中国是世界第一大柑橘生产国,有4000年以上的柑橘栽培历史[1],近20年来,中国柑橘产业迎来了快速发展,通过资源发掘、引进以及选育新品种,逐渐形成了品种多样化与差异化的发展格局[2]。截止到2022年,中国柑橘种植面积已达到300万hm2,产量超过6000 万t。目前,国内栽培面积超过666.67 hm2的柑橘品种约有70 个,极大增加了消费者的选择多样性[3]。柑橘在中国乡村振兴、农民致富中扮演着重要角色,栽培区域广,产区生态环境多样,然而当下市场上流通的优良杂交品种以日本的无核杂柑不知火、春见、甘平等为主[4],因此,加快选育自主知识产权的优良品种成为中国柑橘产业发展的迫切需要。
柑橘新品种的主要选育途径包括选择育种、杂交育种和生物技术育种等[5]。杂交育种是柑橘目前获得突破性品种的重要育种技术之一。在柑橘种间乃至属间杂交过程中,由于缺乏生殖隔离机制,遗传背景呈现出极为丰富的多样性,亲本选择成为杂交育种成功的决定性因素[6]。另外,柑橘的长童期和多胚现象等也是限制柑橘杂交育种发展的重要因素[7]。
杂交群体的遗传规律研究不仅为定向选育优良品系提供了依据,也为现代分子生物学的定向育种积累了宝贵素材。目前,对于杂交群体的遗传规律研究在梨[8]、苹果[9]、葡萄[10]、猕猴桃[11]、枇杷[12]、越橘[13]等作物中已有报道,但柑橘由于杂交种遗传物质杂合程度较高,其杂交遗传规律研究相对较少。对子代杂交群体遗传规律的归纳分析是未来杂交育种中优良亲本定向选择的基础[14]。对于杂交群体的遗传规律研究果树遗传分析的基础,而由不同亲本组成的杂交群体遗传规律也不尽相同[15]。笔者以中熟HB 柚[16]为母本、中晚熟华柑4 号[17]无核椪柑为父本的杂交子代群体为基础,通过对其子代果实常规品质进行分析,探究果实的遗传规律,以期为选育优良杂交后代奠定基础。
以HB柚为母本、华柑4号为父本的有性杂交群体为研究材料。该杂交群体定植于宜昌市柑橘研究所。在2023—2024年期间,选择已稳定坐果的杂交子代群体实生树(53株)为试验材料,进行果实性状统计调查。从每株树选择具代表性的成熟果实9~10个,用于果实品质分析。
果实品质指标参照文献[18-20]的方法测定,每3~4个果实为1个重复,设置3个重复,简述如下:
(1)单果质量:使用感量0.01 g 电子天平(德国Sartorius BS4202S)分别称其果实质量、果皮质量和果肉质量;
(2)纵径、横径:用游标卡尺逐个测定其纵径H(由果顶端至蒂端)和横径D(赤道面的切断面直径);
(3)果形指数:果形指数=H/D(式中:D:果实横径/mm;H:果实纵径/mm);
(4)可食率:宽皮柑橘可食率/%=[W1-(W2+W3)]/W1×100;柚可食率/%= [W1-(W2+W3+W4)]/W1×100(式中:W1:果实总质量/g;W2:果皮质量/g;W3:果实中种子质量/g;W4:果实囊瓣皮质量/g);
(5)出汁率:出汁率/%=[W1-(W2+W3+W5)]/W1×100;(式中:W1:果实总质量/g;W2:果皮质量/g;W3:果实中种子质量/g;W5:果实中果渣质量/g);
(6)果皮、果肉颜色:在果实的赤道面选取3 个点进行色差测定,记录红色饱和度(a)和黄色饱和度(b),计算色相角度(H),当a>0,b>0 时,H=arctan(b/a);当a<0,b>0 时,H=3.14+arctan(b/a);做3 次生物学重复并取平均值;当H用弧度表示时,从0到3.14 分别代表紫红、橙红、橙、黄、黄绿、绿、蓝绿;根据H值偏向和肉眼判断颜色;
(7)可溶性固形物含量:使用手持式折射计(ATAGO PAL-1)对果实的混合果汁进行测定和数据记录,平行测定3次并取其均值,即为果汁中可溶性固形物含量;
(8)可滴定酸含量:可滴定酸含量采用手动滴定方法进行样品测定:取3个锥形瓶,每个锥形瓶中分别加入5 mL 果汁溶液和2 滴酚酞,用0.1 mol·L-1 NaOH 溶液滴定至溶液呈粉红色,且30 s 内不褪色。TA/%=0.064×C(NaOH)×V(消耗NaOH的体积)/V(样品体积)×100;
(9)固酸比:固酸比=可溶性固形物含量/可滴定酸含量;
(10)维生素C含量:维生素C含量采用2,6-二氯靛酚滴定法测定,用标定过的2,6-二氯酚靛酚溶液滴定至出现淡粉色且在30 s 内不褪色为滴定终点,记录消耗的2,6-二氯酚靛酚溶液体积,滴定3次取平均值,所有数据均做3次生物学重复。
利用SPSS 26.0 软件分析各项指标的平均值(Mean)、标准差(SD)、偏度(Skewness)、变异系数(CV)等,参考前人研究方法计算遗传传递力(Ta)、超高亲比率(HH)、低低亲比率(LL)、中亲值(MP)以及中亲优势率(RHm)等参数[21],以评估遗传变异的特征,其对应计算公式为:
式中S表示子代单株数据标准差;F表示子代平均值;MP表示中亲值。使用Excel 2016软件进行试验数据统计与作图处理。
2.1.1 果皮颜色、果肉颜色及果实形状统计分析 对母本HB 柚和父本华柑4 号及杂交子代群体的果皮颜色、果肉颜色、果实形状进行统计发现(表1),子代群体果实形状出现4种类型,其中以高扁圆形、圆或近圆形、椭圆形为主,各占比为41.51%、39.62%和13.21%。果皮颜色在杂交群体后代中出现了3 种性状类型(图1),分别为橙红色、橙色和黄色,各占7.50%、62.26%和30.19%。子代果肉颜色只出现橙色和黄色2 种性状类型,占比分别为60.37%和39.62%。
图1 杂交子代果皮颜色和果肉颜色对比图
Fig.1 Comparison of peel color and flesh color among the hybrids
表1 亲本及子代果实果皮颜色、果肉颜色及果实形状统计分析
Table 1 Analysis of peel color,flesh color and fruit shape of parental and progeny fruits
子代各分离数量所占比例Percentage of offspring/%亲本Parents HB柚HB pomelo椭圆形Ellipsoid性状Trait 1 2 3 4果实形状Fruit shape华柑4号Huagan No.4高扁圆形High oblate扁圆形Oblate 5.70高扁圆形High oblate 41.51椭圆形Ellipsoid 13.21果皮颜色Peel color 黄色Yellow 橙色Orange圆或近圆形Round or subround 39.62橙红色Orange-red 7.50果肉颜色Flesh color 红色Red 橙色Orange黄色Yellow 30.19橙色Orange 60.37橙色Orange 62.26黄色Yellow 39.62
2.1.2 果实成熟期统计分析 对亲本及杂交后代群体成熟期统计分析发现(表2),母本HB柚成熟期在12 月上旬[16],父本华柑4 号成熟期在12 月下旬[17]。后代群体成熟期分布较为广泛,其中12月上旬成熟的仅有1株,占比1.89%;12月下旬成熟的后代有8株,占比15.10%;1月中下旬成熟的后代株数最多,为24 株,占比45.28%;2 月下旬至3 月上旬成熟的后代为20 株,占比37.74%。后代群体熟期相较于两亲本而言,超过一半株数成熟期为晚熟,符合微效多基因控制的数量性状特征。
表2 亲本及杂交子代成熟期调查
Table 2 Investigation on maturity of parents and hybrids
成熟期Mature period 12月上旬Early December 12月下旬Late December 1月中下旬Mid to late January 2月下旬至3月上旬Late February to early March亲本Parents HB柚HB pomelo华柑4号Huagan No.4子代株数Number of hybrids 1 8占比Percentage/%1.89 15.10 24 45.28 20 37.74
通过对杂交子代单果质量与果形性状的频数统计分析(图2),其中,横径的偏度为0.14,表明其符合正态分布特征。同时观察单果质量与纵径指标发现,这2个性状均有不同程度的右偏分布,而果形指数则表现出明显的左偏分布。各性状在群体内呈现连续变异,符合微效多基因控制的数量性状特征。
图2 杂交子代果实单果质量(A)、果形指数(B)、纵径(C)、横径(D)频数分布直方图
Fig.2 Histogram of frequency distribution of single fruit mass(A),fruit shape index(B),longitudinal diameter(C),transverse diameter(D)of the hybrids
对HB 柚×华柑4 号杂交子代的单果质量、果实纵径、果实横径和果形指数这4 个果实性状进行调查分析(表3)。结果显示,4个果实性状在杂交群体中的变异系数范围为9.20%~33.15%,说明果实大小性状在子代中有较为广泛的分布。其中,单果质量的变异系数最大,为33.15%;果形指数的变异系数最小,为9.20%。
表3 亲本及杂交子代单果质量与果形性状遗传分析表
Table 3 Genetic analysis of single fruit mass and fruit shape traits of parents and hybrids
性状Trait中亲值MP单果质量Single fruit mass/g纵径Longitudinal diameter/mm横径Transverse diameter/mm果形指数Fruit shape index平均值Mean HB柚HB Pomelo 1 320.03 163.33 162.00 1.01华柑4号Huagan No.4 112.80 56.25 65.81 0.85 716.42 109.79 113.91 0.93杂交子代Hybrid offspring平均值±标准差Mean±SD 414.94±137.57 87.20±13.20 96.74±10.23 0.90±0.08变异系数CV/%33.15 15.14 10.58 9.20偏度Skewness 0.66 0.40 0.14-1.42遗传传递力Ta/%57.92 79.42 84.93 96.97超高亲比率HH/%0.00 0.00 0.00 13.21低低亲比率LL/%0.00 1.89 0.00 22.64中亲优势率RHm/%-42.08-20.58-15.07-3.03
针对这4 个果实性状的遗传传递力分析发现,其遗传传递力由高到低分别为果形指数(96.97%)、横径(84.93%)、纵径(79.42%)和单果质量(57.92%)。这表明果形及果实大小主要受遗传因素的调控,环境因素的影响相对较小。单果质量、纵径和横径的平均值均小于中亲值,且超高亲比率与低低亲比率较低,甚至为0%,中亲优势率为负值,推测在遗传上存在趋中偏小变异;果形指数的平均值小于中亲值,超高亲比率为13.21%,低低亲比率为22.64%,中亲优势率为-3.03%,显示出较强的趋中遗传倾向。
对杂交子代进行果皮厚度、种子数量、可食率和出汁率的频数统计分析(图3),果皮厚度的偏度为0.96,表明其存在明显的右偏分布特征。同时观察种子数与可食率指标发现,这2 个性状均有不同程度的左偏分布;而出汁率的偏度值为0.09,较接近正态分布。观察到这些性状在群体中表现出连续变异,这与数量性状由多个微效基因共同作用的特点相吻合。
图3 杂交子代果实果皮厚度(A)、种子数(B)、可食率(C)、出汁率(D)频数分布直方图
Fig.3 Histogram of frequency distribution of peel thickness(A),seed number(B),edible rate(C)and juicing rate(D)of the hybrids
对HB 柚×华柑4 号杂交子代的果皮厚度、种子数、可食率和出汁率这4 个果实性状进行统计分析(表4),结果显示,4 个果实性状在杂交群体中的变异系数范围为11.44%~27.03%,其中果皮厚度的变异系数最大,表明不同子代间果皮厚度的离散程度较高,分布较广。可食率的变异系数最小,为11.44%。针对这4个果实性状的遗传传递力分析发现,其遗传传递力由高到低分别为出汁率(94.60%)、可食率(92.45%)、种子数(81.86%)和果皮厚度(71.54%)。这表明这些性状主要受遗传因素决定。果皮厚度和种子数在子代之间的平均值均小于中亲值,超高亲比率与低低亲比率均为0%,且子代果实性状数值介于双亲之间,表明其具有趋中遗传趋势;可食率的平均值低于中亲值,子代果实性状数值介于双亲之间,表明可食率具有趋中变异趋势;出汁率的平均值低于中亲值,且低低亲比率高达47.17%,推测出汁率存在趋低遗传趋势。
表4 亲本及杂交子代果皮厚度、种子数、可食率与出汁率遗传分析表
Table 4 Genetic analysis of peel thickness,seed number,edible rate and juice recovery of parents and hybrids
性状Trait中亲值MP果皮厚度Peel thickness/mm种子数Seed number可食率Edible rate/%出汁率Juicing rate/%平均值Mean HB柚HB Pomelo 13.27 92.00 0.637 8 0.568 1华柑4号Huagan No.4 3.10 0.00 0.789 9 0.658 0 8.19 46.17 0.713 9 0.613 1杂交子代Hybrid offspring平均值±标准差Mean±SD 5.86±1.58 37.79±9.64 0.66±0.08 0.58±0.07变异系数CV/%27.03 25.50 11.44 12.78偏度Skewness 0.96-0.02-0.42 0.09遗传传递力Ta/%71.54 81.86 92.45 94.60超高亲比率HH/%0.00 0.00 3.77 13.21低低亲比率LL/%0.00 0.00 37.74 47.17中亲优势率RHm/%-28.46-18.14-7.55-5.40
对杂交群体子代可溶性固形物、可滴定酸、维生素C含量和固酸比的频数统计分析(图4),可滴定酸的偏度为-0.33,表现出明显的左偏分布。观察可溶性固形物、维生素C含量和固酸比指标发现,这三者均有不同程度的右偏分布。发现这些性状在群体内呈现连续变异,符合微效多基因控制的数量性状特征。
图4 杂交子代果实可溶性固形物(A)、可滴定酸(B)、维生素C 含量(C)与固酸比(D)频数分布直方图
Fig.4 Histogram of frequency distribution of total soluble solids(A),titratable acid(B),vitamin C content(C)and solid to acid ratio(D)in fruit of the hybrids
笔者对HB柚×华柑4号杂交子代的可溶性固形物、可滴定酸、维生素C含量和固酸比4个果实性状进行统计分析(表5),结果显示,这4 个果实性状在杂交群体中的变异系数范围为9.26%~32.87%,说明果实风味性状在子代群体中展现出广泛的遗传变异与分布,体现了其高度的多样性和复杂性。其中,固酸比的变异系数最大;可溶性固形物含量的变异系数最小。针对这4个果实性状的遗传传递力分析发现,其遗传传递力由高到低分别为可滴定酸含量(158.97%)、维生素C 含量(105.73%)、可溶性固形物含量(87.36%)和固酸比(57.80%),表明这些性状主要受遗传因素决定。其中,可溶性固形物含量和固酸比的平均值低于中亲值,且低低亲比率超过70%,可推测这两个性状存在趋低遗传趋势;可滴定酸含量的子代平均值高于中亲值,且超高亲比率高达90.57%,表明其遗传趋势为超亲遗传。维生素C的子代平均值高于中亲值,超高亲比率为41.51%,也表现出超亲遗传特征。
表5 亲本及杂交子代可溶性固形物、可滴定酸、维生素C 含量与固酸比遗传分析表
Table 5 Genetic analysis of total soluble solids,titratable acid,vitamin C content and solid to acid ratio in parents and hybrids
性状Trait中亲值MP w(可溶性固形物)Total soluble solids content/%w(可滴定酸)Titratable acid content/%w(维生素C)Vitamin C content/(mg·100 g-1)固酸比Solid to acid ratio平均值Mean HB柚HB Pomelo 11.30华柑4号Huagan No.4 13.20 12.25杂交子代Hybrid offspring平均值±标准差Mean±SD 10.70±0.99变异系数CV/%9.26偏度Skewness 0.30遗传传递力Ta/%87.36超高亲比率HH/%1.89低低亲比率LL/%83.02中亲优势率RHm/%-12.64 1.27 1.07 1.17 1.86±0.42 22.68-0.33 158.97 90.57 3.77 58.97 35.15 29.99 32.57 34.44±9.30 27.02 0.46 105.73 41.51 37.74 5.73 8.90 12.34 10.64 6.15±2.02 32.87 1.94 57.80 1.89 90.57-42.20
笔者以中熟HB 柚与中晚熟华柑4 号为杂交组合,杂交子代的成熟期以晚熟为主,占比超过一半;出现1 株子代成熟期提前。陈力耕等[22]以2 个早熟品种做杂交,子代大部分表现偏向中亲值或更晚。但以中熟品种和晚熟品种做杂交发现,其大部分株系成熟期在中熟或早熟[23]。对于本研究中的2个亲本来说,杂交子代的植株成熟期主要靠近父本,推测在柑橘果实熟期遗传上具有较强的遗传力,但这一假设还需通过更广泛的柑橘杂交种群进行进一步的验证。通过对母本HB 柚和父本华柑4 号及其杂交子代群体的果皮颜色、果肉颜色、果实形状进行统计,发现子代性状变异丰富,具备培育优良新品种的潜力。其中形状分为高扁圆形(41.51%)、圆形(39.62%)和椭圆形(13.21%)。果皮颜色有橙红色(7.50%)、橙色(62.26%)和黄色(30.19%)的分离,而果肉颜色主要为橙色(60.37%)和黄色(39.62%)。
杂交群体的单果质量和果形性状在群体内显示连续变异,表明这些性状受微效多基因控制。横径接近正态分布,而单果质量与纵径呈现右偏分布,果形指数呈左偏分布。性状变异系数表明子代果实大小特征分布广泛,尤其是单果质量变异最大。这些性状的遗传趋势表现为超过较差亲本,但平均值低于中亲值,这可能意味着这些性状在杂交群体中存在向较低水平遗传的倾向。赵海静等[9]在苹果中也发现杂交群体的单果质量与果形指数整体呈现偏小遗传趋向。在统计分析果实形状特征时,对果形指数进行了细致分类。具体而言,果形指数低于0.8的果实呈现出扁圆形特征;果形指数位于0.8 至0.9 区间内,果实形状被界定为高扁圆形;当果形指数在0.9 至1.0 范围内时,果实则展现为圆形或近圆形的外观;果形指数超过1.0 的果实,其形状表现为椭圆形。这一分类结果与郑妮[23]、张文龙[6]的研究结果相吻合,进一步验证了果形指数作为划分果实形状有效指标的科学性。
对杂交群体的果皮厚度、种子数量、可食率和出汁率进行分析时,发现这些性状均表现出连续变异,符合数量性状的遗传特征。果皮厚度主要呈现右偏分布,而种子数与可食率呈左偏分布,出汁率较接近正态分布。变异系数分析显示,果皮厚度变异最大,可食率变异最小,提示不同子代间这些性状的离散程度不同。其中,果皮厚度、种子数的平均值低于中亲值,显示趋中遗传倾向;而可食率的遗传传递力接近100%,表明该性状主要由遗传因素决定。管书萍等[24]通过对多个三倍体有性后代群体进行果实品质遗传分析,发现果皮厚度均高于中亲值,呈现超亲遗传趋势。该结果与本研究中的结果存在差异,可能是由本研究中的亲本物种差异较大引起的。
前人研究发现,通过对9 个杂交组合后代的糖酸遗传规律进行研究,发现糖酸含量呈连续变异,这些性状的分布与微效多基因控制的数量性状特征一致[25],与本研究结果相符。具体来说,可滴定酸含量呈现右偏分布,而可溶性固形物、维生素C含量和固酸比也表现出不同程度的右偏分布。这些性状的变异系数表明了这4 个性状在子代中广泛分布,尤其是固酸比变异系数最大,而可溶性固形物含量的变异系数最小。可溶性固形物含量与固酸比的遗传趋势表明子代中这些指标普遍低于中亲值,显示出趋低的遗传倾向。子代中可滴定酸含量与维生素C含量平均值高于中亲值且大部分子代表现超亲现象,推测其遗传趋势为超亲遗传。
通过对HB 柚与华柑4 号杂交子代果实的成熟期、单果质量、果形、种子数、可食率、可溶性固形物和可滴定酸含量等性状的测定,结果表明,杂交子代果实品质表现出丰富的遗传变异,这些性状可能是由几个或多个基因共同控制的数量性状。本研究结果为柑橘杂交后代果实遗传规律研究提供了依据,并为未来柑橘杂交育种中亲本的选择提供了参考。
[1] 郭文武,叶俊丽,邓秀新.新中国果树科学研究70 年:柑橘[J].果树学报,2019,36(10):1264-1272.GUO Wenwu,YE Junli,DENG Xiuxin. Fruit scientific research in new China in the past 70 years:Citrus[J].Journal of Fruit Science,2019,36(10):1264-1272.
[2] 邓秀新.中国柑橘育种60 年回顾与展望[J].园艺学报,2022,49(10):2063-2074.DENG Xiuxin. A review and perspective for citrus breeding in China during the last six decades[J].Acta Horticulturae Sinica,2022,49(10):2063-2074.
[3] 伊华林,刘慧宇.我国柑橘品种分布特点及适地适栽品种选择探讨[J].中国果树,2022(1):1-7.YI Hualin,LIU Huiyu.Distribution characteristics of citrus varieties and selection of varieties suitable for planting in China[J].China Fruits,2022(1):1-7.
[4] 江东,孙珍珠,王婷,王小柯,刘小丰,冉志林.杂柑“甘平”在重庆北碚的引种表现及栽培技术[J].中国南方果树,2017,46(1):32-33.JIANG Dong,SUN Zhenzhu,WANG Ting,WANG Xiaoke,LIU Xiaofeng,RAN Zhilin. Introduction performance and cultivation technology of citrus“Ganping”in Beibei,Chongqing[J].South China Fruits,2017,46(1):32-33.
[5] 龚江美.一个琯溪蜜柚新种质的选育与品质评价研究[D].福州:福建农林大学,2018.GONG Jiangmei. Identification and quality evaluation of a new bud mutant of pummelo[D].Fuzhou:Fujian Agriculture and Forestry University,2018.
[6] 张文龙.四个柑橘杂交组合F1代果实基本性状遗传分析及无核优株筛选[D].重庆:西南大学,2022.ZHANG Wenlong. Genetic analysis of basic fruit traits and selection of seedless superior plants in F1 generation of four citrus hybrid combinations[D]. Chongqing:Southwest University,2022.
[7] 杨海健.柑橘有性杂交创造新种质及授粉对马家柚和HB 柚果实品质的影响研究[D].武汉:华中农业大学,2012.YANG Haijian. The study of creating citrus new germplasm by sexual hybridization and the hybridization influence on the fruit quality of Majiayou and HB pomelo[D]. Wuhan:Huazhong Agricultural University,2012.
[8] 崔艳波,陈慧,乐文全,张树军,伍涛,陶书田,张绍铃.‘京白梨’与‘鸭梨’正反交后代果实性状遗传倾向研究[J].园艺学报,2011,38(2):215-224.CUI Yanbo,CHEN Hui,LE Wenquan,ZHANG Shujun,WU Tao,TAO Shutian,ZHANG Shaoling.Studies on genetic tendency of fruit characters in reciprocal crosses generation between‘Jingbaili’and‘Yali’pear cultivars[J].Acta Horticulturae Sinica,2011,38(2):215-224.
[9] 赵海静,王璐,朱俊菲,赵海山,杨萍,高敬东.丹霞苹果F1 代主要性状遗传趋势研究[J].现代农业科技,2018(4):96-98.ZHAO Haijing,WANG Lu,ZHU Junfei,ZHAO Haishan,YANG Ping,GAO Jingdong.Study on genetic tendency of main characters in F1 generation of‘Danxia’apple[J]. Modern Agricultural Science and Technology,2018(4):96-98.
[10] 刘政海,董志刚,李晓梅,谭敏,杨镕兆,杨兆亮,唐晓萍.‘威代尔’与‘霞多丽’葡萄杂交F1 代果实性状遗传倾向分析[J].果树学报,2020,37(8):1122-1131.LIU Zhenghai,DONG Zhigang,LI Xiaomei,TAN Min,YANG Rongzhao,YANG Zhaoliang,TANG Xiaoping. Inheritance trend of fruit traits in F1 progenies of‘Vidal’and‘Chardonnay’of grape[J]. Journal of Fruit Science,2020,37(8):1122-1131.
[11] 李明章,邱利娜,王丽华,郑晓琴,廖明安.红阳猕猴桃杂交F1代果实主要经济性状遗传倾向分析[J].果树学报,2011,28(1):51-54.LI Mingzhang,QIU Lina,WANG Lihua,ZHENG Xiaoqin,LIAO Ming’an.Inheritance trend of main characters in F1 progenies of Hongyang kiwifruit variety[J].Journal of Fruit Science,2011,28(1):51-54.
[12] 郑少泉,许秀淡,黄金松,周建强.枇杷若干性状的遗传研究I .果实性状的遗传倾向研究[J].福建省农科院学报,1993,8(1):19-26.ZHENG Shaoquan,XU Xiudan,HUANG Jinsong,ZHOU Jianqiang.Study on heredity of several characters in loquat I.Genetic trendency of fruit agronomic characters[J]. Fujian Journal of Agricultural Sciences,1993,8(1):19-26.
[13] 刘月,刘海楠,邓宇,刘禹姗,殷秀岩,孙海悦,李亚东.越橘正反交后代部分性状的遗传倾向[J].吉林农业大学学报,2019,41(1):35-41.LIU Yue,LIU Hainan,DENG Yu,LIU Yushan,YIN Xiuyan,SUN Haiyue,LI Yadong. Genetic predisposition of some traits of blueberry in hybrid progenies[J]. Journal of Jilin Agricultural University,2019,41(1):35-41.
[14] DE OLIVEIRA R P,AGUILAR-VILDOSO C I,MACHADO M A. Genetic divergence among hybrids of‘Cravo’mandarin with‘Pêra’sweet orange[J]. Scientia Agricola,2003,60(1):115-118.
[15] 潘依玲,鲍荆凯,陈万年,吴翠云,王玖瑞,刘孟军,闫芬芬.枣JMS2×交城5 号F1代果实性状遗传分析与优系筛选[J].果树学报,2023,40(6):1085-1098.PAN Yiling,BAO Jingkai,CHEN Wannian,WU Cuiyun,WANG Jiurui,LIU Mengjun,YAN Fenfen. Genetic analysis of fruit traits and selection of superior lines in F1 generation of jujube JMS2 × Jiaocheng 5[J]. Journal of Fruit Science,2023,40(6):1085-1098.
[16] 伊华林,邓秀新,夏仁学,李国怀,胡世全,覃伟.柚新品种:HB柚[J].中国南方果树,2003,32(2):3.YI Hualin,DENG Xiuxin,XIA Renxue,LI Guohuai,HU Shiquan,QIN Wei.New grapefruit variety--HB grapefruit[J].South China Fruits,2003,32(2):3.
[17] 吴巨勋,张雅菁,伊华林,谢宗周,邓秀新.无核柑橘新品种华柑4 号的选育[J].果树学报,2022,39(3):495-498.WU Juxun,ZHANG Yajing,YI Hualin,XIE Zongzhou,DENG Xiuxin. Breeding report of a new seedless ponkan cultivar Huagan No.4[J].Journal of Fruit Science,2022,39(3):495-498.
[18] 李准.60Co-γ 辐射马家柚和鸡尾葡萄柚的遗传变异研究[D].武汉:华中农业大学,2023.LI Zhun.Study genetic variation of majia pomelo and citrusparadisi‘Grapefruit’lrradiated by60Co-γ[D].Wuhan:Huazhong Agricultural University,2023.
[19] 李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.LI Hesheng. Principles and techniques of plant physiological biochemical experiment[M]. Beijing:Higher Education Press,2000.
[20] 国家质量监督检验检疫总局,中国国家标准化管理委员会.柑桔鲜果检验方法:GB/T 8210—2011[S]. 北京:中国标准出版社,2011.General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Standardization Administration of the People’s Republic of China.Method of inspection for fresh citrus fruit:GB/T 8210—2011[S]. Beijing:Standards Press of China,2011.
[21] 赵崇斌,郭乙含,李舒庆,徐红霞,黄天启,林顺权,陈俊伟,杨向晖.宁海白×大房枇杷F1 杂交群体果实性状的相关性及遗传分析[J].果树学报,2021,38(7):1055-1065.ZHAO Chongbin,GUO Yihan,LI Shuqing,XU Hongxia,HUANG Tianqi,LIN Shunquan,CHEN Junwei,YANG Xianghui. Correlation and genetic analysis of fruit traits in F1 hybrid population of loquat generated from Ninghaibai × Dafang[J].Journal of Fruit Science,2021,38(7):1055-1065.
[22] 陈力耕,胡运权,陈克玲.克里迈丁×本地早果实主要性状的遗传[J].中国柑桔,1988,17(2):3-5.CHEN Ligeng,HU Yunquan,CHEN Keling. Inheritance of major traits in early fruits of Climactin × Native[J]. South China Fruits,1988,17(2):3-5.
[23] 郑妮.‘红美人’柑橘杂交后代群体果实主要性状的遗传分析及早熟优株的筛选[D].重庆:西南大学,2021.ZHENG Ni. Genetic analysis of major fruit traits in the hybrid offspring of citrus‘Hongmeiren’and screening for the superior early-maturing varieties[D]. Chongqing:Southwest University,2021.
[24] 管书萍,王婷婷,周阳广,朱虹娴,伍小萌,龙春瑞,高俊燕,郭文武,解凯东.柑橘2 个三倍体有性后代群体果实品质性状的遗传特点[J/OL].果树学报,1-14[2024-03-29](2024-01-13).https://doi.org/10.13925/i.cnki.gsxb.20230419.GUAN Shuping,WANG Tingting,ZHOU Yangguang,ZHU Hongxian,WU Xiaomeng,LONG Chunrui,GAO Junyan,GUO Wenwu,XIE Kaidong. Inheritance of some quality traits of the fruits in triploid hybrids derived from two citrus 2x × 4x interploidy crosses[J/OL].Journal of Fruit Science,1-14[2024-03-29](2024-01-13).https://doi.org/10.13925/i.cnki.gsxb.20230419.
[25] 陈克玲,陈力耕,刘建军,洪棋斌,李洪雯.柑桔果实主要性状的遗传倾向研究[J].西南农业学报,2006,19(6):1114-1120.CHEN Keling,CHEN Ligeng,LIU Jianjun,HONG Qibin,LI Hongwen. Study on the trend of inheritance of main characters of citrus fruit[J]. Southwest China Journal of Agricultural Sciences,2006,19(6):1114-1120.
Genetic analysis of citrus fruit-related traits in the progeny of HB Pomelo×Huagan No.4 hybrids