杭州不同海拔地区甜樱桃花芽内含物及内源激素差异比较

张 琛,刘 辉*,阮若昕,骆慧枫,黄康康,郗笃隽,裴嘉博,沈国正

(杭州市农业科学研究院园艺研究所,杭州 310024)

摘 要:【目的】 通过比较杭州地区不同海拔甜樱桃在不同发育阶段花芽内营养物质含量与内源激素含量的差异,从生理水平揭示杭州低海拔地区甜樱桃产量较低的原因。【方法】 以萨米脱为试材,比较杭州高山和平地地区在休眠前、休眠中、花芽萌动前花芽内含物含量和内源激素含量的差异,对两地各阶段花芽内含物水平进行主成分分析,并利用灰色关联分析和GRA-SVM模型分析花芽质量和指标之间的关联程度。【结果】 两地区甜樱桃在不同发育阶段花芽内含物含量的变化规律基本相同,但含量的水平不同。在花芽萌动前,高山地区甜樱桃花芽内游离氨基酸的含量是平地的1.22倍;山梨醇、果糖、葡萄糖含量分别是平地的1.21、1.18、1.11倍;细胞分裂素(CTKs)和赤霉素(GAs)的含量均高于平地,CTKs/GAs比值是平地的1.02倍。主成分分析表明,经过休眠期的积累,高山地区甜樱桃花芽内含物含量已高于平地,直至花芽萌动前仍高于平地。GRA-SVM模型分析表明花芽质量与花芽内含物各指标间具有不同程度的关联性。【结论】 杭州低海拔地区甜樱桃自休眠中至花芽萌动前花芽内含物含量的整体水平较高山地区低,利用GRASVM模型可进一步揭示某些内含物含量偏低是造成低海拔地区甜樱桃花芽质量较低的内在生理原因。

关键词:甜樱桃;营养物质;内源激素;海拔;杭州

甜樱桃(Prunus avium L.)起源于欧洲,是中国北方成熟最早的落叶果树,素有“春果第一枝”的美誉。20世纪以来,甜樱桃主要栽种在辽东半岛和胶东半岛。随着90年代甜樱桃生产突飞猛进的发展,其栽培范围进一步扩大。近年来,甜樱桃的栽培范围已扩展到长江中下游地区,并且因种植效益高、市场潜力大,甜樱桃成为南方采摘游果园种植的热门树种。但受气候差异的影响,原产于北方冷凉地区的甜樱桃在往南栽培的过程中易出现结实率低、花而不实、畸形果等问题,因此制约了甜樱桃在南方地区的发展。中国西南地区甜樱桃的栽培面积已达到1万hm2以上[1],其中四川的阿坝、甘孜州、雅安、攀枝花等地均有甜樱桃种植稳产高产的报道,已被归为甜樱桃的适栽区[2]。甜樱桃种植成为冷凉高山农民创收增收的新兴产业。高海拔山区与平地的气候条件存在差异。中国南方高海拔地区与西南地区甜樱桃的适栽区生境相似,具备成功种植甜樱桃的气候条件。

花是植物的生殖器官,花芽发育的质量和数量与果实的性状和产量密切相关。碳水化合物是花芽发育的重要物质基础。有研究指出,植物体内淀粉、蛋白质等碳水化合物及内源激素水平在一定程度上控制花芽的质量与数量[3]。罗惠格等[4]研究发现阳光玫瑰葡萄可溶性总糖和淀粉的含量与花芽进程有关,较高含量的总糖与淀粉有利于花芽分化。李利红等[5]对杏的研究发现,氨基酸含量与花芽质量呈正相关,高水平的氨基酸含量可有效降低败育率。职倩倩等[6]通过多糖的定位研究表明,多糖为甜樱桃花器官发育提供能量,温室高温抑制多糖水解从而导致胚囊败育。王玉华等[7]研究表明高水平的玉米素核苷(ZRs)和低水平的生长素(IAA)、赤霉素(GA1+3)利于甜樱桃的形态分化。王智豪等[8]利用不同类型红美人枝梢的研究表明,激素在成花中起主要调控作用,成花能力强的枝梢具有更高的碳氮比(C/N)、脱落酸(ABA)/GA、ZR/GA、IAA/GA。甜樱桃花芽分化历经生理分化、形态分化、花器官形成3个阶段,其中花器官是经过冬季休眠后于翌年春季形成。作为典型的先花后叶型果树,甜樱桃春季花器官发育所需的能量物质均依赖于前一个生长季树体内营养物质的积累。前人指出,营养贮藏水平与花芽形成及质量、开花整齐度、坐果率有着密切的联系[9]。笔者课题组前期通过对南方(杭州)和北方(泰安)甜樱桃适栽区花芽萌动前阶段的内含物差异进行了研究,结果表明,此阶段花芽内含物水平偏低会对后期花器官发育造成一定影响[10]。因此,研究冬季休眠期前后尤其是花芽萌动前花芽内含物及内源激素水平的变化,对分析影响花芽质量及产量的因素有一定的意义。

笔者课题组自2013 年起开展杭州地区不同海拔甜樱桃的引种栽培试验,依据试验区高海拔山区的气候特点及引种栽培表现,筛选出适宜种植的萨米脱等甜樱桃品种[11]。目前,该品种在杭州高海拔地区(海拔1058 m)已能高产稳产,但在低海拔平地地区(海拔低于300 m)栽培产量仍较低。在较为冷凉的南方高海拔地区和平地地区,甜樱桃花芽营养物质贮存情况的差异尚且未知。所以,笔者以此为切入点,以种植于杭州地区不同海拔的同一品种甜樱桃为试材,测定不同阶段花芽内含物及内源激素的水平,分析在两地区内含物的变化差异与花芽质量的关联程度,以期从生理层面了解南方高海拔地区甜樱桃花芽内含物的贮存水平,为进一步揭示在杭州低海拔区甜樱桃产量较低的原因提供思路,也为今后杭州低海拔地区及类似生境区域甜樱桃种植制定合理的增产措施、调控其生长发育、达到稳产优产提供理论依据。

1 材料和方法

1.1 试验材料

试验材料分别种植于浙江杭州转塘街道甜樱桃研究基地(北纬30°09′34″,东经120°04′37″,海拔10 m,年平均气温为18.7℃,简称平地)、浙江杭州临安区龙岗镇上溪村(北纬30°11′28″,东经118°55′23″,海拔1058 m,年平均气温为13.4℃,简称高山),供试品种为萨米脱(Summit),树龄均为5 a。栽培方式均采用起垄加避雨,转塘基地为单体棚种植,临安基地为双拱圆形连栋大棚。同地区基地采用相同的管理水肥管理方式。

1.2 采样处理方法

在前期连续3年观察两地甜樱桃品种落叶期与萌芽期的基础上,2021年11月—2022年3月于休眠前(完全落叶1月前)、休眠中(完全落叶1月后)、花芽萌动前(花芽刚露红时)分别采集数10个花芽,立即置于液氮中冷冻,然后储存在-80℃冰箱中待测。具体采样时间分别为:高山地区2021-11-16、2022-01-18、2022-03-10;平地地区2021-11-22、2022-01-24、2022-02-28。为方便表述,分别将2 地区3 个阶段共6种状态标记为:高山休眠前-A1,高山休眠中-A2,高山花芽萌动前-A3,平地休眠前-B1,平地休眠中-B2,平地花芽萌动前-B3。

1.3 测定指标及方法

参照Wang[12]的方法测定花芽内源激素含量,采用中国农大提供的ELISA 试剂盒,测定GA3、GA4、IAA、ABA、ZR、DHZR、异戊烯基腺苷(iPA)等的含量。通过80%甲醇提取样品中的内源激素,使用Waters 公司C18固相萃取柱萃取,每个参数设有3次生物学重复。

参照杨生瑞等[13]的方法测定花芽糖组分含量,利用高效液相色谱测定。色谱柱为Waters Sugar-PakTM-1,柱温为90 ℃;流动相为MILLPORE 超纯水,流速为0.5 mL·min-1;蔗糖、葡萄糖、果糖、山梨醇等糖类的标准样品均为色谱级。每个参数设有3次生物学重复。

参照张琛[14]的方法测定花芽内碳水化合物及其他参数,利用蒽酮法测定淀粉含量。利用考马斯亮蓝G-250法测定可溶性蛋白含量。利用茚三酮法测定游离氨基酸含量。每个参数设有3 次生物学重复。

测定花芽质量:于每个采样阶段采集10个花芽并称取质量,设有3次重复。单个花芽质量(g)=花芽总质量/10。

采用Excel2016和DPS18.10软件对数据进行统计分析,采用单因素方差分析和Duncan法比较差异显著水平(p<0.05)。根据分析方差提取特征值>1的3个主成分,其特征值分别为X1、X2、X3,累计方差的贡献率达到90%以上则符合主成分分析的要求。综合得分值的计算公式为:F=FX1+FX2+FX3。在灰色关联分析中,将数据通过标准化转换后进行无量纲处理,在程序中进行灰色关联度分析。

2 结果与分析

2.1 两地甜樱桃花芽营养物质含量比较

由图1-A可知:在休眠前,高山和平地的甜樱桃花芽内淀粉的水平并无显著差异;进入休眠后,两地甜樱桃花芽内淀粉的含量均呈上升趋势,休眠中时,平地花芽内淀粉的含量显著高于高山;自休眠中阶段后,两地甜樱桃花芽内淀粉的含量均逐渐降低,但在花芽萌动前阶段平地花芽内淀粉的含量仍显著多于高山。

图1 两地区不同阶段甜樱桃花芽营养物质含量的比较
Fig.1 Comparison of carbohydrate contents in flower buds of sweet cherry at different stages in two regions

由图1-B可知:自休眠前至休眠中,两地花芽内可溶性蛋白的含量均呈下降趋势;在休眠中,高山花芽内可溶性蛋白含量较休眠前降低了37.61%,平地则降低了14.11%,此时平地花芽内可溶性蛋白的含量显著高于高山;自休眠中至花芽萌动前,平地甜樱桃花芽内可溶性蛋白含量仍呈下降趋势,而高山地区则呈上升趋势,在花芽萌动前阶段,两地甜樱桃花芽内可溶性蛋白的含量并无显著差异。

由图1-C可知:休眠前,高山甜樱桃花芽内氨基酸的含量显著低于平地;进入休眠后,高山甜樱桃花芽内氨基酸的含量快速增加,休眠中时,较休眠前增加了27.90%,且与平地花芽内氨基酸的含量无显著差异;此后至花芽萌动前阶段,高山甜樱桃花芽内游离氨基酸的含量略有下降,但平地甜樱桃游离氨基酸的含量大幅降低,低于休眠前水平,且显著低于同期高山甜樱桃的含量。

2.2 两地甜樱桃花芽糖组分含量比较

由图2 可知,自休眠前至花芽萌动前两地区甜樱桃花芽内4 种糖组分含量的变化趋势基本相同,均为先增加后减少,但个别糖在地区间含量的差异仍较大。4种糖组分中,蔗糖和山梨醇的含量较高,葡萄糖和果糖的含量则较低,说明在甜樱桃花芽中葡萄糖、果糖并不是占主导的糖组分,而是以蔗糖和山梨醇为主。在休眠中阶段,高山地区甜樱桃花芽的蔗糖、山梨醇、葡萄糖、果糖含量分别为休眠前的1.84、2.66、2.89、6.41 倍,而平地地区则分别为休眠前的2.25、2.41、1.60、1.04 倍。由此可知,进入休眠后,甜樱桃花芽内糖分进行迅速积累。在休眠前,平地花芽内果糖的含量显著高于高山地区,是其的4.54 倍。但进入休眠后,高山甜樱桃花芽内果糖含量迅速积累,在休眠中和花芽萌动前这两个阶段果糖含量均显著高于平地。由图2 可知,在休眠中阶段,高山甜樱桃花芽内山梨醇、果糖、葡萄糖含量均高于平地。在花芽萌动前阶段,平地和高山花芽内蔗糖和葡萄糖含量差异不显著,但高山花芽内山梨醇的含量显著高于平地。山梨醇、果糖、葡萄糖含量分别是平地的1.21、1.18、1.11倍。

图2 两地区不同阶段甜樱桃花芽糖组分含量比较
Fig.2 Comparison of sugar components contents in flower buds of sweet cherry at different stages in two regions

2.3 两地甜樱桃花芽内源激素含量比较

由表1可知,在所测的7种内源激素中,ABA的含量最高,IAA次之,GAs最低。这说明在进入休眠过程中,ABA 是甜樱桃花芽中起主导作用的激素。在细胞分裂素(CTKs)这类激素中,两地区甜樱桃花芽内iPA含量较低,DHZR含量较高。从休眠前至花芽萌动前,两地区甜樱桃花芽内ZR和DHZR含量的变化趋势相同,iPA含量的变化趋势不同。高山甜樱桃花芽内iPA含量在进入休眠后逐渐升高,至花芽萌动前略有降低,而平地甜樱桃花芽内iPA含量自休眠前直至花芽萌动前一直呈下降趋势。GA3在甜樱桃花芽赤霉素(GAs)类激素中含量水平相对较高,且在地区间表现为不同的变化趋势。高山地区甜樱桃进入休眠后至花芽萌动前GA3含量逐渐升高,而平地甜樱桃进入休眠后GA3含量先降低,至花芽萌动前有少许回升。GA4的含量较低,进入休眠后,两地区甜樱桃花芽内GA4含量均降低,休眠前和休眠中高山甜樱桃花芽内GA4含量均显著低于平地。此后,高山甜樱桃花芽内GA4含量显著升高,而此时平地仍呈下降趋势。花芽萌动前阶段,高山甜樱桃花芽中GA4含量较休眠中增加了13.14%,而平地则下降了20.39%。在花芽萌动前阶段,高山地区甜樱桃花芽内CTKs、GAs含量分别是平地的1.22、1.19倍,而平地甜樱桃花芽中ABA含量仍较高,为高山的1.07倍。

表1 两地甜樱桃花芽内源激素含量
Table 1 Comparison of endogenous hormone contents in flower buds of sweet cherry at different stages in two regions(ng·g-1

注:数据表示平均值±标准差,同列不同小写字母表示p<0.05 水平差异显著。下同。
Note:Data are mean±standard error,different small letters in the same columns represent significant difference at p<0.05.The same below.

状态State A1 A2 A3 B1 B2 B3 IAA 36.13±1.24 e 44.20±1.31 c 41.91±1.05 d 48.90±0.81 b 52.66±1.38 a 43.11±1.20 cd ZR 6.64±0.17 c 6.58±0.14 c 7.36±0.22 b 7.66±0.11 a 5.20±0.16 d 5.21±0.08 d DHZR 10.80±0.27 b 11.81±0.27 a 11.71±0.48 a 10.87±0.33 b 11.07±0.19 b 10.27±0.13 c iPA 1.34±0.02 d 1.81±0.03 b 1.78±0.06 b 2.12±0.03 a 1.81±0.03 b 1.66±0.05 c GA4 0.89±0.02 c 0.82±0.03 d 0.93±0.02 c 1.47±0.02 a 1.03±0.06 b 0.82±0.01 d GA3 3.37±0.04 c 3.69±0.09 b 3.96±0.01 a 3.85±0.14 ab 3.23±0.15 c 3.29±0.17 c ABA 120.03±2.91 b 127.95±2.36 a 95.92±0.51 d 119.74±0.97 b 125.22±2.72 a 102.81±2.16 c

图3表明了两地区花芽内各类激素在不同阶段的比值变化。在休眠过程中,平地甜樱桃花芽内ABA/IAA 值略有降低但整体波动不大。高山甜樱桃花芽内ABA/IAA 值变化幅度较大,在休眠前,其值显著高于平地值,然后大幅度降低,至花芽萌动前,其值较休眠前已降低31.08%,同比之下,平地值仅下降了2.58%。两地区花芽内ABA/GAs 变化趋势相同,高山、平地花芽萌动前阶段的比值分别较休眠中降低了30.91%、14.89%。两地区花芽内CTKs/GAs变化趋势相同,但该值差异较大。在休眠前,高山花芽内CTKs/GAs 值显著高于平地,是平地的1.14 倍,进入休眠后,平地值快速增大,但此时高山值仍是平地的1.05倍,至花芽萌动前,两地区差距有所缩减,此时高山值仍达到平地值的1.02倍。

图3 两地区不同阶段甜樱桃花芽激素比值的比较
Fig.3 Comparison of endogenous hormone ratio in flower buds of sweet cherry at different stages in two regions

2.4 两地甜樱桃不同阶段花芽质量比较

图4表明,在同一阶段,两地甜樱桃单个花芽质量均无显著差异。进入休眠后,两地单个花芽质量均增加,高山的值略高于平地的值。花芽萌动前阶段,高山和平地单个花芽质量较休眠前分别增加27.59%、16.28%。从外形来看(图5),两地甜樱桃花芽鳞片均包裹紧实,但高山甜樱桃花芽更为饱满。

图4 两地区不同阶段甜樱桃花芽质量比较
Fig.4 Comparison of flower bud weight of sweet cherry at different stages i n two regions

图5 两地区花芽萌动前甜樱桃花芽外观比较
Fig.5 Comparison of flower bud appearance of sweet cherry before budbreak in two regions

2.5 两地甜樱桃花芽内含物含量的综合分析

2.5.1 两地甜樱桃花芽内含物含量的主成分分析为综合评价两地在不同阶段甜樱桃花芽内含物和内源激素含量,将两地区3 个阶段的内含物及内源激素共14个指标基于相关系数进行主成分分析。提取特征值>1 的3 个主成分,其特征值分别为6.498 3、3.710 0、2.405 0,累计方差贡献率达到90.10%,符合分析的要求。由表2可知,休眠前,高山甜樱桃花芽内含物含量低于平地。经过休眠期的积累,高山甜樱桃花芽内含物含量已高于平地。休眠中高山的花芽内含物含量最高,其次是休眠中平地的花芽内含物含量,说明甜樱桃进入休眠后,通过提高内含物含量以度过休眠期。花芽萌动前阶段的内含物含量低于休眠中阶段,花芽萌动前阶段高山的内含物含量仍高于平地、排名第4,平地的内含物含量排名第5。

表2 两地区不同阶段花芽内含物含量的综合得分及排名
Table 2 The comprehensive score and ranking of the contents of flower bud in different stages of sweet cherry in two regions

状态State综合得分排名Comprehensive score ranking A1 A2 A3 B1 B2 B3主成分得分Principal component score F1-3.544 1 3.189 0-0.068 6-1.267 0 2.678 6-0.988 0 F2-1.398 8 0.013 8 1.500 8 3.013 4-1.137 9-1.991 3 F3-0.384 7-1.245 3-2.060 8 1.676 4 1.794 7 0.219 7综合得分(F)Comprehensive score-2.081 8 1.270 0 0.011 9 0.498 4 1.250 1-0.948 5 6 1 4 3 2 5

2.5.2 两地甜樱桃花芽内含物含量和花芽质量的GRA-SVM 模型分析 灰色关联分析(grey relation analysis,GRA)通过定量分析动态过程的发展,可以更加直观地明确影响某一变量的主要因素。由图6可知,不同阶段花芽内含物各指标与花芽质量间的关联程度不同。花芽萌动前,内含物各指标与花芽质量的关联系数较大。按关联系数排序的前5种因子中,有4种均为内源激素,表明在此阶段,内源激素含量与花芽质量关联较大,主要为CTKs和GAs 两类,其中DHZR 与花芽质量关联系数最大,为0.44。花芽萌动前阶段高山地区甜樱桃花芽内CTKs、GAs含量高于平地,其中DHZR是平地的1.14倍。由GRA关联分析可知,高山地区甜樱桃在花芽萌动前相对较高的花芽质量与其内部CTKs、GAs含量高于平地值存在一定程度的关联。在休眠前阶段,与花芽质量关联系数排名前5的因子分别是ABA(0.33)、可溶性蛋白(0.30)、淀粉(0.29)、DHZR(0.24)、山梨醇(0.22)。在休眠中阶段,葡萄糖与花芽质量关联系数排名第一,其次为内源激素类。

图6 花芽质量与内含物指标间的关联系数
Fig.6 Correlation coefficient between flower bud weight and inclusions

综合分析各阶段的数据后可知,与花芽质量关联系数排名前五的因子分别属于GAs、淀粉、葡萄糖和CTKs几类,五个因子间关联系数的差距不大。将GA3(0.40)、淀粉(0.40)、葡萄糖(0.40)、DHZR(0.39)、iPA(0.39)、蔗糖(0.37)、山梨醇(0.36)7个关联系数>0.35的因子作为花芽质量的关联因子,使用支持向量机(Support Vector Machine,SVM)进行分类以便验证关联结果的可靠程度。使用GRA-SVM模型,以高山3个不同阶段甜樱桃花芽7个因子数据为训练样本集,平地同期数据的测试分类集,用于预测具有某类内含物含量的甜樱桃花芽所处的阶段的测试检验。模型预测结果如图7,在预测的9个样本中,5个样本的预测值和实际符合,即根据高山内含物含量-花芽所处阶段对应学习后应用在平地条件下,5个花芽内含物水平可以和所处阶段对应,准确率为55.56%,表明预测结果较为可靠。由此推断,根据GRA关联系数选取的因子具有一定的可靠性,即花芽质量与所选取因子间存在一定系数的关联。GRA-SVM模型验证的结果表明,在实际生产中通过花芽质量来判定花芽内在发育水平具有一定的可靠性,质量大的花芽的内含物含量高于质量小的花芽。

图7 基于GRA-SVM 模型预测结果
Fig.7 Result of GRA-SVM model

3 讨 论

碳水化合物是植物体内分布最广的有机物质,是休眠期内主要的贮藏物质,也是春季发芽开花及内部器官进一步分化的能量来源。碳水化合物参与并负责植物体内的新陈代谢。前人指出,营养贮藏水平与花芽形成及质量、开花整齐度、坐果率密切相关[9]。糖参与中国樱桃的花芽分化并为其提供能量,其中葡萄糖和山梨醇在生理分化向形态分化的转变中起关键作用[15]。在杧果成花过程中,成花率与果糖、麦芽糖、可溶性蛋白含量呈显著的正相关[16]。本试验中,进入休眠后甜樱桃花芽淀粉逐渐积累,在花芽萌动前其含量降低,4种糖组分亦具有相同的变化趋势,这与笔者前期对杭州和泰安两地花芽研究的结果一致。孙凌俊等[17]对葡萄的研究亦得到相同结果,但蔗糖的变化规律相反。高东升等[18]对油桃的研究表明在休眠过程中花芽淀粉的含量总体上呈下降趋势。由地区间的差异可知,平地甜樱桃花芽中淀粉含量较高,除蔗糖外其他糖组分含量较高山低,这与两地海拔差异下冬季的温差有关。通常认为,可溶性糖调节细胞内的渗透压差从而抵御外界环境的低温伤害[19],高山冬季温度较低,常至0 ℃以下,甜樱桃花芽内积累了更多的可溶性糖。有研究指出,山梨醇是桃、苹果等蔷薇科果树最主要的糖组分[9],甜樱桃枝条中山梨醇和葡萄糖含量较高,蔗糖和果糖的含量较低[20]。而本试验中,樱桃花芽中葡萄糖含量较低,山梨醇和蔗糖的含量较高。由此可见,不同的部位,“源”与“库”之间糖组分的结构相同,但主导成分有所差异。蔗糖是植物体内碳水长距离运输的主要甚至是唯一形式[21]。在休眠期,高山4种糖组分的增加量均大于平地,其中果糖是其中迅速积累的糖组分,表明休眠期存在一个快速的己糖代谢过程。有研究指出,蔗糖是受海拔影响较为明显的糖组分[22]。本试验结果亦表现出相同趋势,经过一个休眠期积累,除蔗糖外,其余3 种糖组分含量在花芽萌动前均高于平地。由此可见,在花芽萌动前,高山甜樱桃相较平地而言积累了更多的糖类物质。有研究表明,在更为寒冷的地区和年份,糖积累会提前并且含量会增加,在温暖地区则会推迟[23]。推测高山冬季较长的低温时间和更低的气温是造成两地区差异的主要原因。在花芽萌动前,两地区花芽内游离氨基酸含量具有较大差异,高山显著高于平地。李利红指出[5],较高含量的氨基酸可提高雌蕊的发育质量,降低败育概率。花芽萌动时,芽体积膨大,其内部代谢活动逐渐增强,糖类物质在糖酵解作用下转化为芽体膨大所需的能量和物质,糖组分含量快速下降。同时,伴随性器官的进一步分化和库强的进一步增大,需要更多的营养成分以满足性器官发育的需求。由此可知,较多营养物质的积累更利于后续花器官的发育。

激素在花芽分化、休眠、器官发育等生理过程中均起到了重要的调控作用。CTK和GA可有效促进花芽形成[24]。两者在高等植物花器官等的生长发育中起着至关重要的作用[25]。在低温开花过程中,IAA 含量的降低和GA4含量的增加可促进花蕾形成。GA 控制着顶端分生组织(shoot apicalmeristem,SAM)花器官的诱导,可控制开花时间。IAA动态控制SAM生长,影响植物二级结构的形成。在花芽萌动前阶段,相较于平地,高山地区甜樱桃花芽内具有较低的IAA 和较高的GAs 含量,其中GA4、GA3含量均显著高于平地,这可能促进高山地区花蕾的进一步发育和花器官等二级结构的形成。徐红霞等[26]基于转录组分析指出ZR 含量较高时可促进枇杷花芽分化和花穗形成。高水平的ZR有利于盾翅藤花芽膨大和花器官分化[27]。本试验中,GRASVM 模型分析结果亦指出ZRs 在花芽萌动前阶段与其花芽质量关联系数最大,高山地区甜樱桃花芽内高水平的ZRs可促使甜樱桃花芽萌动后器官进一步分化,花芽内部迅速进行细胞分裂并成长,外观膨大、质量增加。这些激素含量的差异很可能是此阶段高山地区甜樱桃花芽质量高于平地的原因。单一的激素水平尚不能完全解释其对生理过程的影响,多数研究认为激素间的动态平衡更能反映植物生理规律。对木本植物花芽的研究表明,较高比值的ABA/GAs、ABA/IAA、CTK/IAA 有利于花芽分化[28]。在花芽萌动前,高山地区CTKs/GAs 值较高,说明其细胞分裂素的水平较高,细胞伸长使得花芽膨大,但ABA/GAs、ABA/IAA 比值均低于平地,这与高山花芽GAs 含量较高而ABA 含量较低有关。ABA/GA是控制休眠和生长反应的决定性因素。当ABA含量水平较高,(IAA+GA+ZT)/ABA值发生显著变化将导致胚胎发育失败[29]。低水平ABA/IAA和ABA/GA3及高水平的ZR/GA3更有利于小白杏的雌蕊分化[30]。由此可见,在花芽萌动前,高山地区相对较低的ABA/GAs、ABA/IAA 比值和相对较高的CTKs/GAs 比值,可能有利于花芽内部花器官进一步分化。结合笔者前期的研究结果表明,花芽萌动前阶段激素的比值对甜樱桃花芽萌动有所影响,物候期相对晚的地区该比值较低,但它与花器官后期发育质量无显著相关性。

营养物质与内源激素均是花芽发育的内部转变物质,花芽质量则是外观表现。测定单花芽的质量可直观地评价花芽发育的饱满程度。GRA是一种非常适合没有典型分布规律的小型数据量场合的分析模型,目前在因子关联程度及综合评价等中均有应用[31-32]。机器学习是未来数据分析应用的大方向,通过数据集的不断训练,利用相关算法模拟人类学习能力,实现自身性能优化,逐渐应用于样本集预测或分类中[33-34]。相较于其他算法,SVM 适合小样本学习,具有学习效率高、非线性拟合效果好、泛化和推广能力强等特点。本试验中应用GRA-SVM模型分析并验证了甜樱桃花芽质量与内含物水平的关联程度。在某一阶段,不同内含物水平的高低与花芽质量大小存在一定关联。在休眠中阶段,高山的花芽质量高于平地,这可能与其花芽中某些内含物的含量有关。结合主成分分析的结果可知,经过冬季休眠后,高山甜樱桃花芽的整体内含物水平高于平地,直至花芽萌动前仍高于平地,这是其花芽质量较高的内在生理原因。通过GRA-SVM模型可进一步揭示花芽内某些内含物的水平与花芽质量的关联程度。笔者课题组前期的研究表明,花芽内含物水平与花芽形态及花器官质量密切相关[9]。结合生产经验可知,花芽的饱满程度是树体经过休眠后营养物质贮藏充足的外在表现,外形饱满程度高的花芽质量更大。本试验利用模型验证得到,在生理层面上,花芽内含物的水平可从一定程度上解释花芽发育的质量。

4 结 论

在杭州高海拔高山地区和低海拔平地地区,甜樱桃在不同发育阶段花芽内含物的变化规律基本相同,但含量有所差异。自休眠中至花芽萌动前,平地地区甜樱桃花芽内含物的整体水平低于高山地区。结合GRA-SVM模型进一步揭示了甜樱桃某些内含物含量偏低是造成花芽质量较低的内在生理原因。

参考文献References:

[1] 崔建潮,王文辉,贾晓辉,王志华,佟伟.从国内外甜樱桃生产现状看国内甜樱桃产业存在的问题及发展对策[J].果树学报,2017,34(5):620-631.CUI Jianchao,WANG Wenhui,JIA Xiaohui,WANG Zhihua,TONG Wei. The domestic industry problems from the sweet cherry import situation and its development countermeasure for the future[J].Journal of Fruit Science,2017,34(5):620-631.

[2] 涂文茂.阿坝州甜樱桃产业现状及发展对策[D].雅安:四川农业大学,2018.TU Wenmao.Current situation and strategies of sweet cherry industrial development in Abazhou[D].Ya’an:Sichuan Agricultural University,2018.

[3] 贾婷婷,苏淑钗,马履一,苏倩葳.不同库源关系对油茶花芽分化的影响[J].东北林业大学学报,2018,46(9):50-53.JIA Tingting,SU Shuchai,MA Lüyi,SU Qianwei. Response of flower bud differentiation to different sink-source relationships in Camellia oleifera[J]. Journal of Northeast Forestry University,2018,46(9):50-53.

[4] 罗惠格,朱维,黄泳碧,陈潇,林玲,白扬,曹雄军,白先进,张唯,王博.阳光玫瑰葡萄生长期花芽分化形态进程及相关生理分子水平变化研究[J].果树学报,2023,40(1):74-87.LUO Huige,ZHU Wei,HUANG Yongbi,CHEN Xiao,LIN Ling,BAI Yang,CAO Xiongjun,BAI Xianjin,ZHANG Wei,WANG Bo. A study on the morphological process and physiological and molecular changes of flower bud differentiation in Shine Muscat grape during fruit growing season[J]. Journal of Fruit Science,2023,40(1):74-87.

[5] 李利红,连艳鲜.败育率不同的两个杏树品种花芽分化期间的氨基酸含量变化[J].植物生理学通讯,2007,43(5):959-960.LI Lihong,LIAN Yanxian. Changes of amino acid content during flower bud differentiation of two apricot cultivars with different abortion rates[J]. Plant Physiology Communications,2007,43(5):959-960.

[6] 职倩倩,赵长竹,顾红,林苗苗,陈锦永,杨晓红,方金豹.露地和日光温室甜樱桃花芽发育特征及胚珠多糖定位观察[J].果树学报,2012,29(3):466-470.ZHI Qianqian,ZHAO Changzhu,GU Hong,LIN Miaomiao,CHEN Jinyong,YANG Xiaohong,FANG Jinbao. Observation of the development characteristics of floral bud and localization of polysaccharides in the ovule of sweet cherry in field and greenhouse[J].Journal of Fruit Science,2012,29(3):466-470.

[7] 王玉华,范崇辉,沈向,曲桂敏,史继东.大樱桃花芽分化期内源激素含量的变化[J].西北农业学报,2002,11(1):64-67.WANG Yuhua,FAN Chonghui,SHEN Xiang,QU Guimin,SHI Jidong.Changes in endogenous hormones during the flower bud differentiation of sweet cherry[J].Acta Agriculturae Boreali-occidentalis Sinica,2002,11(1):64-67.

[8] 王智豪,奚昕琰,王莉,杨淑娜,高志远,殷益明,邹辉,贾惠娟.浙北地区红美人杂柑成花过程及其生理生化特征[J].浙江农业学报,2023,35(7):1571-1581.WANG Zhihao,XI Xinyan,WANG Li,YANG Shuna,GAO Zhiyuan,YIN Yiming,ZOU Hui,JIA Huijuan. Flower bud formation and physiological biochemistry characteristics of Hongmeiren citrus hybrid in northern Zhejiang,China[J]. Acta Agriculturae Zhejiangensis,2023,35(7):1571-1581.

[9] 李燕. 休眠期前和萌芽期苹果树枝芽中糖及相关酶活性变化[D].杨凌:西北农林科技大学,2016.LI Yan. Changs of sugar and related enzyme activities in apple bud and shoot before dormancy and budbreak[D]. Yangling:Northwest A&F University,2016.

[10] 张琛,刘辉,郗笃隽,裴嘉博,黄康康,骆慧枫,沈国正.杭州和泰安甜樱桃不同发育阶段花芽内含物及花芽质量的比较研究[J].果树学报,2021,38(8):1308-1318.ZHANG Chen,LIU Hui,XI Dujun,PEI Jiabo,HUANG Kangkang,LUO Huifeng,SHEN Guozheng. Comparative study on flower bud inclusion and quality in different development stages of sweet cherry from Hangzhou and Tai’an[J]. Journal of Fruit Science,2021,38(8):1308-1318.

[11] 张青,沈国正,刘辉,黄康康,孙春光,裴嘉博,郗笃隽,张琛,潘凤荣. 浙江高海拔山区甜樱桃引种栽培初报[J]. 中国果树,2017(1):26-29.ZHANG Qing,SHEN Guozheng,LIU Hui,HUANG Kangkang,SUN Chunguang,PEI Jiabo,XI Dujun,ZHANG Chen,PAN Fengrong. Preliminary report on the introduction and cultivation of sweet cherry in high altitude mountainous areas of Zhejiang province[J].China Fruits,2017(1):26-29.

[12] WANG Y,LI B,DU M W,EGRINYA ENEJI A,WANG B M,DUAN L S,LI Z H,TIAN X L. Mechanism of phytohormone involvement in feedback regulation of cotton leaf senescence induced by potassium deficiency[J].Journal of Experimental Botany,2012,63(16):5887-5901.

[13] 杨生瑞,毛娟,马宗桓,侯应军,李鹏鹏,李建明,冯童,陈佰鸿.不同矮化中间砧对烟富3 号苹果幼树叶片内源激素及糖含量的影响[J].果树学报,2022,39(7):1203-1212.YANG Shengrui,MAO Juan,MA Zonghuan,HOU Yingjun,LI Pengpeng,LI Jianming,FENG Tong,CHEN Baihong.Effects of different dwarfing interstocks on endogenous hormone and sugar contents in leaves of young Yanfu No. 3 apple trees[J]. Journal of Fruit Science,2022,39(7):1203-1212.

[14] 张琛.三个类型猕猴桃品种实生苗对淹水胁迫的生理反应及其耐涝性比较[D].金华:浙江师范大学,2013.ZHANG Chen. Tolerance compasison and physiology response of three kiwifruit cultivars to waterlogging[D]. Jinhua:Zhejiang Normal University,2013.

[15] SHANG C Q,CAO X J,TIAN T,HOU Q D,WEN Z,QIAO G,WEN X P. Cross-talk between transcriptome analysis and dynamic changes of carbohydrates identifies stage-specific genes during the flower bud differentiation process of Chinese cherry(Prunus pseudocerasus L.)[J]. International Journal of Molecular Sciences,2022,23(24):15562.

[16] 高天瑜,郑斌,许文天,梁清志,王松标,李蕊,曾教科,武红霞.杧果成花过程碳水化合物和可溶性蛋白含量的变化[J].中国南方果树,2022,51(3):63-69.GAO Tianyu,ZHENG Bin,XU Wentian,LIANG Qingzhi,WANG Songbiao,LI Rui,ZENG Jiaoke,WU Hongxia.Changes on contents of carbohydrate and soluble protein during the flower formation process of mango[J]. South China Fruits,2022,51(3):63-69.

[17] 孙凌俊,吕春晶,马丽,高圣华,赵海亮,王柏松.‘巨峰’葡萄休眠及解除过程糖类物质变化研究[J].中国农学通报,2017,33(28):93-98.SUN Lingjun,LÜ Chunjing,MA Li,GAO Shenghua,ZHAO Hailiang,WANG Baisong. Carbohydrate changes of‘Kyoho’grape during dormancy and dormancy-release[J]. Chinese Agricultural Science Bulletin,2017,33(28):93-98.

[18] 高东升,束怀瑞,李宪利,陈学森.桃自然休眠过程中外源激素对花芽碳水化合物的调控效应[J].果树学报,2002,19(2):104-107.GAO Dongsheng,SHU Huairui,LI Xianli,CHEN Xuesen. Effect of exogenous plant growth hormones on the changes of carbohy-drates in peach bud during dormant period[J]. Journal of Fruit Science,2002,19(2):104-107.

[19] 田莉莉,方金豹,王力荣,牛良.华光油桃解除休眠过程中几项生理指标的变化[J].果树学报,2006,23(1):121-124.TIAN Lili,FANG Jinbao,WANG Lirong,NIU Liang. Changes of several physiological indexes during dormancy releasing in nectarine cultivar Huaguang[J]. Journal of Fruit Science,2006,23(1):121-124.

[20] 王磊,张才喜,许文平,陈晓丹,彭勇政,王世平,马超.单氰胺对甜樱桃休眠解除及开花过程树体碳氮营养的影响[J].果树学报,2016,33(6):709-718.WANG Lei,ZHANG Caixi,XU Wenping,CHEN Xiaodan,PENG Yongzheng,WANG Shiping,MA Chao.Effects of hydrogen cyanamide on carbohydrates and nitrogen metabolism during endo-dormancy releasing and flowering of sweet cherries(Prunus avium L.)[J].Journal of Fruit Science,2016,33(6):709-718.

[21] 李燕,梁俊,楚克欢,魏婵婵.萌芽期苹果花芽中糖含量及相关酶活性的变化[J].果树学报,2016,33(2):172-178.LI Yan,LIANG Jun,CHU Kehuan,WEI Chanchan.A study on carbon metabolism in apple flower bud during budbreak[J].Journal of Fruit Science,2016,33(2):172-178.

[22] KARAGIANNIS E,MICHAILIDIS M,TANOU G,SCOSSA F,SARROU E,STAMATAKIS G,SAMIOTAKI M,MARTENS S,FERNIE A R,MOLASSIOTIS A. Decoding altitude-activated regulatory mechanisms occurring during apple peel ripening[J].Horticulture Research,2020,7:120.

[23] 郑鹏华.砂梨休眠期花芽碳水化合物代谢及相关基因表达研究[D].杭州:浙江大学,2013.ZHENG Penghua. Studies on carbohydrate metabolism and related gene expression in floral buds of sand pears during dormancy[D].Hangzhou:Zhejiang University,2013.

[24] LIN T Y,WALWORTH A,ZONG X J,DANIAL G H,TOMASZEWSKI E M,CALLOW P,HAN X M,IRINA ZAHARIA L,EDGER P P,ZHONG G Y,SONG G Q. VcRR2 regulates chilling-mediated flowering through expression of hormone genes in a transgenic blueberry mutant[J].Horticulture Research,2019,6:96.

[25] ZHENG W Y,ZHU Z Y,SAMI A,SUN M Y,LI Y,HU J,QIAN X Z,MA J X,WANG M Q,YU Y,ZHANG F G,ZHOU K J,ZHU Z H. Mapping and candidate gene analysis of clustered bud on the main inflorescence in Brassica napus L.[J].BMC Plant Biology,2023,23(1):348.

[26] 徐红霞,李晓颖,葛航,朱启轩,陈俊伟.基于转录组分析内源激素在调控枇杷花发育进程中的作用[J]. 浙江农业学报,2023,35(7):1648-1661.XU Hongxia,LI Xiaoying,GE Hang,ZHU Qixuan,CHEN Junwei. Transcriptome-based analysis of the role of endogenous hormones in regulating flower development in loquat (Eriobotrya japonica Lindl.) [J]. Acta Agriculturae Zhejiangensis,2023,35(7):1648-1661.

[27] 苗艺明,覃永华,梁小春,黄松殿,刘世男.广西盾翅藤花芽分化过程及内源激素含量变化研究[J].西部林业科学,2023,52(2):98-105.MIAO Yiming,QIN Yonghua,LIANG Xiaochun,HUANG Songdian,LIU Shinan. The process of floral bud differentiation and endogenous hormone changes in Aspidopterys concava[J].Journal of West China Forestry Science,2023,52(2):98-105.

[28] 杜立言,俞洁蕾,周春玲.内源激素对木本植物花芽分化影响研究进展[J].青岛农业大学学报(自然科学版),2021,38(2):79-84.DU Liyan,YU Jielei,ZHOU Chunling.Research progress in the effect of endogenous hormones on flower bud differentiation of woody plants[J]. Journal of Qingdao Agricultural University(Natural Science),2021,38(2):79-84.

[29] YAN B B,HOU J L,CUI J,HE C,LI W B,CHEN X Y,LI M,WANG W Q. The effects of endogenous hormones on the flowering and fruiting of Glycyrrhiza uralensis[J]. Plants,2019,8(11):519.

[30] 张瑜,玉苏甫·阿不力提甫. 拉枝对‘库车小白杏’花芽分化时期内源激素含量变化的影响[J/OL].分子植物育种,2023:1- 14. (2023- 04- 04). https://kns.cnki.net/kcms/detail/46.1068.S.20230403.1657.017.html.ZHANG Yu,Yusufu·Abulitifu. Effects of branch bending angle on endogenous hormone content during flower bud differentiation of‘Akeximixi’[J/OL]. Molecular Plant Breeding,2023:1-14. (2023- 04- 04). https://kns.cnki.net/kcms/detail/46.1068.S.20230403.1657.017.html.

[31] 常宝亮,陈俊杰,钱萍,沈志国,王永江,金奇江,王彦杰,徐迎春.基于层次分析(AHP)-灰色关联分析的盆栽荷花早花品种的综合评价与筛选[J].植物资源与环境学报,2021,30(3):54-60.CHANG Baoliang,CHEN Junjie,QIAN Ping,SHEN Zhiguo,WANG Yongjiang,JIN Qijiang,WANG Yanjie,XU Yingchun.Comprehensive evaluation and selection of potted early flowering cultivars of Nelumbo nucifera based on analytic hierarchy process (AHP)-grey correlation analysis[J]. Journal of Plant Resources and Environment,2021,30(3):54-60.

[32] 纪薇,郭荣荣,王静波,焦晓博,闫钊,昌秦湘,董志刚,王跃进.无核葡萄胚败育生理生化因子灰色关联分析[J].园艺学报,2019,46(8):1473-1485.JI Wei,GUO Rongrong,WANG Jingbo,JIAO Xiaobo,YAN Zhao,CHANG Qinxiang,DONG Zhigang,WANG Yuejin.Grey correlation analysis of physiological and biochemical factors in embryo abortion of seedless grape[J].Acta Horticulturae Sinica,2019,46(8):1473-1485.

[33] 张智,胡晓辉,邹志荣.基于径向基函数神经网络的温室番茄灰霉病预测[J].浙江大学学报(农业与生命科学版),2014,40(2):197-202.ZHANG Zhi,HU Xiaohui,ZOU Zhirong. Prediction of grey mould disease from greenhouse tomato based on radical basis function neural network[J]. Journal of Zhejiang University (Agriculture and Life Sciences),2014,40(2):197-202.

[34] 吴宁.基于灰色关联分析和优化SVM 的葡萄霜霉病短期预测[D].上海:上海海洋大学,2020.WU Ning. Short-term prediction of grape downy mildew based on grey correlation analysis and optimized SVM[D]. Shanghai:Shanghai Ocean University,2020.

Comparison of carbohydrate contents and endogenous hormones in sweet cherry flower buds between different altitude areas in Hangzhou

ZHANG Chen, LIU Hui*, RUAN Ruoxin, LUO Huifeng, HUANG Kangkang, XI Dujun, PEI Jiabo,SHEN Guozheng
(Institute of Horticulture,Hangzhou Academy of Agricultural Sciences,Hangzhou 310024,Zhejiang,China)

Abstract:【Objective】Sweet cherry (Prunus avium L.) originated in Europe, is the earliest mature deciduous fruit crop in the north of China, famous for "the first spring fruit".With the rapid development of sweet cherry production in the 1990s, its cultivation range and quantity have been greatly expanded.It was reported that sweet cherry could obtain stable and high yield in the high altitude region in southwest China,where it was classified as a suitable planting area for sweet cherry.Now sweet cherry has also become an emerging industry for farmers in high altitude cold region to generate income. It can be seen that the high altitude areas in the south China with similar habitats also have the climatic conditions for successful cultivation of sweet cherries. Flowers are the reproductive organs of plants, the quantity of flower bud development are closely related to the fruit traits and yield at fruiting stage.Carbohydrate is an important material basis for flower bud development. Flower bud differentiation of sweet cherry goes through three stages:physiological initiation,morphological differentiation and flower organ formation, among which flower organ formation occurs in the spring of the following year after winter dormancy.As a typical fruit tree with first flowering and then sprouting leaf, the energy and material required for flower organ development in spring of sweet cherry depend on the accumulation of nutrients within the tree in the previous growing season. Therefore, the study on carbohydrate contents and endogenous hormone levels in the flower bud during dormancy, especially before the flower bud sprouting,has certain guidance for the analysis of flower bud quality and following yield.In this paper,the difference in carbohydrate content and endogenous hormone level in flower buds of sweet cherry between different altitude areas in Hangzhou were compared, in order to reveal the reason for low yield of sweet cherry in low altitude region of Hangzhou at the physiological level.【Methods】Five years old sweet cherry trees grown at high and low altitudes respectively in Hangzhou were used as the experimental materials. Firstly, the defoliation period and budbreak period in two regions were observed for past three years. On this basis, from November 2021 to March 2022, flower buds were collected before dormancy (1 month before complete leaf fall), during dormancy (1 month after complete leaf fall),and before budbreak(when flower buds just emerged red)to determine the relevant physiological indexes.The carbohydrate indices(such as starch content,different sugar component content,soluble protein content and free amino content)and endogenous hormones indices(such as GAs,IAA,ABA and CTKS) were determined at three stages. The flower bud weight was investigated, too. Finally, the content levels of flower buds at different stages were analyzed by principal component analysis. Grey relation analysis (GRA) and GRA-SVM model were used to analyze the correlation degree between flower bud weight and the flower bud inclusion index.【Results】The results revealed that after dormancy,the content of starch and free amino acid in flower buds increased,while the content of soluble protein decreased. Before budbreak, the content of free amino acids in flower buds at high altitude was 1.22 times more than that at low altitude,but there was no significant difference in soluble protein content between two regions.The variation trend of the four sugar components was the same, but the content of individual sugar components varied greatly between two regions. Sucrose and sorbitol are the dominant sugar components in sweet cherry flower buds.Before budbreak,there was no significant difference in sucrose and glucose contents between two regions, but the sorbitol content at high altitude was significantly higher than that at low altitude. The contents of sorbitol, fructose and glucose were 1.21,1.18 and 1.11 times more than the value at high altitude,respectively.In terms of endogenous hormones, the content of ABA was the highest, followed by IAA, and the content of GAs was the lowest.Among CTKs,iPA content was lower and DHZR content was higher in flower buds in two regions.The content of CTKs and GAs at high altitude was 1.22 and 1.19 times higher than the low altitude value,respectively,while the content of ABA at low altitude was 1.07 times more than the value at high altitude.The CTKs/GAs values in flower buds of two regions were significantly different.The value at the high altitude was still 1.02 times higher than that at the low altitude. There was no significant difference in the weight of single flower bud among the three stages.After dormancy,the weight of single flower bud increased in both regions, and the value at high altitude was slightly higher than that at low altitude.From the appearance observation,it could be seen that the flower bud scales in two regions were tightly wrapped, but the flower bud at high altitude was fuller. Principal component analysis showed that the content level of flower buds at high altitude was lower before dormancy.After the accumulation of dormancy period,the content in flower bud at high altitude was higher than that at low altitude.Before budbreak, the content level at high altitude was still higher than that at the low altitude. GRA analysis showed that the correlation between flower bud inclusions and weight was not same at different stages.The correlation coefficient between the inclusions and the weight of the flower buds was larger before budbreak.After comprehensive analysis of the whole stage data, it could be seen that the top five factors of correlation coefficient with flower bud weight belonged to GAs, starch, glucose and CTKs, respectively. GRA-SVM model also confirmed that there was a certain coefficient correlation between flower bud weight and the selected factors.【Conclusion】The change patterns of flower bud inclusions at different dormancy stages of sweet cherry in two regions were basically the same, but the contents were different.The overall level of flower bud inclusions in high altitude area of Hangzhou was higher than that in low altitude area. Combined with GRA-SVM model, it could be further revealed that the low level of some inclusions was the internal physiological reason for the low flower bud weight of sweet cherry.

Key words:Sweet cherry;Carbohydrate;Endogenous hormone;Altitude;Hangzhou

中图分类号:S662.5

文献标志码:A

文章编号:1009-9980(2025)02-0348-12

DOI:10.13925/j.cnki.gsxb.20230491

收稿日期:2023-11-17

接受日期:2024-10-30

基金项目:浙江省公益研究计划项目(LGN21C150005);杭州市农科院科技创新与示范推广基金(2022HNCT-06);杭州市级农科院联盟区域示范性项目(2022SJLM02)

作者简介:张琛,女,农艺师,研究方向为甜樱桃栽培与生理。Tel:0571-87313244,E-mail:tt.hang@163.com

*通信作者 Author for correspondence.Tel:0571-87313244,E-mail:liuhui518lh@163.com