0.38 0.40 0.43 0.34 0.43 0.48 0.41 0.54 0.41 0.36 0.45 0.41 0.48 0.43 0.52 0.43 0.45 0.37 0.41 0.53 0.49 0.38 0.75 0.68 0.49 0.78 0.45 0.39 0.68 0.36 0.83 0.45 0.40 0.37 0.38 0.43 0.44 0.40 0.56 0.49 0.43 0.43 0.48 0.43 0.39 0.71 0.41 0.76 0.25 0.58 0.86 0.44 0.54 0.38 0.43 0.25 0.30 0.53 0.70 0.28 0.28 0.27 0.27 0.27 0.27 0.27 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.24 0.24 0.24 0.24 0.24 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.22 0.22 0.22

表3 (续) Table 3 (Continued)

编号Code隶属函数值MFV μ1μ2μ3综合评价值D编号Code隶属函数值MFV μ1μ2μ3综合评价值D编号Code隶属函数值MFV μ1μ2μ3综合评价值D 56 111 22 99 19 42 104 102 20 0.15 0.13 0.13 0.15 0.16 0.13 0.15 0.09 0.11 0.37 0.45 0.41 0.37 0.32 0.42 0.41 0.44 0.38 0.43 0.41 0.51 0.40 0.41 0.39 0.12 0.70 0.69 0.22 0.22 0.22 0.22 0.21 0.21 0.21 0.20 0.20 96 47 130 15 55 100 21 54 95 0.12 0.15 0.12 0.17 0.13 0.11 0.11 0.18 0.10 0.39 0.30 0.39 0.27 0.36 0.42 0.42 0.19 0.41 0.45 0.48 0.47 0.26 0.36 0.44 0.36 0.43 0.53 0.20 0.20 0.20 0.20 0.20 0.20 0.19 0.19 0.19 93 97 94 18 16 92 89 17 0.12 0.10 0.12 0.11 0.10 0.07 0.06 0.00 0.27 0.41 0.39 0.33 0.33 0.28 0.29 0.34 0.76 0.44 0.15 0.32 0.34 0.48 0.49 0.44 0.19 0.19 0.18 0.17 0.17 0.14 0.13 0.10

2.3 聚类分析

根据总酚、总黄酮和花青苷含量对149 份山楂资源进行聚类分析,结果显示(图2),可将所有资源分为5 类,具体数据见表4。第Ⅰ类包括野圃8 号、无名山楂-4、野生山里红-3等13份山楂种质资源,总酚含量1.531~0.557 mg·g-1,总黄酮含量56.434~28.848 mg·g-1,花青苷含量720.218~293.449 μg·g-1,变异系数分别为35.1%、23.4%、30.1%。

图2 基于总酚、总黄酮、花青苷含量的149 份山楂种质资源聚类分析
Fig. 2 Cluster analysis of 149 hawthorn germplasm resources based on total phenols, flavonoid, and anthocyanin contents

表4 基于149 份山楂种质资源总酚、总黄酮、花青苷含量的聚类分析
Table 4 Cluster analysis of total phenols, flavonoids, and anthocyanin in 149 hawthorn germplasm resources

分类CladeⅠⅡⅢⅣⅤ总酚含量Total phenols content均值 ± 标准差Mean ± SD/(mg·g-1)0.905±0.318 0.603±0.149 0.349±0.080 0.441±0.056 0.241±0.062分布范围Distribution/(mg·g-1)0.557~1.531 0.327~0.980 0.180~0.526 0.365~0.596 0.110~0.332变异系数CV/%35.100 24.700 23.000 12.600 25.800总黄酮含量Total flavonoids content均值 ± 标准差Mean ± SD/(mg·g-1)34.626±8.112 28.576±3.300 22.957±1.640 24.547±1.258 24.504±1.523分布范围Distribution/(mg·g-1)28.848~56.434 22.796~41.841 19.763~26.533 21.795~26.861 21.870~27.198变异系数CV/%23.400 11.500 7.140 5.100 6.200花青苷含量Anthocyanin content均值 ± 标准差Mean ± SD/(μg·g-1)439.981±132.514 224.628±76.343 101.115±45.945 178.789±35.146 198.170±51.810分布范围Distribution/(μg·g-1)293.449~720.218 19.318~353.637 19.187~193.442 110.848~256.720 105.526~299.691变异系数CV/%30.100 34.000 45.400 19.700 26.100

第Ⅱ类包括豫8002、百泉7807、牧狐梨-1 等52份山楂种质资源,总酚含量0.980~0.327 mg·g-1,总黄酮含量41.841~22.796 mg·g-1,花青苷含量353.637~19.318 μg·g-1,变异系数分别为24.7%、11.5%、34.0%。第Ⅲ类包括紫珍珠-1、超金星-1、795507 等28 份山楂种质资源,总酚含量0.526~0.180 mg·g-1,总黄酮含量26.533~19.763 mg·g-1,花青苷含量193.442~19.187 μg·g-1,变异系数分别为23.0%、7.14%、45.4%。第Ⅳ类包括西丰红、万宝地大金星-2、芦龙大山楂等37 份山楂种质资源,总酚含量0.596~0.365 mg·g-1,总黄酮含量26.861~21.795 mg·g-1,花青苷含量256.720~110.848 μg·g-1,变异系数分别为12.6%、5.1%、19.7%;第Ⅴ类包括费县紫肉-1、西坟5号、松山村实生等19 份山楂种质资源总酚含量0.332~0.110 mg·g-1,总黄酮含量27.198~21.870 mg·g-1,花青苷含量299.691~105.526 μg·g-1,变异系数分别为25.8%、6.20%、26.1%。

第Ⅰ类山楂种质资源总酚、总黄酮和花青苷含量均值最高,且根据百分位法分级建立的评价标准均属于高含量,与综合评价值的结果基本一致,说明两种方法准确可靠。

3 讨 论

目前,已有许多学者对山楂资源的总酚、总黄酮、花青苷等活性物质进行研究。孙博等[26]对10 种不同产地的山楂进行了总黄酮含量的测定,总黄酮含量范围为16.87~38.61 mg·g-1,其中最高含量约为最低含量的2.3倍,表明山楂资源的总黄酮含量具有显著差异。白婧[27]测定了辽宁地区10 种主要栽培的山楂品种总酚、总黄酮和花青苷含量,结果表明,10 种山楂的总酚、总黄酮和花青苷含量具有显著差异。李培暠等[28]测定了51 份山楂资源的花青苷含量,结果表明,山楂资源的花青苷含量存在显著差异。笔者对149 份山楂资源的总酚、总黄酮和花青苷含量进行了测定,其中与白婧[27]相同的山楂资源总黄酮、花青苷含量基本一致,总酚含量总体上差异较大,可能是样本保存条件、试验仪器等差异造成的。在相同试验方法下本研究与李培暠等[28]测出的山楂资源花青苷含量基本一致,表明本研究中的花青苷含量测定结果较为准确,具有一定重复性。

聚类分析可用于筛选优异的种质资源。张伟清等[29]以8 种矿物质总酚和总黄酮含量进行聚类分析,筛选出各类物质含量均较高的酸橙类。张乔乔等[30]以总酚和总黄酮含量进行聚类分析,将142 份枣种质资源分为5 类,筛选出总酚和总黄酮含量较高的枣种质资源。白婧[27]对山楂果实颜色、糖酸比等品质特性与山楂花色苷、黄酮含量等功能性成分进行聚类分析,将10种山楂资源分为4类,得到具有较高的功能性成分含量,如黄酮、多酚和花色苷的第Ⅰ类和第Ⅲ类。李培暠等[28]对51 份山楂资源的色差值和果实花青苷含量进行聚类分析,结果表明,51 份山楂资源分为4 类,其中包括花青苷含量最高的第Ⅰ类和花青苷含量较高的第Ⅲ类。笔者根据总酚、总黄酮和花青苷含量进行聚类分析,将149 份山楂种质资源分为5 类,其中兴隆紫肉在第Ⅰ类花青苷含量均值最高,这与李培暠等[28]、白婧[27]涉及功能性成分花青苷含量的聚类结果相似,蒙阴大金星在第Ⅱ类,其总酚和总黄酮含量均值较高,这与白婧[27]涉及总酚,总黄酮含量的聚类结果相似,并由此筛选出第Ⅰ类总酚、总黄酮和花青苷含量均值最高。筛选出来的资源包括无名山楂-4、野圃8 号、野生山里红-3、软肉山里红2 号等,这些资源在总酚、总黄酮和花青苷含量方面表现优异,为后续山楂相关研究与开发利用提供了重要依据。

百分位法作为一种常用的统计工具,在许多数据分析领域被广泛使用[31]。张乔乔等[30]采用第25、50 和75 的百分位数对枣种质资源的总酚、总黄酮含量建立了分级标准,将总酚和总黄酮含量分为高中低等级。关于山楂总酚、总黄酮和花青苷含量的分级标准较为少见,在《作物种质资源鉴定评价技术规范 山楂》[22]中,将总黄酮含量大于4%的山楂种质资源归为优良种质资源。常用百分数为第25、50、75 百分数[30],在数据满足正态分布的情况下,能较好地将数据划分为不同等级,由于149 份山楂种质资源果实总酚、总黄酮和花青苷含量的频率分布满足正偏态,常用的百分数划分可能存在数据划分不能反映真实情况的现象,有较多数据的值和第25 百分数的值极为接近,二者之间的差异极小,所以在结合了频数分析的情况下将低含量值划分时采用第10 百分数、高含量值划分时采用第75百分数。

隶属函数被广泛运用于简化植物评价指标的过程中,并提高评价的准确性和可靠性。李春红等[32]运用隶属函数对大豆的14个指标进行综合评价,筛选出强耐阴型大豆品种9 个。费丹等[33]运用隶属函数筛选出4 个芦笋品种中最好的品种。笔者利用隶属函数对总酚、总黄酮和花青苷含量进行综合评价,根据D 值大小排序后,筛选出的前15 份资源D 值均大于0.40,其中包括无名山楂-4、野圃8号、野生山里红-3、软肉山里红2 号等优异资源,与聚类结果相似。

4 结 论

笔者以149 份山楂种质资源为研究对象,果实中的总酚、总黄酮和花青苷含量存在显著差异,其中总酚和花青苷含量的遗传多样性更为丰富,总酚含量最高的资源为野圃8号,最低的为桓仁向阳;总黄酮含量最高的资源为野圃8号,最低的为紫珍珠;花青苷含量最高的资源为野生山里红-4,最低的资源为黄果。

根据隶属函数值和聚类分析,筛选出15 份优异山楂资源种质资源,为后期筛选鲜食、加工的适宜品种及今后选育优异山楂新品种奠定基础。通过百分位数法建立分级标准,从而初步形成针对山楂种质资源成熟果实总酚、总黄酮和花青苷含量的系统性评价标准。

参考文献References:

[1] POTTER D,ERIKSSON T,EVANS R C,OH S,SMEDMARK J E E,MORGAN D R,KERR M,ROBERTSON K R,ARSENAULT M,DICKINSON T A,CAMPBELL C S. Phylogeny and classification of Rosaceae[J]. Plant Systematics and Evolution,2007,266(1):5-43.

[2] 段志文,王双艳,庞旭,张洁,赵晔,郑晓晖,马百平. 山楂叶中的萜类化合物[J]. 中国中药杂志,2021,46(11):2830-2836.DUAN Zhiwen,WANG Shuangyan,PANG Xu,ZHANG Jie,ZHAO Ye,ZHENG Xiaohui,MA Baiping. Terpenoids from leaves of Chinese hawthorn[J]. China Journal of Chinese Materia Medica,2021,46(11):2830-2836.

[3] 劳永春. 山楂属种质资源形态学评价及疑似资源鉴定[D]. 沈阳:沈阳农业大学,2019.LAO Yongchun. Morphological evaluation of hawthorn germplasm resources and identification of suspected resources[D].Shenyang:Shenyang Agricultural University,2019.

[4] 杜潇. 我国原产栽培山楂及其近缘种的种间关系及起源演化研究[D]. 沈阳:沈阳农业大学,2019.DU Xiao. Study on the interspecies relations and origins,evolution of cultivated hawthorn (Crataegus spp.) and related species in China[D]. Shenyang:Shenyang Agricultural University,2019.

[5] 赵焕谆,丰宝田. 中国果树志-山楂卷[M]. 北京:中国林业出版社,1996.ZHAO Huanzhun,FENG Baotian. Monograph on Chinese fruit trees:Volume on hawthorn[M]. Beijing:China Forestry Publishing House,1996.

[6] 齐索尼. 山楂果实性状遗传多样性及果肉花色苷HPLC 分析[D]. 沈阳:沈阳农业大学,2023.QI Suoni. Analysis of genetic diversity and anthocyanins in hawthorn fruit by HPLC[D]. Shenyang:Shenyang Agricultural University,2023.

[7] 赵玉辉,齐索尼,李昂轩,赵迎汐,马欣然,刘月学. 基于果实表型性状的山楂种质资源遗传多样性分析[J]. 沈阳农业大学学报,2024,55(4):395-404.ZHAO Yuhui,QI Suoni,LI Angxuan,ZHAO Yingxi,MA Xinran,LIU Yuexue. Genetic diversity analysis of hawthorn germplasm resources based on fruit phenotypic traits[J]. Journal of Shenyang Agricultural University,2024,55(4):395-404.

[8] 秦宇,郝瑞鑫,李若晴,王燕,董宁光. 山楂种质资源表型性状多样性分析及评价[J]. 果树学报,2022,39(10):1759-1773.QIN Yu,HAO Ruixin,LI Ruoqing,WANG Yan,DONG Ningguang. Diversity analysis of phenotypic characters in germplasm resources of hawthorn[J]. Journal of Fruit Science,2022,39(10):1759-1773.

[9] 赵瑞. 山楂种质资源性状调查与分析[D]. 秦皇岛:河北科技师范学院,2015.ZHAO Rui. Traits investigation and analysis of hawthorn germplasm resources[D]. Qinhuangdao:Hebei Normal University of Science & Technology,2015.

[10] 沈燕琳,董文轩,李鲜,孙崇德,陈昆松. 山楂酚类物质及其生物活性研究进展[J]. 园艺学报,2013,40(9):1691-1700.SHEN Yanlin,DONG Wenxuan,LI Xian,SUN Chongde,CHEN Kunsong. Phenolic compounds and their bioactivities in hawthorn (Crataegus spp.)[J]. Acta Horticulturae Sinica,2013,40(9):1691-1700.

[11] 吴瞻邑,由璐,刘素稳,常学东. 山楂抗心血管系统疾病的研究进展[J]. 中国食物与营养,2019,25(4):67-71.WU Zhanyi,YOU Lu,LIU Suwen,CHANG Xuedong. Research advancements on effects of hawthorn against cardiovascular system diseases[J]. Food and Nutrition in China,2019,25(4):67-71.

[12] 陆施婷,张晟,陈月. 超重肥胖青壮年2 型糖尿病中西医治疗概述[J]. 世界科学技术-中医药现代化,2024,26(4):927-933.LU Shiting,ZHANG Sheng,CHEN Yue. The review of traditional Chinese and western medicine treatment of type 2 diabetes mellitus in overweight obese young adults[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology,2024,26(4):927-933.

[13] 贾彬,麦子盈,陈启文,覃思意,王乐琪,严诗楷,李莎莎,肖雪.山楂药用价值与上市药品研究进展[J]. 中草药,2023,54(20):6878-6888.JIA Bin,MAI Ziying,CHEN Qiwen,QIN Siyi,WANG Leqi,YAN Shikai,LI Shasha,XIAO Xue. Research progress on medicinal value of Crataegi Fructus and related marketed drugs[J].Chinese Traditional and Herbal Drugs,2023,54(20):6878-6888.

[14] 李宣,何迎春,周芳亮. 山楂酸药理作用及其机制的研究进展[J]. 中国现代医学杂志,2021,31(8):49-53.LI Xuan,HE Yingchun,ZHOU Fangliang. Research advances on pharmacological effects and mechanisms of maslinic acid[J].China Journal of Modern Medicine,2021,31(8):49-53.

[15] 祖齐欣,王勇,刘素稳,徐永平,李淑英,王淑玉,常学东. 不同提取方式对山楂果渣可溶性膳食纤维结构及功能特性的影响[J].食品与发酵工业,2024,50(9):164-173.ZU Qixin,WANG Yong,LIU Suwen,XU Yongping,LI Shuying,WANG Shuyu,CHANG Xuedong. Effects of different extraction methods on structure and functional characteristics of soluble dietary fiber from hawthorn residue[J]. Food and Fermentation Industries,2024,50(9):164-173.

[16] 赵盈,於天,郑志刚,陈位三,弓思涵,宋天宝,李先宽,於洪建.多酚在植物中的分布及其生物活性研究进展[J]. 中草药,2023,54(17):5825-5832.ZHAO Ying,YU Tian,ZHENG Zhigang,CHEN Weisan,GONG Sihan,SONG Tianbao,LI Xiankuan,YU Hongjian. Research progress on distribution and bioactivity of polyphenols in plants[J]. Chinese Traditional and Herbal Drugs,2023,54(17):5825-5832.

[17] 庄维兵,刘天宇,束晓春,渠慎春,翟恒华,王涛,张凤娇,王忠.植物体内花青素苷生物合成及呈色的分子调控机制[J]. 植物生理学报,2018,54(11):1630-1644.ZHUANG Weibing,LIU Tianyu,SHU Xiaochun,QU Shenchun,ZHAI Henghua,WANG Tao,ZHANG Fengjiao,WANG Zhong. The molecular regulation mechanism of anthocyanin biosynthesis and coloration in plants[J]. Plant Physiology Journal,2018,54(11):1630-1644.

[18] 陈奕琳,崔梦凡,马晨阳,荀天卓,贾凯,李雯雯. 不同杏品种成熟期果实生长指标、总酚含量及总黄酮含量的比较[J]. 江苏农业科学,2024,52(15):208-213.CHEN Yilin,CUI Mengfan,MA Chenyang,XUN Tianzhuo,JIA Kai,LI Wenwen. Comparison of fruit growth indicators,total phenols content and total flavonoids content of different apricot varieties at maturity stage[J]. Jiangsu Agricultural Sciences,2024,52(15):208-213.

[19] 杨迎东,王伟东,张睿琪,冯秀丽,白一光,杨盼盼,周俐宏,李雪艳,胡新颖. 不同百合食药用功能指标检测分析[J]. 沈阳农业大学学报,2024,55(3):276-284.YANG Yingdong,WANG Weidong,ZHANG Ruiqi,FENG Xiuli,BAI Yiguang,YANG Panpan,ZHOU Lihong,LI Xueyan,HU Xinying. Detection and analysis of functional indexes for food and medicine of different lilies[J]. Journal of Shenyang Agricultural University,2024,55(3):276-284.

[20] 徐子媛,严娟,蔡志翔,孙朦,宿子文,沈志军,马瑞娟,俞明亮.桃果实糖酸和酚类物质与口感风味的相关性[J]. 江苏农业学报,2022,38(1):190-199.XU Ziyuan,YAN Juan,CAI Zhixiang,SUN Meng,SU Ziwen,SHEN Zhijun,MA Ruijuan,YU Mingliang. Correlation between soluble sugar,organic acid and phenolic substances with tasted flavor in peach fruit[J]. Jiangsu Journal of Agricultural Sciences,2022,38(1):190-199.

[21] 张春丹. 山楂贮存期间黄酮含量变化及抗氧化活性的研究[D].秦皇岛:河北科技师范学院,2012.ZHANG Chundan. Studies on changes of flavonoids content of hawthorn fruit during storage and their antioxidant activities[D].Qinhuangdao:Hebei Normal University of Science & Technology,2012.

[22] 中华人民共和国农业部. 农作物种质资源鉴定评价技术规范山楂:NY/T 2325—2013[S]. 北京:中国农业出版社,2013.Ministry of Agriculture of the People’s Republic of China. Technical code for evaluating crop germplasm resources-Hawthorn:NY/T 2325—2013[S]. Beijing:China Agriculture Press,2013.

[23] 曹建康,姜微波,赵玉梅. 果蔬采后生理生化实验指导[M]. 北京:中国轻工业出版社,2007:50-51.CAO Jiankang,JIANG Weibo,ZHAO Yumei. Experimental guidance on postharvest physiology and biochemistry of fruits and vegetables[M]. Beijing:China Light Industry Press,2007:50-51.

[24] 谢季坚. 农业科学中的模糊数学方法[M]. 武昌:华中理工大学出版社,1993.XIE Jijian. Fuzzy mathematical methods in agricultural science[M]. Wuchang:Huazhong University of Science and Technology Press,1993.

[25] 陈颖,马禹. 新疆不同等级暴雨洪涝灾害的时空变化特征[J].干旱区地理,2021,44(6):1515-1524.CHEN Ying,MA Yu. Spatial and temporal characteristics of flood and rainstorm disaster in Xinjiang[J]. Arid Land Geography,2021,44(6):1515-1524.

[26] 孙博,霍华珍,蔡爱华,谢运昌,李典鹏. 不同产地大果山楂总黄酮含量及抗氧化活性[J]. 广西科学,2020,27(4):356-361.SUN Bo,HUO Huazhen,CAI Aihua,XIE Yunchang,LI Dianpeng. Total flavonoids content and antioxidant activity of Malus doumeri fruit from different producing areas[J]. Guangxi Sciences,2020,27(4):356-361.

[27] 白婧. 辽宁主栽山楂品种特征差异与主要功能性成分研究[D].沈阳:沈阳农业大学,2020.BAI Jing. Study on the variety characteristics and functional components of cultivated hawthorn[D]. Shenyang:Shenyang Agricultural University,2020.

[28] 李培暠,孙馨宇,王键,付东旭,董文轩,刘月学,张枭. 山楂种质资源果实颜色与花青苷含量的关系[J]. 植物遗传资源学报,2024,25(1):72-83.LI Peihao,SUN Xinyu,WANG Jian,FU Dongxu,DONG Wenxuan,LIU Yuexue,ZHANG Xiao. Relationship of fruit color and anthocyanin content of hawthorn germplasm resources[J].Journal of Plant Genetic Resources,2024,25(1):72-83.

[29] 张伟清,林媚,平新亮,王伟,冯先橘,姚周麟,王天玉. 柑橘果实矿质元素、活性物质含量特征及综合评价[J]. 果树学报,2024,41(8):1592-1603.ZHANG Weiqing,LIN Mei,PING Xinliang,WANG Wei,FENG Xianju,YAO Zhoulin,WANG Tianyu. A comprehensive evaluation of mineral elements and active substances in citrus fruits[J]. Journal of Fruit Science,2024,41(8):1592-1603.

[30] 张乔乔,王艳,刘经延,张乐乐,吴翠云. 142 份枣种质资源果实黄酮和总酚含量的差异分析[J/OL]. 分子植物育种,2024:1-22(2024-06-02). https://link.cnki.net/urlid/46.1068.S.20240531.1055.010.ZHANG Qiaoqiao,WANG Yan,LIU Jingyan,ZHANG Lele,WU Cuiyun. Analysis on the Difference of Flavonoids and Total Phenols in 142 Jujube Fruits[J/OL]. Molecular Plant Breeding,2024:1-22(2024-06-02). https://link. cnki. net/urlid/46.1068.S.20240531.1055.010.

[31] 徐万玲. 氮沉降、放牧和极端降水对羊草草地N2O 排放的影响机制研究[D]. 长春:东北师范大学,2021.XU Wanling. Study on effects of nitrogen deposition, grazing and extreme precipitation on N2O emissions in a Leymus chinensis meadow[D]. Changchun:Northeast Normal University,2021.

[32] 李春红,姚兴东,鞠宝韬,朱明月,王海英,张惠君,敖雪,于翠梅,谢甫绨,宋书宏. 不同基因型大豆耐阴性分析及其鉴定指标的筛选[J]. 中国农业科学,2014,47(15):2927-2939.LI Chunhong,YAO Xingdong,JU Baotao,ZHU Mingyue,WANG Haiying,ZHANG Huijun,AO Xue,YU Cuimei,XIE Futi,SONG Shuhong. Analysis of shade-tolerance and determination of shade-tolerance evaluation indicators in different soybean genotypes[J]. Scientia Agricultura Sinica,2014,47(15):2927-2939.

[33] 费丹,谢敏,徐俊,周瑶敏,广业兰,汤泳萍,涂田华,熊晓晖.基于主成分分析和隶属函数法对不同品种芦笋品质的综合评价[J]. 江西农业学报,2024,36(4):33-39.FEI Dan,XIE Min,XU Jun,ZHOU Yaomin,GUANG Yelan,TANG Yongping,TU Tianhua,XIONG Xiaohui. Comprehensive quality evaluation of different varieties of Asparagus based on principal component analysis and membership function analysis[J]. Acta Agriculturae Jiangxi,2024,36(4):33-39.

Difference analysis in the content of the total phenols, flavonoid, and anthocyanin of 149 accessions of hawthorn gremplasm resources

ZHAO Baipeng1, CUI Mingqi1, SUN Xinyu1, WANG Yu1, WANG Xiangxu1, LIU Yuexue1,2, ZHANG Xiao1,2*
(1College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; 2National Field Genebank for Hawthorn, Shenyang 110866, Liaoning, China)

Abstract:【Objective】 Hawthorn (Crataegus L.), a plant belonging to the Rosaceae family and the apple tribe of the subfamily Maloideae, is renowned for its dual utility as both food and medicinal herb.Its historical use in medicine and food processing underscores its significance in both areas. The bioactive components present in hawthorn, particularly total phenols, total flavonoids, and anthocyanins, are known to contribute significantly to its health benefits, exhibiting a range of effects including anti-inflammatory, anti-diabetic, and anti-cancer properties. However, the diversity among hawthorn species is vast, leading to substantial variations in the contents of these active components. A systematic evaluation method is needed for the diversity of bioactive components content in hawthorn fruit. This study aimed to offer a basis for the selection of new varieties of hawthorn, and improve the utilization of these resources in the development of functional foods and other areas. 【Methods】 149 accessions of hawthorn germplasm resources from the National Hawthorn Germplasm Repository in Shenyang were used in this research. The fruits of these resources were meticulously processed to ensure the integrity of the total phenols, total flavonoids, and anthocyanins. The process began with cutting the hawthorn fruits into pieces, which were then subjected to liquid nitrogen treatment to preserve their freshness and potency. The treated fruits were subsequently stored at -80 ℃ to maintain their quality for later analysis. The samples were ground using a grinder to obtain a fine powder, from which 0.5 grams of freeze-dried hawthorn powder was weighed for each variety. A small amount of pre-cooled 1% HCl methanol solution was added to the powder, and the mixture was diluted to 10 mL. The mixture was homogenized and extracted in the dark at 4 ℃ for 20 minutes, with occasional shaking to ensure thorough mixing. After the extraction process, the samples were centrifuged at 12 000 r·min-1 for 10 minutes at 4 ℃ to separate the supernatant from the solid residue. The absorbance values at wavelengths of 280 nm, 325 nm, 600 nm,and 530 nm were measured for each variety using a 1% HCl-methanol solution as the blank reference.All data were processed using Excel 2016 for calculations of mean values, standard deviations, coefficients of variation, and membership functions. Descriptive statistics and frequency analysis were performed using SPSS v26.0 software, and cluster analysis was conducted using TBtools-Ⅱ software to classify the resources based on the content of total phenols, total flavonoids, and anthocyanins. 【Results】 The results of this study revealed significant variations in the content of total phenols, total flavonoids, and anthocyanins among the 149 accessions of hawthorn germplasm resources. Yepu No.8 was identified as the highest total phenol content (1.531 mg·g-1), while Huairen Xiangyang had the lowest(0.110 mg·g-1). Similarly, Yepu No.8 also exhibited the highest total flavonoid content (56.434 mg·g-1),Zizhenzhu No.1 was the lowest (19.763 mg·g-1). In terms of anthocyanin content, Yesheng Shanlihong No.3 had the highest (720.218 μg·g-1), and Huangguo had the lowest (19.187 μg·g-1). A preliminary grading standard for these compounds was established using percentile analysis. The total phenol content below 0.260 mg·g-1 was regarded as low, 0.260-0.587 mg·g-1 considered as medium, and above 0.587 mg·g-1 was high. The total flavonoid content below 22.242 mg·g-1 was regarded as low, 22.242-28.103 mg·g-1 considered as medium, and above 28.103 mg·g-1 was high. The anthocyanin content below 99.875 μg·g-1 was regarded as low, 99.875-249.819 μg·g-1 considered as medium, and above 249.819 μg·g-1 was high. The cluster analysis revealed five distinct groups, with the first group including Yepu No.8, Wuming Hawthorn-4, and Yesheng Shanlihong-3, having the highest average content of total phenols (1.531-0.557 mg·g-1), total flavonoids (56.434-28.848 mg·g-1), and anthocyanins (720.218-293.449 μg·g-1), with coefficients of variation of 35.1%, 23.4%, and 30.1%, respectively. The second group included Yu8002, Baiquan7807, and Muhuli-1, with total phenol content (0.980-0.327 mg·g-1),total flavonoid content (41.841-22.796 mg·g-1), and anthocyanin content (353.637-19.318 μg·g-1), with coefficients of variation of 24.7%, 11.5%, and 34.0%, respectively. The third group included Zizhenzhu-1, Chaojinxing-1, and 795507, with total phenol content (0.526-0.180 mg·g-1), total flavonoid content(26.533-19.763 mg·g-1), and anthocyanin content (193.442-19.187 μg·g-1), with coefficients of variation of 23.0%, 7.14%, and 45.4%, respectively. The fourth group included Xifenghong, Wangbaodi Dajinxing-2, and Lulong Dashanzha, with total phenol content (0.596-0.365 mg·g-1), total flavonoid content (26.861-21.795 mg·g-1), and anthocyanin content (256.720-110.848 μg·g-1), with coefficients of variation of 12.6%, 5.1%, and 19.7%, respectively. The fifth group included Feixian Zirou-1, Xifen No.5, and Songshancun Shisheng, with total phenol content (0.332-0.110 mg·g-1), total flavonoid content (27.198-21.870 mg·g-1), and anthocyanin content (299.691-105.526 μg·g-1), with coefficients of variation of 25.8%, 6.20%, and 26.1%, respectively. 【Conclusion】 Based on the membership function values and cluster analysis, 15 accessions of excellent hawthorn germplasm resources were selected.These results would provide the basis for the selection of suitable varieties for fresh consumption, processing, and the future hawthorn breeding. The grading standards established through percentile analysis would provide a systematic evaluation of the total phenol, total flavonoid, and anthocyanin content in mature fruits of hawthorn germplasm resources. This study would not only contribute to the understanding of the diversity of bioactive compounds in hawthorn, but also would serve as a valuable resource for the development of functional foods and the advancement of hawthorn cultivation and utilization.

Key words:Hawthorn; Fruit quality; Total phenols; Flavonoid; Anthocyanin; Cluster analysis; Membership function

中图分类号:S661.5

文献标志码:A

文章编号:1009-9980(2025)03-0486-12

DOI:10.13925/j.cnki.gsxb.20240535

收稿日期:2024-10-25

接受日期:2024-11-19

基金项目:辽宁省教育厅基本科研项目(JYTQN2023298)

作者简介:赵柏棚,男,在读硕士研究生,研究方向为果树种质资源评价与利用。E-mail:15524203093@163.com

*通信作者 Author for correspondence. E-mail:zhangxiao8866@syau.edu.cn