宁夏贺兰山东麓葡萄种植区依靠得天独厚的地理环境,成为世界酿酒葡萄最佳产区之一[1],但地处中国西北干旱半干旱区,全年干旱少雨,水分成为限制宁夏地区葡萄产业发展的重要因素[2]。水分不仅是维持葡萄正常生长的基础,还直接关系到葡萄果实的产量和品质[3]。土壤相对含水量过高时,土壤通透性变差,影响根系的正常呼吸,甚至导致根系受损、死亡[4]。同时,过多的水分会使葡萄果实迅速膨胀,稀释果实中的芳香物质和糖分,降低果实的品质。土壤相对含水量较低时,会使葡萄果实数量减少,品质下降[5-6],果实中糖分和酸度受到影响。随着葡萄种植面积的扩大,对水分的需求量也逐渐增加,由于不合理灌溉方式,造成农业用水紧张的局面,寻找合理的节水灌溉方式,对区域节水农业的发展具有重要意义[7]。
葡萄果实内有机酸含量变化直接关系到葡萄的酸甜平衡、风味层次以及整体感官体验,塑造了葡萄的独特口感与风味轮廓[8]。在通常情况下,酒石酸在葡萄有机酸中占比最大,其次是苹果酸,柠檬酸占比较小[9]。其中酒石酸又名葡萄酸,分子式为C4H6O6,含量相对稳定,不参与其他代谢途径[7]。酒石酸含量对葡萄酒酸味起决定性作用,在葡萄酒中质量浓度为5~10 g·L-1,是同等质量浓度下柠檬酸的1.2~1.3倍[10],当葡萄酒中酒石酸含量过高时,遇到低温会产生结晶。苹果酸的分子式为C4H6O5,稳定性相对较差,在植物体内可被高效代谢,在果实着色前期含量达到最高,然后随果实着色成熟而逐渐降低,与酒石酸含量一致,均呈先上升后下降的趋势[11]。柠檬酸分子式为C6H8O7,仅占总酸的0.02%~0.03%[12],常见于葡萄果实的各个发育阶段,具有可口的酸味。
水分在植物生长发育中发挥重要作用,近年来,对于水分胁迫下酿酒葡萄果实品质和有机酸含量变化的相关研究较少,为了更系统全面地明确水分胁迫与葡萄果实品质的关系,笔者以9 年生北红葡萄为研究对象,着重探究水分胁迫条件下酿酒葡萄果实品质特性及有机酸累积模式,深化对酿酒葡萄品质提升机制的理论认知,以期为实际生产中优化栽培管理措施、促进高品质酿酒葡萄的培育提供坚实的科学依据与实践指导。
本试验在宁夏银川市平吉堡酿酒葡萄示范园(38°24′N,106°01′E)进行。试验材料为9年生北红葡萄,南北行向定植,株行距1.0 m×3.0 m,“厂”式架形。园内水肥管理一致,采用2管1行控制模式的渗灌方式,计划润湿深度为50 cm,以每日土壤含水率的平均值作为当日观测值。土壤含水量采用PR2土壤水分剖面仪进行监测,以田间正常管理下40 cm处土壤的相对含水率为对照,在葡萄全生育期内设置T1(水涝胁迫)和T2(干旱胁迫)两个土壤含水量处理水平,每个处理30 株,每10 株为1 个生物学重复。于花后18 d 开始处理,分别于花后25、45、65、85、105 d 共5 个时期进行采样,用液氮速冻后存放于-80 ℃冰箱保存。
试验从葡萄坐果期到成熟期分别以不同土壤含水量进行处理,以田间正常水肥管理下40 cm 处土壤含水量为对照(CK),在葡萄果实全生长期内设置T1(水涝胁迫)和T2(干旱胁迫)两个土壤含水量处理(表1)。
表1 试验设计
Table 1 Experiment design
处理Treatment对照CK T1 T2土壤相对含水量Soil relative water content/%55~65 65~80 40~55胁迫处理后After water stress treatment调整Adjustment调整Adjustment调整Adjustment
1.3.1 生理指标测定 采用万分之一电子天平测定百粒质量;采用手持测糖折光仪测定可溶性固形物含量;采用氢氧化钠滴定法测定可滴定酸含量;采用福林酚法测定总酚含量[13];采用福林-丹宁斯法测定单宁含量[14];采用pH 示差法测定总花色苷含量[15]。
1.3.2 有机酸含量测定 提取:将移除过种子与果蒂的果实样品迅速浸入液氮中进行深度冷冻,研磨至粉末状,精确量取0.2 g 粉末置于离心管中,加入1.8 mL的超纯水进行稀释,超声25 min后12 000 r·min-1离心10 min。将所得上清液过0.22 μm 滤膜后,用HPLC分析检测。
HPLC 检测:使用紫外检测器测定,C18 色谱柱(250 mm×4.6 mm,5µm),流动相:甲醇、0.01 mol·L-1 KH2PO4体积比为3∶97,pH=2.5,流速:0.8 mL·min-1,柱温:35 ℃,检测波长为210 nm,进样量:10 μL。
1.3.3 有机酸代谢相关基因表达量的测定 北红葡萄果实中总RNA 的提取参照TIANGEN RNA 提取试剂盒产品说明书进行,每个样品3个生物学重复,使用NanoDrop 2000测定RNA的提取质量,并结合琼脂糖凝胶电泳检测RNA的完整性,以确保后续分析的需要。使用TaKaRa 反转录试剂盒将所提取的RNA反转录为cDNA。选取VvEF作为内参基因,运用Primer 5.0设计引物,引物序列如表2所示。qRTPCR 反应程序为:预变性95 ℃10 min,变性95 ℃15 s,退火58 ℃30 s,40个循环,延伸72 ℃32 s。通过2-△△CT算法计算基因相对表达量。
表2 qRT-PCR 基因引物序列
Table 2 Primer sequences for qRT-PCR
基因名称Gene name VvIDH VvPEPC VvMDH VvCS VvEF正向引物序列Forward primer sequence(5'-3')CGCTCAGTGTCGGCATCCATG GGCGACCCATACTTGAAACAGAGAC GCCTTACCCGACTTGACCATAACAG TGTGGTGGACGAGTGTGGAGAG CAAGAGAAACCATCCCTAGCTG反向引物序列Reverse primer sequence(5'-3')AGCACGAGCAGCCAGCATTG ATCCGCTTCAGTGTGTATGCTTGG AGGTGGAGACAGTTGCATGATTGAC ATGCCCAAACCCAGGAACAACC TCAATCTGTCTAGGAAAGGAAG登录号Accession number NM_001280954.1 XM_002280533.4 XM_010663028.2 XM_002271415.3 AF176496
采用Excel 2021整理数据,采用SPSS 26.0进行数据处理,采用Origin 2021软件绘图。
如图1 所示,北红果实百粒质量在不同生长时期均呈上升趋势。从整体来看,水分胁迫并未改变北红果实的整体生长趋势,至花后25 d 时,T1处理的果实百粒质量显著低于对照与T2 处理;至花后45~105 d 时,T2 处理的百粒质量显著低于对照与T1 处理;至花后65~105 d 时,T1 处理的百粒质量显著高于对照与T2 处理;至花后105 d 时,对照、T1 与T2 处理的葡萄百粒质量分别为169.45、170.28 和165.02 g。由此可见,随着干旱胁迫时间的增加,葡萄果实生长受阻,百粒质量随之下降,而水涝处理却与之相反,在一定程度上增加了葡萄的百粒质量。
图1 水分胁迫对北红葡萄果实百粒质量的影响
Fig.1 Effects of water stress on the 100 grain mass of Beihong grape berries
如图2 所示,北红葡萄果实中的可溶性固形物含量在不同生长时期均呈上升趋势。从整体来看,水分胁迫并未改变北红果实的整体生长趋势,花后25~65 d 时,可溶性固形物含量的增速较为平缓,呈现出一种稳定的增长态势;花后65~85 d 时,可溶性固形物含量急剧升高,T2处理的可溶性固形物含量显著高于T1 处理;在花后105 d 时,T2 处理的可溶性固形物含量分别较对照与T1 处理显著提高3.31%和4.99%,T1处理最低,显著低于对照和T2处理。由此可知,干旱胁迫对北红葡萄可溶性固形物含量增加具有积极作用,而水涝处理始终对可溶性固形物含量增长具有负作用。
图2 水分胁迫对北红葡萄果实中可溶性固形物含量的影响
Fig.2 Effects of water stress on soluble solid contents of Beihong grape berries
如图3所示,北红果实中可滴定酸含量在不同生长时期均呈下降趋势。从整体来看,水分胁迫并未改变北红果实的整体生长趋势,花后25~65 d,T1与T2处理均显著低于对照,其中T1处理的可滴定酸含量最低;花后65~85 d,可滴定酸含量下降幅度最大;在花后85~105 d,可滴定酸含量下降幅度较小,T1处理显著高于T2处理,与对照差异不显著。由此可见,随着胁迫时间的延长,在葡萄生长后期,水涝处理会在一定程度上造成葡萄果实中可滴定酸含量上升。
图3 水分胁迫对北红葡萄果实中可滴定酸含量的影响
Fig.3 Effects of water stress on the titratable acid content of Beihong grape berries
如图4 所示,北红果实中总酚含量在不同生长时期均呈先上升后下降的趋势。从整体来看,水分胁迫并未改变北红果实的整体生长趋势,在花后65 d,不同处理的总酚含量均达到峰值,然后呈现逐步下降的趋势。转色后,对照的总酚含量维持在较高水平,T1处理的总酚含量显著低于对照。至花后105 d时,总酚含量表现为对照>T2>T1,对照的总酚含量(w,后同)为8.21 mg·g-1,分别为T2 和T1 的1.03 和1.13 倍。由此可知,随着水分胁迫时间的延长,干旱胁迫和水涝处理均会导致葡萄果实中总酚含量降低。
图4 水分胁迫对北红葡萄果实中总酚含量的影响
Fig.4 Effects of water stress on the total phenolic content of Beihong grape berries
如图5 所示,北红果实中单宁含量在不同生长时期均呈先上升后下降的趋势。从整体来看,水分胁迫并未改变北红果实的整体生长趋势,其单宁含量变化趋势与总酚含量变化趋势较为相似,同样于花后65 d时达到最大值。在花后65~105 d,对照的单宁含量持续显著高于TI和T2处理,T1处理的单宁含量始终最低,至花后105 d时,对照的单宁含量为4.39 mg·g-1,分别较T2 和T1 处理显著提高8.20%和14.12%。由此可见,随着水分胁迫时间的延长,干旱胁迫和水涝处理均会导致葡萄果实中的单宁含量降低。
图5 水分胁迫对北红葡萄果实中单宁含量的影响
Fig.5 Effects of water stress on tannin content of Beihong grape berries
如图6 所示,北红果实中单宁含量在不同生长时期均呈上升趋势。从整体来看,水分胁迫并未改变北红果实的整体生长趋势,花色苷于花后65 d 转色初期开始积累,其含量不断上升。在各处理中,T1 处理的花色苷含量显著低于对照和T2 处理,对照与T2 处理间差异不显著,至花后105 d,T2、对照及T1 处理的花色苷含量分别达到了2.48、2.40 和2.11 mg·g-1。由此可见,水涝处理不利于葡萄果实中花色苷的积累,而适当的干旱胁迫有利于其积累。
图6 水分胁迫对北红葡萄果实中花色苷含量的影响
Fig.6 Effects of water stress on the anthocyanin content of Beihong grape berries
如表3 所示,在北红葡萄果实的不同处理条件下,酒石酸、苹果酸和柠檬酸含量随果实发育均呈先升后降的动态变化模式。从整体来看,水分胁迫并未改变北红果实的整体生长趋势。花后85~105 d,T2 处理的酒石酸含量显著低于T1 处理和对照,于花后105 d其含量(ρ,后同)达到最低值,T1、对照和T2处理分别为3.38、3.27和2.93 g·L-1。各处理的苹果酸含量变化趋势与酒石酸相似,花后45~65 d,T1处理显著低于对照和T2 处理,花后85~105 d,T1 处理均高于对照和T2处理,至花后105 d,对照的含量为1.56 g·L-1,分别较T1 和T2 处理提高0.6%和10.90%。在不同处理条件下,柠檬酸含量均维持在较低水平,其含量在花后45 d达到最高值,然后呈下降趋势,在花后65~105 d,T2 处理均低于T1 处理和对照。
表3 水分胁迫下北红葡萄有机酸含量
Table 3 Organic acid content of Beihong grapes under water stressρ/(g·L-1)
注:不同小写字母表示同一时间不同处理在0.05 水平差异显著。
Note:Different small letters represent significant difference among different treatments at the same time at 0.05 level.
花后时间Time after anthesis/d 25 45 65 85 105处理Treatment对照CK T1 T2对照CK T1 T2对照CK T1 T2对照CK T1 T2对照CK T1 T2酒石酸Tartaric acid 10.80±0.15 c 11.87±0.53 a 11.34±0.26 b 11.24±0.10 b 13.13±0.07 a 11.07±0.19 c 8.97±0.05 c 9.89±0.15 a 9.04±0.06 b 5.53±0.05 a 5.10±0.10 b 4.72±0.06 c 3.27±0.14 b 3.38±0.02 a 2.93±0.07 c苹果酸Malic acid 9.48±0.91 c 10.72±0.14 b 13.42±0.36 a 17.55±0.75 a 11.20±0.36 c 17.09±0.26 b 12.91±0.05 b 12.56±0.38 c 14.54±0.32 a 3.44±0.04 c 4.96±0.13 a 4.22±0.05 b 1.56±0.01 a 1.55±0.09 a 1.39±0.03 b柠檬酸Citric acid 0.38±0.10 a 0.22±0.01 b 0.25±0.01 b 1.00±0.04 a 0.75±0.03 b 0.96±0.05 a 0.73±0.01 a 0.75±0.03 a 0.71±0.03 b 0.52±0.01 a 0.60±0.10 a 0.38±0.01 b 0.29±0.01 b 0.35±0.03 a 0.28±0.01 b
图7为北红葡萄果实中有机酸合成相关基因的表达量。各处理的VvIDH表达水平存在影响,在花后25 d,T1和T2处理高于对照,在花后45~105 d,T2处理抑制了VvIDH的表达,表达量均低于T1处理和对照,在花后45 d,T1 处理分别是对照和T2 处理的1.05 和2.39 倍。VvPEPC 的表达量在不同处理下的变化趋势存在差异,其中对照和T2处理均呈先上升后下降的表达趋势,而T1处理呈先降后升再降的表达趋势,在花后25~45 d,T1 处理促进其表达,而在花后65~105 d,T1 和T2 处理均显著低于对照。从整体上看,VvCS与VvMDH的表达趋势相近,在花后25 d,T1 和T2 处理促进VvCS 与VvMDH 表达,而在花后45 d 表现为抑制,花后85~105 d,T1 处理下的VvCS 表达量显著高于对照和T2 处理,分别较对照提高17.69%和7.50%,而在花后105 d,T1和T2处理的VvMDH表达量均显著低于对照。
图7 水分胁迫对北红葡萄有机酸合成相关基因表达量的影响
Fig.7 Effects of water stresson the expression of organic acid synthesis-related genes in Beihong grape
图8为北红葡萄果实品质指标与有机酸合成基因表达量的相关性分析。结果表明,VvIDH 表达量与果实百粒质量、可溶性固形物含量、花色苷含量呈显著负相关(p<0.05),且与可滴定酸含量、酒石酸含量呈显著正相关(p<0.05);VvCS 表达量与可滴定酸、酒石酸和苹果酸含量呈显著负相关(p<0.05);VvMDH 表达量与果实百粒质量呈极显著正相关(p<0.01),与可滴定酸、酒石酸、苹果酸含量呈显著负相关(p<0.05)。不同性状间的相关性分析,可为实际生产加工提供参考。
图8 果实品质指标与有机酸合成基因表达量的相关性分析
Fig.8 Correlation analysis between fruit quality indexes and the expression of organic acid synthesis genes
果实的外观品质包含果实大小、果形及果面颜色等直观特征,而内在品质则涉及可溶性固形物、可滴定酸、总酚、单宁和花色苷含量等关键指标,这些共同构成了果实品质的全面评价体系[16]。水分在葡萄生长发育的各个阶段都发挥着重要作用,直接影响葡萄果实品质和有机酸含量的积累[17-18],适当的水分胁迫有利于提高葡萄果实产量,提升葡萄酒的质量,从而带动整个葡萄园经济效益。Ju 等[19]研究表明,在遭遇水分胁迫的条件下,葡萄果实的百粒质量会出现明显的减轻趋势,但能在一定程度上提升可溶性固形物含量。本试验结果表明,随着土壤含水量的逐步减少,北红葡萄的百粒质量呈现下降趋势,可溶性固形物含量却相应地在一定范围内有所提升,这与前人的试验结果相似。转色期干旱胁迫对成熟期果实品质的影响最大,水分缺失会抑制果实细胞的快速分裂和增殖,抑制光合作用,降低水分转化率,从而导致果实品质下降[20]。酚类化合物以固有的抗氧化性能著称,这一特性显著地丰富了葡萄及葡萄酒的感官体验与品质特性,诸如风味、色泽及结构等方面,均受到一定因素的影响[21]。胡宏远等[22]研究表明,短期的干旱胁迫有利于果实中总酚和单宁的积累,而长期的干旱胁迫不利于其积累。本试验结果表明,在初始干旱胁迫处理中,北红葡萄果实中总酚与单宁含量较高,随着处理时间的延长,总酚和单宁含量均有所下降,与前人的试验结果一致。葡萄花色苷是一类天然的植物色素,属于黄酮类化合物,广泛存在于葡萄的果皮中,对葡萄的颜色、营养价值及健康功效起着重要作用。本研究中,北红葡萄花色苷含量表现出递增的趋势,在花后85 d,各处理下的花色苷含量都出现骤然递增的现象,在花后105 d,花色苷含量依旧小幅增长,各时期中T2处理的花色苷含量均高于对照和T1 处理,而T1 处理的花色苷含量始终显著低于对照和T2处理,这与李倩[23]的研究结果相似。花色苷是花色素与糖基作用形成的化合物,因此水分胁迫促进糖的积累是花色苷积累的主要原因之一[24]。
在葡萄生长发育过程中,有机酸是构成葡萄风味的重要组成部分,对葡萄的口感和品质有重要影响。酒石酸是葡萄中最为主要的有机酸之一,约占有机酸总含量的90%,对葡萄的酸味贡献最大。酒石酸含量高的品种吃起来会偏酸。苹果酸是葡萄中重要的有机酸之一,与酒石酸共同构成了葡萄的主要酸味来源。柠檬酸含量虽然相对较少,但仍是葡萄有机酸的重要组成部分[25]。本试验中北红葡萄样本中检测出的主要有机酸种类为酒石酸与苹果酸,两者含量相对较高,相较之下,柠檬酸含量的占比较小,这与前人的研究结果一致。Des Gachons等[26]研究表明,对欧洲葡萄进行水分胁迫处理,会导致果实酸度下降。张艳霞[27]研究表明,葡萄酒石酸含量在整个生育期内呈先上升后下降的趋势,水分胁迫在一定程度上使酒石酸含量降低。本研究中,前期水分胁迫促进了酒石酸的积累,但随处理时间的延长,酒石酸含量呈下降趋势,植物逐渐适应当下的胁迫环境,与前人的研究结果相似。酒石酸分为两个合成阶段,前期阶段由抗坏血酸合成,后期阶段是从抗坏血酸到合成酒石酸的过程,而L-艾杜糖酸脱氢酶(IDH)是后期阶段合成酒石酸的关键限速酶[28]。在本研究中,北红葡萄中VvIDH和VvPEPC在花后25~45 d 各处理表达量较高,VvCS 和VvMDH 在花后85 d 表达量较高。整体来看,T1 处理能够诱导有机酸合成相关基因的表达,而在处理后期,T2 处理均抑制有机酸合成相关基因的表达。
与对照和水涝胁迫相比,干旱胁迫可降低葡萄果实百粒质量和可滴定酸含量,促进可溶性固形物和花色苷积累;有机酸含量在果实发育前期高于对照,成熟期酒石酸和苹果酸含量及VvIDH、VvPEPC、VvMDH基因表达量显著低于对照。因此,适度的干旱胁迫更有利提升北红果实的整体品质。
[1] 杨洋,张磊,陈豫英,郭晓雷,李红英.贺兰山东麓酿酒葡萄种植区晚霜冻低温持续时间规律分析[J].甘肃农业大学学报,2019,54(6):149-154.YANG Yang,ZHANG Lei,CHEN Yuying,GUO Xiaolei,LI Hongying. Low temperature duration pattern in late frost period in wine grape growing area in eastern Helan Mountain[J]. Journal of Gansu Agricultural University,2019,54(6):149-154.
[2] 杨海云,艾雪莹,MARIA B,刘芳,蒯婕,王晶,汪波,周广生.油菜响应水分胁迫的生理机制及栽培调控措施研究进展[J].华中农业大学学报,2021,40(2):6-16.YANG Haiyun,AI Xueying,MARIA B,LIU Fang,KUAI Jie,WANG Jing,WANG Bo,ZHOU Guangsheng.Progress on physiological mechanisms of response to water stress and measures of cultivation controlling in rapeseed[J]. Journal of Huazhong Agricultural University,2021,40(2):6-16.
[3] 谢小龙.水分胁迫对文冠果幼苗的影响及应对措施[J].林业科技情报,2024,56(2):113-115.XIE Xiaolong.The effect of water stress on the seedlings of Xanthoceras sorbifolia and corresponding measures[J].Forestry Science and Technology Information,2024,56(2):113-115.
[4] 毛妮妮,苏西娅,任俊鹏,张奎峰,刘照亭.水分调亏对‘夏黑’葡萄叶片形态及光合特性的影响[J].江苏农业科学,2022,50(16):133-138.MAO Nini,SU Xiya,REN Junpeng,ZHANG Kuifeng,LIU Zhaoting. Impacts of water deficit regulation on morphology and photosynthetic characteristics of‘Summer Black’grape leaves[J].Jiangsu Agricultural Sciences,2022,50(16):133-138.
[5] 张振文,李华,宋长冰. 节水灌溉对葡萄及葡萄酒质量的影响[J].园艺学报,2002,29(6):515-518.ZHANG Zhenwen,LI Hua,SONG Changbing.Effects of irrigation on grape and wine[J]. Acta Horticulturae Sinica,2002,29(6):515-518.
[6] 殷梦婷,代红军,贺琰,汪月宁,郭学良,刘妍,王振平.水分胁迫对马瑟兰葡萄果实挥发性物质合成的影响[J].果树学报,2023,40(8):1592-1605.YIN Mengting,DAI Hongjun,HE Yan,WANG Yuening,GUO Xueliang,LIU Yan,WANG Zhenping. Effects of water stress on the synthesis of volatile compounds in Marselan grape berries[J].Journal of Fruit Science,2023,40(8):1592-1605.
[7] 张海峰,庞桂斌,付玉荣,刘洪玲,苏雪伟,张立志,王昕,徐征和.不同生育期水分胁迫对葡萄叶绿素荧光参数指标和产量的影响[J].节水灌溉,2024(7):1-7.ZHANG Haifeng,PANG Guibin,FU Yurong,LIU Hongling,SU Xuewei,ZHANG Lizhi,WANG Xin,XU Zhenghe. Effects of water stress at different growth stages on chlorophyll fluorescence parameters and yield of grape[J].Water Saving Irrigation,2024(7):1-7.
[8] 朱磊,陈芸华,胡禧熙,李新月,战川,吕珊珊.葡萄有机酸的研究进展[J].中外葡萄与葡萄酒,2022(6):88-95.ZHU Lei,CHEN Yunhua,HU Xixi,LI Xinyue,ZHAN Chuan,LÜ Shanshan.Research progress of organic acids in grape[J].Sino-Overseas Grapevine&Wine,2022(6):88-95.
[9] 任言,刘婉君,李美璇,乔月莲,王莉,师校欣,杜国强.鲜食葡萄果实发育过程中有机酸积累差异研究[J].中外葡萄与葡萄酒,2024(3):67-74.REN Yan,LIU Wanjun,LI Meixuan,QIAO Yuelian,WANG Li,SHI Xiaoxin,DU Guoqiang.Study on differences of organic acid accumulation during fruit development of table grape[J]. Sino-Overseas Grapevine&Wine,2024(3):67-74.
[10] COELHO E M,DA SILVA PADILHA C V,MISKINIS G A,DE SÁ A G B,PEREIRA G E,DE AZEVÊDO L C,DOS SANTOS LIMA M. Simultaneous analysis of sugars and organic acids in wine and grape juices by HPLC:Method validation and characterization of products from northeast Brazil[J]. Journal of Food Composition and Analysis,2018,66:160-167.
[11] WALKER R P,FAMIANI F. Organic acids in fruits:Metabolism,functions and contents[J].Horticultural Reviews,2018,45:371-430.
[12] 莫燕霞,殷居易,顾晓俊,陈梅珍,何卫敏,吴维儿.葡萄酒有机酸研究现状及应用展望[J]. 食品工业科技,2015,36(6):380-384.MO Yanxia,YIN Juyi,GU Xiaojun,CHEN Meizhen,HE Weimin,WU Weier.Research status and application prospects of organic acids in wine[J]. Science and Technology of Food Industry,2015,36(6):380-384.
[13] 李静,聂继云,王孝娣,李海飞,徐国峰,毋永龙,孟昭军.Folin-Ciocalteus 法测定葡萄和葡萄酒中的总多酚[J]. 中国南方果树,2007,36(6):86-87.LI Jing,NIE Jiyun,WANG Xiaodi,LI Haifei,XU Guofeng,WU Yonglong,MENG Zhaojun. Determination of total polyphenols in grape and wine by folin-ciocalteus method[J]. South China Fruits,2007,36(6):86-87.
[14] 张小月,戚金生,刘晓燕,蔡军社,吕玥昕,李学文.不同单株负载量对赤霞珠葡萄果实生长及品质指标的影响[J].中国酿造,2021,40(10):70-75.ZHANG Xiaoyue,QI Jinsheng,LIU Xiaoyan,CAI Junshe,LÜ Yuexin,LI Xuewen. Effects of different single plant loading capacity on fruit growth and quality indexes of Cabernet Sauvignon[J].China Brewing,2021,40(10):70-75.
[15] 翦祎,韩舜愈,张波,祝霞,王婧,崔日宝.单一pH 法、pH 示差法和差减法快速测定干红葡萄酒中总花色苷含量的比较[J].食品工业科技,2012,33(23):323-325.JIAN Yi,HAN Shunyu,ZHANG Bo,ZHU Xia,WANG Jing,CUI Ribao. Comparison of single pH method,pH-differential method and substraction method for determining content of anthocyanins from red wine[J]. Science and Technology of Food Industry,2012,33(23):323-325.
[16] 薛晓斌,李栋梅,张艳霞,王振平.水分胁迫对马瑟兰葡萄果实品质及花色苷合成代谢的影响[J].果树学报,2023,40(5):919-931.XUE Xiaobin,LI Dongmei,ZHANG Yanxia,WANG Zhenping.Effects of water stress on berry quality and anthocyanin metabolism in Marselan grape[J].Journal of Fruit Science,2023,40(5):919-931.
[17] 张一单,王建国,黄晓龙,宋于洋.不同管理措施对土壤水分状况及酿酒葡萄品质的影响[J]. 西北农业学报,2021,30(7):1037-1045.ZHANG Yidan,WANG Jianguo,HUANG Xiaolong,SONG Yuyang. Effects of different management methods on soil moisture content and wine grape quality[J].Acta Agriculturae Boreali-occidentalis Sinica,2021,30(7):1037-1045.
[18] 伍国红,骆强伟,苏来曼·艾则孜,廖康.不同灌水量对无核白葡萄生长发育和产量的影响[J].新疆农业科学,2013,50(5):889-893.WU Guohong,LUO Qiangwei,Sulaiman·Aizezi,LIAO Kang.Impact of different irrigation volumes on growth,development and yield of Thompsons Seedless grape[J]. Xinjiang Agricultural Sciences,2013,50(5):889-893.
[19] JU Y L,YANG B H,HE S,TU T Y,MIN Z,FANG Y L,SUN X Y.Anthocyanin accumulation and biosynthesis are modulated by regulated deficit irrigation in Cabernet Sauvignon(Vitis vinifera L.)grapes and wines[J].Plant Physiology and Biochemistry,2019,135:469-479.
[20] 杨昌钰,张芮,蔺宝军,王腾飞,王春宏. 水分胁迫对鲜食葡萄果实品质影响的研究进展[J]. 农业工程,2020,10(1):86-91.YANG Changyu,ZHANG Rui,LIN Baojun,WANG Tengfei,WANG Chunhong. Review of effects of water stress on fruit quality of table grapes[J].Agricultural Engineering,2020,10(1):86-91.
[21] 郭鋆鋆,武东波,肖庆红,蒙静,李绍华,范培格.‘北红’和‘北玫’在宁夏地区生长发育及抗逆性的表现初报[J].河北林业科技,2015(4):57-58.GUO Junjun,WU Dongbo,XIAO Qinghong,MENG Jing,LI Shaohua,FAN Peige. A Preliminary report on the growth and stress resistance of‘Northern Red’and‘Northern Rose’in Ningxia[J]. Journal of Hebei Forestry Science and Technology,2015(4):57-58.
[22] 胡宏远,李双岑,马丹阳,王振平.水分胁迫对赤霞珠葡萄果实品质的影响研究[J].节水灌溉,2016(12):36-41.HU Hongyuan,LI Shuangcen,MA Danyang,WANG Zhenping.Effects of water stress on qualities of Cabernet Sauvignon[J].Water Saving Irrigation,2016(12):36-41.
[23] 李倩.成熟期土壤含水量对‘北红’和‘北玫’葡萄果实酚类物质积累的影响[D].银川:宁夏大学,2019.LI Qian. Effect of soil water content on accumulation of phenolic substances in‘Beihong’and‘Beimei’grape fruits at maturity stage[D].Yinchuan:Ningxia University,2019.
[24] CASTELLARIN S D,PFEIFFER A,SIVILOTTI P,DEGAN M,PETERLUNGER E,DI GASPERO G. Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit[J]. Plant,Cell & Environment,2007,30(11):1381-1399.
[25] 赵悦,韩宁,孙玉霞,孙庆扬,韩爱芹,赵新节.不同产地酿酒葡萄‘赤霞珠’果实中有机酸差异性研究[J]. 食品工业科技,2016,37(1):297-301.ZHAO Yue,HAN Ning,SUN Yuxia,SUN Qingyang,HAN Aiqin,ZHAO Xinjie. Difference of organic acids in ripen berry of wine grape (Cabernet Sauvignon) among production regions[J].Science and Technology of Food Industry,2016,37(1):297-301.
[26] DES GACHONS C P,VAN LEEUWEN C,TOMINAGA T,SOYER J P,GAUDILLÈRE J P,DUBOURDIEU D. Influence of water and nitrogen deficit on fruit ripening and aroma potential of Vitis vinifera L.cv.Sauvignon Blanc in field conditions[J].Journal of the Science of Food and Agriculture,2005,85(1):73-85.
[27] 张艳霞.水分胁迫对赤霞珠果实有机酸和甲氧基吡嗪含量的影响[D].银川:宁夏大学,2019.ZHANG Yanxia.Effects of water stress on the contents of organic acids and methoxypyrazines in the berries of Cabernet Sauvignon[D].Yinchuan:Ningxia University,2019.
[28] 曹慧玲,舒河霖,邵建辉,张海明,马春花.葡萄果实酒石酸生物合成研究进展[J].中国果树,2021(4):8-13.CAO Huiling,SHU Helin,SHAO Jianhui,ZHANG Haiming,MA Chunhua. Research progress on biosynthesis of tartaric acid in grape berries[J].China Fruits,2021(4):8-13.
Effects of water stress on berry quality and organic acid synthesis gene expression in Beihong grape