人工补光对果树生长发育影响的研究进展

张研宗1,2,李 兰1,2#,孙小旭1,2,顾 红1,2,程大伟1,2,李 明1,2,齐秀娟1,2*,陈锦永1,2*

1中国农业科学院郑州果树研究所·果蔬园艺作物种质创新与利用全国重点实验室·国家数字种植业(果园)创新分中心,郑州 450009;2中国农业科学院中原研究中心,河南新乡 453000)

摘 要:光照是果树生长发育的关键因素之一,光质、光强、光周期和光照分布会影响果树的形态建成、开花结果等生长发育过程。植物补光灯作为一种人工光源,可以为植物补充额外的光照,从而有效调节果树的生长发育,提高产量和改善果实品质。红光和蓝光是自然光中光合有效辐射的重要组成部分,红光主要被叶绿素吸收,促进光合作用,此外,红光还能促进果树根茎的伸长生长,有利于树体形态的构建。蓝光主要被叶绿素和类胡萝卜素吸收,对植物的生长、形态及生理代谢有显著影响。光照不足会影响果树的光合作用、形态建成、开花结实及果实品质等。光照过强会导致叶片甚至果实发生日灼,破坏叶绿体结构,降低受损区域的光合作用和养分吸收能力,进而影响果树的正常生长。光分布不均会导致果树生长不平衡,影响整体生长势及产量分布。概述了补光灯的发展历史,综述了光质、光照度、光照时间和光照分布对果树生长发育的影响,并提出了果树人工补光未来的研究方向,以期为果树补光研究提供参考。

关键词:果树;补光;生长发育

光是植物进行光合作用的关键因素之一,是植物生长和发育所必需的。在光合作用中,植物利用光能将二氧化碳和水转化为葡萄糖和氧气,并储存化学能。除此之外,光还是植物生长和发育的信号,光质、光照度、光周期和光照分布可以影响果树的形态、开花、果实成熟等生长过程,植物通过感知光的变化来调节自身的生长和发育[1]。光照不足时,会导致树体瘦弱、叶片黄化、花芽分化不良、落花落果,甚至引发病害,从而导致品质下降[2]。光照过强会使植物产生日灼病,降低受损区域光合作用和养分吸收能力,限制植物的生长[3]。在一些地区或季节,日照时间、光照度及光照分布不能满足植物需求,会影响植物正常的生长和发育。

随着科技的不断进步,各种人工照明技术开始逐渐应用于蔬菜、花卉、果树等作物。植物补光灯是一种人工光源,可以为植物额外补充光照,促进植物正常生长与开花。通过控制植物补光灯的照射时间和光照度,可以调节植物的生长节奏,促进植物在不同生长阶段的发育。因此,植物补光灯可以解决自然光光照时间不足、光照度不够以及光照分布不均匀的问题。农业照明领域使用的人工光源主要有高压钠灯、荧光灯、金属卤素灯、白炽灯等,但这些人工光源能耗大、运行成本高。近年来,低能耗、高光效的LED 光源在农业领域得到快速应用。与传统人工光源相比,LED 灯不仅节能效果显著,而且还可以通过调整不同光质(红光、蓝光等)之间的比例和光照度,满足植物生产的各种生理需求,实现高效化生产[4]。蔬菜生长周期短,对光照的需求较高,所以植物补光灯主要应用于番茄、黄瓜、生菜等蔬菜生产中,且技术相对成熟。与蔬菜相比,果树在生长过程中由于受到太阳高度角、树冠内叶幕和枝条的阻挡等因素的制约,导致树冠内的光照分布不均[5-6],因此需要额外补充光照来满足其生长发育。笔者从植物补光灯的发展,以及光质、光照度、光照时间和光照分布对果树生长发育及其品质的影响等方面进行综述,以期为果树高效生产提供理论支撑,促进果业高质量发展。

1 植物补光灯的发展

植物补光灯主要是根据植物生长的自然规律,延长光照时间、提高光照度或调节光质比例,为植物生长发育提供所需光照,控制植物发芽、叶色、开花、结果等光形态的形成,提高植物的叶绿素含量和光合作用效率,从而提高植物的生物量和果实品质。在植物工厂中,补光灯可部分或者全部代替自然光,通过控制光环境,缩短植物生长周期、提高产量,增加经济效益[7]

在早期农业生产中,农民通过调整种植时间和地点来优化作物的光照条件。最初的人工光源如白炽灯用来延长光照时间,但其光源效率低、耗能高且光谱不适合植物生长。20世纪初期,荧光灯开始用于植物补光,荧光灯相比白炽灯,具有亮度高、能耗低、寿命长和排放温室气体少等优势,但荧光灯作为一种气体放电灯,汞是其必备物料,破碎时将释放汞,若处理不当会对环境和人体健康造成威胁[8]

20 世纪中后期,高压钠灯(HPS)因高光效和长寿命的特点,成为温室和商业种植中的常用补光灯。高压钠灯是一种高强度气体放电灯,是继白炽灯、荧光灯之后的第三代照明光源[9],发光效率极高,使用寿命1.5 万~2 万h,有助于植物开花结果[10]。但是,高压钠灯中存在金属汞、金属钠等对环境有害的物质,后续废品处理对环境仍存在较大危害[11]

发光二极管(LED)以光谱范围广、波长特定、效率高、散热少、寿命长、功率小等优势,逐渐广泛应用于农业生产中,以促进作物生长,提高产量和品质[12],图1 为LED 灯在火龙果生产中的应用。LED灯可以发出多种单波长的光,也可以发出多波长组合的白光或其他类型的混光[13]。与其他光源相比,LED灯光效显著提升,白炽灯、卤钨灯的光效为12~24 lm·w-1,荧光灯的光效为50~70 lm·w-1,钠灯的光效为90~140 lm·w-1,且大部分的耗电变成热量损耗,而LED灯的光效经改良后为50~200 lm·w-1。在同样的照明效果下,LED灯的耗电量是白炽灯的八分之一,荧光灯的一半。LED灯体积小、质量轻,用环氧树脂封装,可承受高强度机械冲击和震动,不易破碎,使用寿命为5~10 a(年)。LED 灯为全固态发光体,属于冷光源,发热量低,无热辐射,且不含汞、钠元素等可能危害环境和人体健康的物质,废弃物可回收,没有污染[14]

图1 LED 灯在生产火龙果中的应用
Fig.1 Application of LED light in pitaya production

随着LED 技术的进步,特别是在光效、光谱调控和成本方面的改进,现代LED植物灯可以精确调控光谱,提供红光、蓝光、绿光、远红光等多种波长组合,满足不同植物和生长阶段的需求。以铭贤牌全光谱LED灯为例,其主要光谱光照度在400~760 nm的可见波段区间,有很好的连续性。对比地面太阳光谱曲线,其主要光照度也分布在可见区,全光谱LED 灯光谱与光合作用效率曲线变化趋势基本一致[15]。随着智能控制、自动化以及物联网技术的发展,自适应智能LED植物补光系统能够针对不同植物在不同生长阶段和不同生长环境进行反馈式自动补光,具有可变光质、可变光照度、精准化、低能耗补光的功能[16]。种植者可以远程监控和控制补光系统,利用大数据分析优化光照方案,提高生产效率。基于以上优点,LED灯逐渐成为植物补光的主流选择。

2 光质对果树生长发育的影响

光质是指具有不同波长的光谱,波长在380~760 nm 波段的光能可以被植物光合色素吸收并用于光合作用。在该波段中,植物吸收最多的是波长范围为610~720 nm(波峰660 nm)的红、橙光和波长范围为400~510 nm(波峰450 nm)的蓝、紫光[17]。绿光波长介于红光和蓝光之间,不易被植物吸收,通常被反射出来,导致植物大多呈现绿色[18]。与其他光质相比,红光和蓝光是自然光中光合有效辐射的重要组成部分,对植物生长具有显著的影响。

2.1 红光

红光主要被植物叶绿素吸收,是光合作用中最重要的吸收光谱区域之一。对于大多数植物而言,红光可以提高叶片中叶绿素的含量[19],影响光合器官的正常发育,有效激发叶绿素促进光合作用[20]。研究表明,红光能够促进植物株高、叶片数、叶面积以及叶片厚度等生长指标的增加[21-22]。赵停等[23]研究表明,红光处理显著提高种子的发芽率、发芽指数和种子活力指数。此外,Hung 等[24]研究表明,LED红光可促进蓝莓芽和根的生长及侧枝的形成。时晓芳等[25]研究发现,补充红光对阳光玫瑰果粒横径具有显著的促进作用。王欣欣等[26]研究表明,补充红光显著提高巨峰葡萄叶片的净光合速率,并促进新梢和叶片的生长。刘庆等[27]研究表明,与白光处理组比较,LED红光处理可使草莓叶片的净光合速率和蒸腾速率分别提高49.3%和37.6%。李思静[28]用不同光质的LED灯照射先锋橙和红橘幼苗,发现红光能促进茎宽、根长和叶面积增加,但降低了株高和叶片数。大量研究证实,红光对果实品质具有显著的影响,如对果实中可溶性糖、可滴定酸、可溶性固形物、维生素C、花青苷含量等均有不同程度的影响[29-30]。也有研究发现,补充红光能促进葡萄果实酒石酸的降解,并在果实转色后期使苹果酸含量降低5.1%~23.2%[25]。此外,王竞等[31]在研究中发现,对富士苹果补充红光可使维生素C 含量相比对照提高28.35%。孙建设等[32]研究表明,用640 nm红光补光可提高苹果果皮细胞膜透性,并刺激果实内乙烯生成。王海波等[33]研究表明,对葡萄补充红光不仅能够延缓叶片衰老,还能显著改善果实品质。

2.2 蓝光

蓝光主要被叶绿素和类胡萝卜素吸收,能够影响植物的生长、形态、生理代谢,促进气孔开放和叶绿素的合成,从而提高光合作用速率,对植物的生长发育具有重要作用。张克坤等[34]用不同光质对瑞都香玉葡萄进行补光,发现蓝光可显著提高葡萄果实质量以及果粒的纵横径,同时增加葡萄中的葡萄糖、果糖和总糖含量。余阳等[35]的研究进一步表明,对夏黑葡萄补充蓝光可有效提高叶片净光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)及蒸腾速率(Tr),并促进叶片的光合产物积累。孔云等[36]的研究则表明,蓝光能够促进葡萄新梢的延长生长,缩短新梢节间长度,明显增加新梢基部粗度并减小单叶面积。此外,张云婷等[37]研究表明,蓝光有利于草莓中脯氨酸和可溶性蛋白含量的增加,但不利于相关抗氧化酶活性的提高。陈光彩等[38]研究指出,蓝光可促进香蕉幼苗根系伸长,且低光照度的蓝光可促进节间伸长,而高光照度的蓝光能够抑制植株的生长,起到矮化作用。马跃[39]研究发现,蓝光可促进红星、红富士、国光3 个苹果品种果实着色。赵淼等[40]研究表明,蓝光还能够增加草莓果实的色泽及光亮度。郑晓翠等[41]用不同光质对设施桃补光发现,补充蓝光可提高果实单果质量、叶面积、叶片厚度以及果实中可溶性固形物、可溶性糖、维生素C和叶绿素含量。赵雪惠等[42]对油桃补充蓝光后发现,叶片的净光合速率提高,叶绿素a 和叶绿素b 的含量增加,叶绿素a/b显著降低,叶面积增大,气孔开放时间提前且较早达到最大开度,光合同化物从叶片到果实的转运效率也得到提高。

2.3 红蓝光比例

不同树种对光需求差异较大,而不同光质及其比例的组合所产生的效果也不尽相同。根据果树的品种、生长阶段和所需目标,可以通过调控红蓝光比例达到优化生产的目的。王忠广等[43]研究表明,使用红蓝光比例5∶1补光能够有效改善设施红美人杂柑的果实着色,并促进果实中有机酸的降解,从而提高果实的外观和内在品质。陈心源等[44]研究表明,用红蓝光比例2∶1补光可显著提高火龙果成熟果实中蔗糖磷酸合成酶和蔗糖合成酶活性,进而提高可溶性固形物和蔗糖含量。另有研究发现,采用红蓝光比例6∶1 处理樱桃,能显著提高樱桃叶片光合速率,并促进果实的发育和着色,且果实成熟软化与糖合成基因的表达水平也得到显著提升,使得蔗糖合成酶活性比同期对照组高出18.75%[45-46]。大量研究表明,在红蓝光比例3∶1的补光条件下,能够提高果实中花青苷、维生素C、可溶性糖和可溶性固形物含量[31,47]。王佳淇[48]研究表明,红蓝光比例6∶1处理的Emerald 蓝莓的株高、一年生枝条长度、粗度、叶面积、比叶质量、叶绿素含量、净光合速率、最大净光合速率、淀粉含量显著提高。而在红蓝光比例3∶1 处理下,叶片的叶绿素含量、净光合速率和可溶性糖含量也显著提高,单果质量和果实横纵径显著增加,衰老叶片的抗氧化酶(SOD、POD 和CAT)活性及可溶性蛋白含量显著提高,综合效果优于6∶1 的处理。谢淑琴等[49]研究表明,在红蓝光8∶1补光条件下,可显著提高金太阳和凯特杏单株开花数、坐果率、单果质量、单株结果数、单株产量、果实纵径、果实横径,以及可溶性固形物和维生素C 含量。齐志国[50]研究表明,红蓝光比例6∶1 的处理提高了葡萄的茎粗、叶片厚度、叶片横径、叶柄长、POD 活性,以及可溶性淀粉和可溶性蛋白含量,有利于植株进行水分积累及新陈代谢,而红蓝光比例2∶1 的处理则提高了叶片净光合速率和气孔导度。综上所述,红蓝光对植物的光合作用、碳代谢、生物量及果实品质有显著影响,但不同树种对红蓝光比例的需求差异明显。

3 光照度对果树生长发育的影响

果树各部位的光照度受多种因素影响,就果树本身来讲,果树的叶片通常聚集在枝条的上部,形成树冠,果树树冠内部结构复杂,叶片间相互遮挡,使得部分叶片处于阴影位置,无法直接接受光线的照射,导致果树不同部位光照度不同。果树生长环境中的物理因素如建筑物、其他植被或树木,以及地形地貌等,都会影响光线的透射和散射,从而导致不同部位受到的光照度也不同。季节变化也会影响果树各部位的光照度,例如,在冬季阳光较弱,果树整体光照度可能会减弱,而在夏季阳光充足时,果树部分叶片甚至果实可能因过强的光照而受损。

不同果树对光照度的耐受性不同,适宜的光照度能够促进果树的生长和发育,提高光合速率和果实品质。刘文海等[51]通过采取不同遮阴方式控制光照度(分别为850 µmol·m-2·s-1、255 µmol·m-2·s-1、89.3µmol·m-2·s-1)研究桃树的耐弱光性,发现随着光照度的降低,桃叶片光补偿点、光饱和点、CO2补偿点、CO2饱和点以及羧化效率均下降,光呼吸速率也逐渐降低,而光合色素含量则随着光照度的降低而增加。黄殿源等[52]用强光(1000 lx)和弱光(500 lx)对水培草莓补光发现,强光对草莓果实质量、产量及品质的提升效果显著优于弱光。乔羽佳等[53]研究表明,通过遮阴改变光照度可延迟欧李的果实成熟,但果实品质降低。谭天宇[54]研究发现,随着光照度的增加,蓝莓果实花青素含量增加,吲哚乙酸与赤霉素含量上升,而乙烯与茉莉酸含量下降。在光照不足的情况下,蓝莓果实、叶片可溶性糖及还原糖含量降低。袁华玲等[55]发现,2000 lx 光照度最适合对萼猕猴桃试管苗的生长,在低光照度下(1000 lx),丙二醛含量、SOD活性、POD活性和CAT活性均较高;在高光照度下(6000 lx)丙二醛含量较高,但SOD、POD和CAT 活性较低。马宗桓等[56]用透光率分别为0、5%、15%、50%的果袋对马瑟兰葡萄做套袋处理,发现不同遮光处理显著降低了花后90 d 时的果粒质量,完全遮光处理对果粒质量的影响最为显著,果实遮光超过50%时,果实的纵横径在花后90 d和100 d时显著减小,遮光还延迟了果实的转色时间。

4 光照时间对果树生长发育的影响

光照时间影响植物光合作用、开花和结果、生物钟调控、叶片形态、光合色素合成、生长速率和生长周期等。合理控制光照时间对植物生长发育至关重要,不同植物对光照时间的需求也有所不同。徐杨玉等[57]研究发现,夜间补光(22:30—02:30)可促进火龙果单株花芽分化、成花枝率和单批产量提高。大量研究表明,夜间对草莓补光6 h可有效提高草莓产量,增加可溶性固形物、可溶性糖、维生素C 和蛋白质含量及叶片叶绿素含量,提高草莓果实糖酸比[58-59]。在04:00—08:00补光也可显著增加草莓花枝数和花蕾数,提高产量、品质以及抗病性[60]。王壮伟等[61]通过早晨(05:00—09:00)、傍晚(17:00—21:00)以及全天(05:00—21:00)3个时段对葡萄补光,发现不同时段补光均能延缓老叶叶绿素的降解,延长叶片的功能期,增加叶片中氮、钙、镁的含量,增加叶片面积和干物质含量,提高净光合速率、蒸腾速率、气孔导度和光饱和点。有研究表明,夜间对巨峰葡萄补光12 h可显著增大果粒质量、纵径和横径,提高叶片SPAD值、淀粉含量及全氮含量,同时提高果实的可溶性固形物含量和果皮花色苷总量[62-63]

5 光照分布对果树生长发育的影响

光照分布均匀性分为光质分布均匀性和光照度均匀性。光质分布不均匀会导致植物出现光斑现象,光照度不均匀会引起植物生长不均匀[64]。目前有关光照分布对蔬菜的生长发育、光合作用和产量及品质形成的研究比较多,但其对果树影响的研究尚不多见。

在苹果栽培中,Tustin等[65]通过采用如图2所示的窄行、二维树形设计,使植株上光照分布更加均匀,1.5 m 行距的光截获率增加到80%以上,2 m 行距的光截获率增加到70%以上,到第7年树冠的光截获率接近90%,苹果产量分别可达194 t·hm-2和152 t·hm-2,均超过Palmer等[66]提出的高纺锤形果园系统90%光截获时的产量,另外,平面篱架种植系统的苹果果实质量(果实大小、着色面积)等同或优于高纺锤形种植的果实,而后者的产量仅为前者的50%左右。在猕猴桃栽培中,采用大棚架或者“T”形架改变猕猴桃的光照分布,可使采光效果分布均匀,增强通风透光性,进而提高产量[67]。肖莉娟等[68]研究玉露香梨两种树形光照分布对果实产量及品质的影响发现,圆柱形树形果实产量低于倒伞形树形,硬度和石细胞含量低于倒伞形树形,但单果质量、可溶性固形物和可滴定酸含量都高于倒伞形树形。

图2 苹果窄行平面篱架种植系统示意图
Fig.2 A pictorial representation of the narrow-row,planar cordon apple orchard planting system

6 展 望

国内外学者在补光对果树生长发育影响方面进行了广泛的研究。随着照明技术的不断创新与发展,节能高效、光谱可调且光照均匀的LED 植物补光灯已得到广泛应用。光照度和光照时间主要影响果树的光合作用和干物质的积累,而光质对果树生长发育的影响较为复杂,相同光质对不同果树的影响各异,而不同光质对同一种果树的影响也有相似之处,不同组合比例的光质对同一种果树的影响同样各有差异。红光、蓝光和不同比例红蓝光组合对果树生长有明显影响,但其他光质的作用有待深入研究。

目前,大部分补光试验主要在温室或者植物工厂的封闭环境中进行,缺乏自然光的影响,温度、湿度和土壤状况也无法完全模拟自然条件下果树的生长环境。因此,未来可以考虑结合田间试验等方法,来验证温室内试验结果的可靠性和实际应用价值。此外,人工光源的光谱可能无法完全模拟自然光的光谱,这可能导致果树在单一光谱影响下的生长情况与自然条件下存在差异。调节光照度也存在难度,过高或过低的光照度都可能对果树生长发育造成不利影响,难以准确模拟自然光照条件下的动态变化。果树在不同生长期对光的响应也不同,因此,未来研究应对果树生长发育阶段进行精确划分,深入探讨果树不同生长阶段对光的需求,有针对性地设计补光试验方案,探究不同光质、光照度、光照时间和光照分布等对果树生长发育和果实品质的影响,从而根据果树生长的特定需求,改善补光条件,提高果实产量和品质。

参考文献References:

[1] 许大全,高伟,阮军.光质对植物生长发育的影响[J].植物生理学报,2015,51(8):1217-1234.XU Daquan,GAO Wei,RUAN Jun. Effects of light quality on plant growth and development[J]. Plant Physiology Journal,2015,51(8):1217-1234.

[2] 王学梅,崔静英,谢华,裴红霞,秦小军,高晶霞.弱光对温室西瓜株间小气候环境及生长发育的影响[J].宁夏农林科技,2011,52(12):225-226.WANG Xuemei,CUIJingying,XIE Hua,PEIHongxia,QIN Xiaojun,GAO Jingxia. Effects of low light on microclimate environment and growth and development of watermelon in greenhouse[J]. Ningxia Journal of Agriculture and Forestry Science and Technology,2011,52(12):225-226.

[3] 王跃荣,汪磊,王殿发,陈鹏宇,杨贵春.补光技术在果蔬生产上的研究进展[J/OL]. 中国瓜菜,2024(6):1-10(2024-06-05).https://doi.org/10.16861/j.cnki.zggc.202423.0631.WANG Yuerong,WANG Lei,WANG Dianfa,CHEN Pengyu,YANG Guichun. Research progress of supplementary lighting technology in fruit and vegetable production[J/OL]. China Cucurbits and Vegetables,2024(6):1-10 (2024-06-05). https://doi.org/10.16861/j.cnki.zggc.202423.0631.

[4] 杨其长.LED 在农业领域的应用现状与发展战略[J].中国科技财富,2011(1):52-57.YANG Qichang.Application status and development strategy of LED in agriculture[J]. China Science and Technology Wealth,2011(1):52-57.

[5] VERREYNNE J S,RABE E,THERON K I. Effect of bearing position on fruit quality of mandarin types[J]. South African Journal of Plant and Soil,2004,21(1):1-7.

[6] 刘业好,魏钦平,高照全,王小伟,魏胜林.‘富士’苹果树3 种树形光照分布与产量品质关系的研究[J].安徽农业大学学报,2004,31(3):353-357.LIU Yehao,WEIQinping,GAO Zhaoquan,WANG Xiaowei,WEI Shenglin. Relationship between distribution of relative light radiation and yield and quality in different tree shapes for‘Fuji’apple[J].Journal of Anhui Agricultural University,2004,31(3):353-357.

[7] 王尔镇,周启芳.园艺照明光源的应用和发展[J].长江蔬菜,1996(7):1-4.WANG Erzhen,ZHOU Qifang.Application and development of light source for horticulture[J]. Journal of Changjiang Vegetables,1996(7):1-4.

[8] 卫丽,孙艳杰,王通哲,冯钦忠,陈扬.废旧含汞荧光灯管回收处理政策及技术研究[J].冶金管理,2022(3):172-174.WEI Li,SUN Yanjie,WANG Tongzhe,FENG Qinzhong,CHEN Yang. Policy and technology research on recycling of waste mercury-containing fluorescent lamps[J]. China Steel Focus,2022(3):172-174.

[9] 张万奎,丁跃浇.高压钠灯的技术特性及降压节电应用[J].照明工程学报,2006,17(4):63-65.ZHANG Wankui,DING Yuejiao. Characteristics of high pressure sodium lamps with voltage-reducing and energy-saving application[J]. China Illuminating Engineering Journal,2006,17(4):63-65.

[10] RUNKLE E S,PADHYE S R,OH W,GETTER K.Replacing incandescent lamps with compact fluorescent lamps may delay flowering[J].Scientia Horticulturae,2012,143:56-61.

[11] 耿博,龙家焕,郑梦影,孔乐,尤杰,苗辰.高压钠灯与LED 灯在植物补光中的应用特性分析[J].黑龙江农业科学,2018(8):65-69.GENG Bo,LONG Jiahuan,ZHENG Mengying,KONG Le,YOU Jie,MIAO Chen. Analysis of application characteristics of high pressure sodium lamp and LED lamp in plant light supply[J].Heilongjiang Agricultural Sciences,2018(8):65-69.

[12] JUNG W S,CHUNG IM,HWANG M H,KIM S H,YU C Y,GHIMIRE B K.Application of light-emitting diodes for improving the nutritional quality and bioactive compound levels of some crops and medicinal plants[J]. Molecules,2021,26(5):1477.

[13] 毛兴武,张艳雯,周建军,祝大卫.新一代绿色光源LED 及其应用技术[M].北京:人民邮电出版社,2008.MAO Xingwu,ZHANG Yanwen,ZHOU Jianjun,ZHU Dawei.A new generation of green light source LED and its application technology[M].Beijing:Posts&Telecom Press,2008.

[14] 王晓明,郭伟玲,高国,沈光地.LED:新一代照明光源[J].现代显示,2005(7):15-19.WANG Xiaoming,GUO Weiling,GAO Guo,SHEN Guangdi.Gate of dawn-LED will illuminate the future[J].Advanced Display,2005(7):15-19.

[15] 兰萍,诺桑,刘娟,措加旺姆,拉瓜登顿,普多旺,王倩,卢汉宇.照明灯光谱检测研究[J].光源与照明,2021(12):43-46.LAN Ping,NUO Sang,LIU Juan,CUO Jiawangmu,LA Guadengdun,PU Duowang,WANG Qian,LU Hanyu. Lighting lamp spectrum detection research[J]. Lamps & Lighting,2021(12):43-46.

[16] 吴一新,叶飞,韦军兰,赵杰,董前民.自适应智能LED 植物补光系统[J].科学技术创新,2019(30):88-89.WU Yixin,YE Fei,WEIJunlan,ZHAO Jie,DONG Qianmin.Adaptive intelligent LED plant light supplement system[J]. Scientific and Technological Innovation,2019(30):88-89.

[17] 杨其长,张成波.植物工厂概论[M].北京:中国农业科学技术出版社,2005.YANG Qichang,ZHANG Chengbo. An introduction to plant factory[M]. Beijing:China Agricultural Science and Technology Press,2005.

[18] 孙斌,吕璐平,李灵芝,李海平,唐婷婷,王元,牛华琳.LED 红蓝光配比对番茄生长和光合的影响[J].中国农业气象,2024,45(5):517-524.SUN Bin,LÜ Luping,LILingzhi,LIHaiping,TANG Tingting,WANG Yuan,NIU Hualin.Effects of red and blue LED light ratio on growth and photosynthesis of tomato[J]. Chinese Journal of Agrometeorology,2024,45(5):517-524.

[19] 童哲,赵玉锦,王台,李念华,毛居代·亚力.植物的光受体和光控发育研究[J].植物学报,2000,42(2):111-115.TONG Zhe,ZHAO Yujin,WANG Tai,LINianhua,Yarmamat·Mawjuda. Photoreceptors and light regulated development in plants[J].Journal of Integrative Plant Biology,2000,42(2):111-115.

[20] 胡阳,江莎,李洁,高静,高玉葆,古松.光强和光质对植物生长发育的影响[J].内蒙古农业大学学报(自然科学版),2009,30(4):296-303.HU Yang,JIANG Sha,LIJie,GAO Jing,GAO Yubao,GU Song. Effects of the light intensity and quality on plant growth and development[J].Journal of Inner Mongolia Agricultural University(Natural Science Edition),2009,30(4):296-303.

[21] KIGEL J,COSGROVE D J. Photoinhibition of stem elongation by blue and red light:Effects on hydraulic and cell wall properties[J].Plant Physiology,1991,95(4):1049-1056.

[22] FAN X X,XU Z G,LIU X Y,TANG C M,WANG L W,HAN X L. Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light[J].Scientia Horticulturae,2013,153:50-55.

[23] 赵停,李静,安衍茹,黄涛,王媛媛,彭亮,杨冰月,胡本祥,刘晓菊,郭文琴.光质、光强对远志种子萌发和幼苗生理特性的影响[J].中国实验方剂学杂志,2018,24(17):68-73.ZHAO Ting,LIJing,AN Yanru,HUANG Tao,WANG Yuanyuan,PENG Liang,YANG Bingyue,HU Benxiang,LIU Xiaoju,GUO Wenqin. Effect of light quality and intensity on seed germination and seedling physiological characteristics of Polygala tenuifolia[J]. Chinese Journal of Experimental Traditional Medical Formulae,2018,24(17):68-73.

[24] HUNG C D,HONG C H,KIM S K,LEE K H,PARK J Y,NAM M W,CHOID H,LEE H I. LED light for in vitro and ex vitro efficient growth of economically important highbush blueberry (Vaccinium corymbosum L.)[J].Acta Physiologiae Plantarum,2016,38(6):152.

[25] 时晓芳,林玲,白先进,郭荣荣,谢林君,白扬,韩佳宇,张瑛,林玲,曹雄军.阳光玫瑰葡萄果实生长发育及品质对不同光质的响应[J].南方农业学报,2021,52(6):1641-1647.SHIXiaofang,LIN Ling,BAIXianjin,GUO Rongrong,XIE Linjun,BAIYang,HAN Jiayu,ZHANG Ying,LIN Ling,CAO Xiongjun.Response of berries development and quality of Shine Muscat grape to different light qualities[J]. Journal of Southern Agriculture,2021,52(6):1641-1647.

[26] 王欣欣,赵文东,郭修武,满丽婷,高圣华,赵海亮.不同光质对延迟栽培‘巨峰’葡萄新梢生长及生理特性的影响[J].北方果树,2009(3):3-5.WANG Xinxin,ZHAO Wendong,GUO Xiuwu,MAN Liting,GAO Shenghua,ZHAO Hailiang. Effects of supplemental lighting with different light quality on the shoot growth and physiology of‘Kyoho’grape growing in greenhouse for delay[J].Northern Fruits,2009(3):3-5.

[27] 刘庆,连海峰,刘世琦,孙亚丽,于新会,郭会平. 不同光质LED 光源对草莓光合特性、产量及品质的影响[J].应用生态学报,2015,26(6):1743-1750.LIU Qing,LIAN Haifeng,LIU Shiqi,SUN Yali,YU Xinhui,GUO Huiping.Effects of different LED light qualities on photosynthetic characteristics,fruit production and quality of strawberry[J].Chinese Journal of Applied Ecology,2015,26(6):1743-1750.

[28] 李思静.不同LED 光对先锋橙和红橘幼苗生长发育及生理特性的影响[D].重庆:西南大学,2018.LISijing.Effects of Different LED light on the growth and physiological characteristics of pioneer orange and tangerine seedlings[D].Chongqing:Southwest University,2018.

[29] ASREY R,KUMAR K,SHARMA R R,MEENA N K. Fruit bagging and bag color affects physico-chemical,nutraceutical quality and consumer acceptability of pomegranate(Punica granatum L.) arils[J]. Journal of Food Science and Technology,2020,57(4):1469-1476.

[30] YANG W H,ZHU X C,BU J H,HU G B,WANG H C,HUANG X M. Effects of bagging on fruit development and quality in cross-winter off-season Longan[J]. Scientia Horticulturae,2009,120(2):194-200.

[31] 王竞,唐雪东,程存刚,周江涛,陈艳辉,李鑫,张艳珍,刘炳含.不同光质补光对富士苹果果实品质的影响[J]. 果树学报,2024,41(3):459-469.WANG Jing,TANG Xuedong,CHENG Cungang,ZHOU Jiangtao,CHEN Yanhui,LIXin,ZHANG Yanzhen,LIU Binghan.Effects of light quality on Fuji apple fruit quality[J]. Journal of Fruit Science,2024,41(3):459-469.

[32] 孙建设,马宝焜,章文才.富士苹果果皮色泽形成的需光特性研究[J].园艺学报,2000,27(3):213-215.SUN Jianshe,MA Baokun,ZHANG Wencai. The study on the characters of needed light in the coloration of‘Fuji’apple skin[J].Acta Horticulturae Sinica,2000,27(3):213-215.

[33] 王海波,王帅,王孝娣,史祥宾,王志强,刘凤之.葡萄叶片衰老过程中不同光质对其光合和叶绿体超微结构的影响[J].园艺学报,2019,46(2):205-214.WANG Haibo,WANG Shuai,WANG Xiaodi,SHIXiangbin,WANG Zhiqiang,LIU Fengzhi. Effect of different light qualities on the photosynthetic properties and ultrastructure of chloroplast in senescing grape leaves[J]. Acta Horticulturae Sinica,2019,46(2):205-214.

[34] 张克坤,刘凤之,王孝娣,史祥宾,王宝亮,郑晓翠,冀晓昊,王海波.不同光质补光对促早栽培‘瑞都香玉’葡萄果实品质的影响[J].应用生态学报,2017,28(1):115-126.ZHANG Kekun,LIU Fengzhi,WANG Xiaodi,SHIXiangbin,WANG Baoliang,ZHENG Xiaocui,JIXiaohao,WANG Haibo.Effects of supplementary light with different wavelengths on fruit quality of‘Ruidu Xiangyu’grape under promoted cultivation[J]. Chinese Journal of Applied Ecology,2017,28(1):115-126.

[35] 余阳,刘帅,李春霞,辛守鹏,王小青,陶建敏.LED 光质对‘夏黑’葡萄光合特性和生理指标的影响[J].果树学报,2015,32(5):879-884.YU Yang,LIU Shuai,LIChunxia,XIN Shoupeng,WANG Xiaoqing,TAO Jianmin. Effects of LED light quality on the photosynthetic properties and physiological indexes of‘Summer Black’grape[J].Journal of Fruit Science,2015,32(5):879-884.

[36] 孔云,王绍辉,沈红香,马承伟,姚允聪.不同光质补光对温室葡萄新梢生长的影响[J].北京农学院学报,2006,21(3):23-25.KONG Yun,WANG Shaohui,SHEN Hongxiang,MA Chengwei,YAO Yuncong.Effects of supplemental lighting with different light quality on the shoot growth of grape growing in greenhouse[J]. Journal of Beijing Agricultural College,2006,21(3):23-25.

[37] 张云婷,宋霞,叶云天,冯琛,孙勃,王小蓉,汤浩茹.光质对低温胁迫下草莓叶片生理生化特性的影响[J].浙江农业学报,2016,28(5):790-796.ZHANG Yunting,SONG Xia,YE Yuntian,FENG Chen,SUN Bo,WANG Xiaorong,TANG Haoru. Effects of light quality on physiological and biochemical indexes in strawberry leaves under low temperature stress[J]. Acta Agriculturae Zhejiangensis,2016,28(5):790-796.

[38] 陈光彩,潘彤彤,毛琪,叶春海,陈瑶,李映志.LED 红、蓝光源对香蕉组培苗生长的影响[J].中国南方果树,2019,48(2):59-66.CHEN Guangcai,PAN Tongtong,MAO Qi,YE Chunhai,CHEN Yao,LIYingzhi. Effects of blue and red light source of light emitting diode(LED)on growth of plantlets of musa cavendish in vitro[J].South China Fruits,2019,48(2):59-66.

[39] 马跃.光辐射波长对苹果果实品质的影响[J].河南农业科学,1993,22(8):36-37.MA Yue.Effect of light radiation wavelength on apple fruit quality[J]. Journal of Henan Agricultural Sciences,1993,22(8):36-37.

[40] 赵淼,林毅,蔡永萍,谢鸣,蒋桂华,吴延军.不同光质对草莓果实成熟过程中色素类物质含量的影响[J]. 浙江农业学报,2008,20(1):64-66.ZHAO Miao,LIN Yi,CAIYongping,XIE Ming,JIANG Guihua,WU Yanjun.Effect of different light quality on the contents of strawberry pigments during ripening[J]. Acta Agriculturae Zhejiangensis,2008,20(1):64-66.

[41] 郑晓翠,刘凤之,王海波,王孝娣.不同光质补光对设施内桃果实品质及叶片质量的影响[J].西北植物学报,2023,43(6):979-987.ZHENG Xiaocui,LIU Fengzhi,WANG Haibo,WANG Xiaodi.Effects of different supplemental light on fruit and leaf quality of peach in the facility[J].Acta Botanica Boreali-Occidentalia Sinica,2023,43(6):979-987.

[42] 赵雪惠,肖伟,郭建敏,高东升,付喜玲,李冬梅.补充蓝光对设施栽培油桃光合性能及糖酸积累的影响[J].植物学报,2018,53(2):227-237.ZHAO Xuehui,XIAO Wei,GUO Jianmin,GAO Dongsheng,FU Xiling,LIDongmei. Effect of blue light on photosynthetic performance and accumulation of sugar and organic acids in greenhouse nectarine[J]. Chinese Bulletin of Botany,2018,53(2):227-237.

[43] 王忠广,周正威,张凯智,金龙飞,陆麒,徐建国,王鹏.补光对设施‘红美人’杂柑果实品质的影响[J]. 浙江柑橘,2022,39(4):19-23.WANG Zhongguang,ZHOU Zhengwei,ZHANG Kaizhi,JIN Longfei,LU Qi,XU Jianguo,WANG Peng. Effects of supplemental light on fruit quality of facility‘Red Beauty’hybrid citrus[J].Zhejiang Ganju,2022,39(4):19-23.

[44] 陈心源,殷益明,朱利鑫,陶宁颖,满坤,贾惠娟.光质对火龙果糖分积累及其代谢酶活性的影响[J].浙江农业学报,2019,31(7):1079-1085.CHEN Xinyuan,YIN Yiming,ZHU Lixin,TAO Ningying,MAN Kun,JIA Huijuan. Effect of supplemental lighting with different light quality on fruit quality and related enzymes activities in pitaya[J]. Acta Agriculturae Zhejiangensis,2019,31(7):1079-1085.

[45] 李都岳,陈翔,华爱君,李永丽,吴延军.设施栽培不同光质补光对两个中国樱桃品种生长发育及品质的影响[J].中国南方果树,2024,53(3):251-255.LIDuyue,CHEN Xiang,HUAAijun,LIYongli,WU Yanjun.Effects of different quality supplementary light on growth and quality of two varieties of Chinese cherry in protected cultivation[J].South China Fruits,2024,53(3):251-255.

[46] 李都岳,吴延军.补光对设施栽培樱桃果实成熟和糖分积累的影响[J].果树学报,2023,40(10):2183-2194.LIDuyue,WU Yanjun. Effects of supplementary light on ripening and sugar accumulation of cherry under protected cultivation[J].Journal of Fruit Science,2023,40(10):2183-2194.

[47] 阳圣莹,白胜,蒋浩宏,朱亮,周霓,李曦怡,朱润华.不同补光处理对设施草莓光合特性及果实品质的影响[J].山西农业科学,2016,44(9):1298-1303.YANG Shengying,BAISheng,JIANG Haohong,ZHU Liang,ZHOU Ni,LIXiyi,ZHU Runhua. Effects of different supplemental lighting treatments on photosynthetic characteristics and fruit quality of strawberry in greenhouse[J]. Journal of Shanxi Agricultural Sciences,2016,44(9):1298-1303.

[48] 王佳淇.不同光质LED 补光对大棚蓝莓生长发育的影响研究[D].金华:浙江师范大学,2020.WANG Jiaqi. Study on the mechanism of the growth and development of greenhouse blueberry under different LED supplemental light[D].Jinhua:Zhejiang Normal University,2020.

[49] 谢淑琴,马彦霞,曹力强,张晶,李春花.日光温室栽培杏LED灯补光效果研究[J].中国果树,2015(1):36-38.XIE Shuqin,MA Yanxia,CAO Liqiang,ZHANG Jing,LIChunhua. Study on the effect of LED lights on apricot cultivated in solar greenhouse[J].China Fruits,2015(1):36-38.

[50] 齐志国.LED 补光对设施葡萄植株生长及果实品质的影响[D].沈阳:沈阳农业大学,2023.QIZhiguo. Effects of LED supplementary light on plant growth and fruit quality of facility[D]. Shenyang:Shenyang Agricultural University,2023.

[51] 刘文海,高东升,束怀瑞.不同光强处理对设施桃树光合及荧光特性的影响[J].中国农业科学,2006,39(10):2069-2075.LIU Wenhai,GAO Dongsheng,SHU Huairui.Effects of different photon flux density on the characteristics of photosynthesis and chlorophyll fluorescence of peach trees in protected culture[J].Scientia Agricultura Sinica,2006,39(10):2069-2075.

[52] 黄殿源,尹克林.光照强度对水培草莓果实品质的影响[J].中国南方果树,2017,46(2):150-153.HUANG Dianyuan,YIN Kelin. Effects of light intensity on fruit quality of hydroponic strawberry[J]. South China Fruits,2017,46(2):150-153.

[53] 乔羽佳,王鹏飞,张建成,付鸿博,杜俊杰.光照强度对欧李果实成熟期及品质的影响[J]. 山西农业科学,2019,47(5):865-869.QIAO Yujia,WANG Pengfei,ZHANG Jiancheng,FU Hongbo,DU Junjie. Effects of light intensity on fruit mature period and quality of Chinese dwarf cherry[J].Journal of Shanxi Agricultural Sciences,2019,47(5):865-869.

[54] 谭天宇.光强对蓝莓花青素含量动态变化的影响初探[D].贵阳:贵州大学,2021.TAN Tianyu. Preliminary study on the effect of light intensity on the dynamic changes of anthocyanin content in blueberry[D].Guiyang:Guizhou University,2021.

[55] 袁华玲,齐璐璐,王文娟,王超群.光照强度对对萼猕猴桃试管苗生长及抗氧化酶活性的影响[J]. 安徽农学通报,2022,28(5):51-53.YUAN Hualing,QILulu,WANG Wenjuan,WANG Chaoqun.Effects of light intensity on the growth and antioxidant enzyme activities of plantlets in vitro of Actinidia valvata Dun[J].Anhui Agricultural Science Bulletin,2022,28(5):51-53.

[56] 马宗桓,姜雪峰,毛娟,卢世雄,何红红,陈佰鸿.不同光照强度对‘马瑟兰’葡萄果实发育及着色的影响[J].中外葡萄与葡萄酒,2019(5):47-50.MA Zonghuan,JIANG Xuefeng,MAO Juan,LU Shixiong,HE Honghong,CHEN Baihong.Effects of different light intensity on berries development and coloration of‘Marselan’grapevine[J].Sino-Overseas Grapevine&Wine,2019(5):47-50.

[57] 徐杨玉,尤小婷,陈士伟,张曼其,姚雷业,李栋宇.不同补光时段对火龙果花芽、果实及产量的影响[J].热带农业科学,2023,43(6):20-23.XU Yangyu,YOU Xiaoting,CHEN Shiwei,ZHANG Manqi,YAO Leiye,LIDongyu. Effects of different supplementary light periods on flower buds,fruits,and yield of pitaya[J]. Chinese Journal of Tropical Agriculture,2023,43(6):20-23.

[58] 岳高峰,王丽萍,韩志强.不同补光时长对草莓开花及产量品质的影响[J].江苏农业科学,2020,48(18):144-148.YUE Gaofeng,WANG Liping,HAN Zhiqiang.Influences of different light supplementary time on flowering,yield and quality of strawberry[J]. Jiangsu Agricultural Sciences,2020,48(18):144-148.

[59] 孔令霞.补光时长对草莓产量及品质的影响[J].特种经济动植物,2023,26(7):34-36.KONG Lingxia.Effects of supplemental light duration on strawberry yield and quality[J]. Special Economic Animals and Plants,2023,26(7):34-36.

[60] 杨振华.不同补光时段对日光温室草莓生长的影响[J].山西农业科学,2019,47(6):1002-1004.YANG Zhenhua. Effects of different supplemental light periods on strawberry growth in greenhouse[J]. Journal of Shanxi Agricultural Sciences,2019,47(6):1002-1004.

[61] 王壮伟,吴伟民,王博,王西成,闫莉春.不同补光时段对夏黑葡萄生长及光合特性的影响[J].江苏农业科学,2023,51(13):163-168.WANG Zhuangwei,WU Weimin,WANG Bo,WANG Xicheng,YAN Lichun. Effects of supplemental illumination in different periods on growth and photosynthetic characteristics of Summer Black grape[J]. Jiangsu Agricultural Sciences,2023,51(13):163-168.

[62] 成果,陈国品,郭荣荣,黄秋凤,王博,白先进.补光处理对巨峰葡萄春果花色苷组分的影响[J].南方园艺,2017,28(5):1-8.CHENG Guo,CHEN Guopin,GUO Rongrong,HUANG Qiufeng,WANG Bo,BAIXianjin.Effects of supplemental light treatment on anthocyanin components in spring fruit of Kyoho grape[J].Southern Horticulture,2017,28(5):1-8.

[63] 黄秋凤,谢蜀豫,曹慕明,陈立,李敏,覃锦声,李玮,余欢,阙名锦,陈国品.夜间补光对巨峰葡萄春果叶片营养及果实品质的影响[J].南方农业学报,2019,50(4):781-787.HUANG Qiufeng,XIE Shuyu,CAO Muming,CHEN Li,LIMin,QIN Jinsheng,LIWei,YU Huan,QUE Mingjin,CHEN Guopin. Effects of supplementary illumination at night on leaf nutrition and fruit quality for spring fruit of Kyoho grape[J].Journal of Southern Agriculture,2019,50(4):781-787.

[64] 吴仁杰,季清,程敏,韩天. 基于多光质灯珠的LED 植物灯光照均匀性优化设计方法[J]. 照明工程学报,2022,33(6):52-60.WU Renjie,JIQing,CHENG Min,HAN Tian.Optimization design method of illumination uniformity of LED plant light based on multi-light quality lamp beads[J]. China Illuminating Engineering Journal,2022,33(6):52-60.

[65] TUSTIN D S,BREEN K C,VAN HOOIJDONK B M.Light utilisation,leaf canopy properties and fruiting responses of narrowrow,planar cordon apple orchard planting systems:A study of the productivity of apple[J]. Scientia Horticulturae,2022,294:110778.

[66] PALMER J W,WÜNSCHE J N,MELAND M,HANN A.Annual dry-matter production by three apple cultivars at four withinrow spacings in New Zealand[J]. The Journal of Horticultural Science and Biotechnology,2002,77(6):712-717.

[67] 李兰,杨娜,程大伟,顾红,郭西智,李明,陈锦永.猕猴桃栽培架形分析[J].中国南方果树,2024,53(3):295-300.LILan,YANG Na,CHENG Dawei,GU Hong,GUO Xizhi,LIMing,CHEN Jinyong. Analysis on the trellis types of kiwifruit cultivation[J].South China Fruits,2024,53(3):295-300.

[68] 肖莉娟,刘珊珊,王志刚,徐凌飞.玉露香梨两种树形光照分布与果实产量及品质的比较[J].陕西农业科学,2024,70(4):37-41.XIAO Lijuan,LIU Shanshan,WANG Zhigang,XU Lingfei.Comparison of light distribution and fruit yield,quality of two tree shapes in Yulu fragrant pear[J]. Shaanxi Journal of Agricultural Sciences,2024,70(4):37-41.

Research progress in effects of artificial light supplementation on the growth and development of fruit trees

ZHANG Yanzong1,2,LILan1,2#,SUN Xiaoxu1,2,GU Hong1,2,CHENG Dawei1,2,LIMing1,2,QIXiujuan1, 2*,CHEN Jinyong1,2*
(1Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences/National Key Laboratory of Fruit and Vegetable Horticultural Crop Germplasm Innovation and Utilization/National Digital Planting (Orchard) Innovation Sub-Center, Zhengzhou 450009,Henan,China;2Zhongyuan Research Center,Chinese Academy of Agricultural Sciences,Xinxiang 453000,Henan,China)

Abstract: Fruit trees,as important economic crops,are significantly influenced by a variety of environmental factors,with light playing a particularly crucial role.Light not only serves as the primary energy source for photosynthesis, but also has a significant impact on the growth and development of fruit trees.The growth and development of fruit trees are influenced by various factors,including light quality, intensity, photoperiod and distribution. These light-related factors regulate multiple processes such as morphogenesis, flowering and fruiting. As an artificial light source, the supplemental lighting for plants can provide additional light to them, which plays a crucial role in regulating the growth and development of fruit trees, increasing yield and enhancing fruit quality. The advancement in science and technology has facilitated the gradual integration of artificial lighting technologies with horticulture,with applications extending to vegetables,flowers,fruit trees and other crops.The most commonly used forms of supplemental lighting include fluorescent lamps,high-pressure sodium lamps and LED lamps.Fluorescent lamps and high-pressure sodium lamps are characterized by high energy consumption and operating costs. Additionally, they contain various harmful substances, such as mercury and sodium,making waste disposal a significant environmental hazard. In contrast, LED lamps offer a broad spectral range, specific wavelengths, high efficiency, minimal heat dissipation, long lifespan, adjustable light quality and intensity, and low energy consumption, and also are free from mercury, sodium and other hazardous substances. Moreover, waste generated from LED lamps can be recycled without environmental contamination.These attributes have led to the increasing adoption of LED lamps as the preferred choice for plant lighting.Red and blue lights are key components of photosynthetically active radiation in natural light.Red light is primarily absorbed by chlorophyll,increasing chlorophyll content in leaves and promoting photosynthesis. Additionally, red light promotes the elongation and growth of roots and stems of fruit trees, which is beneficial for shaping tree morphology. Blue light is absorbed not only by chlorophyll but also by carotenoids.It influences plant growth,morphology and physiological metabolism, promotes stomatal opening, and enhances stomatal conductance, transpiration rate and photosynthetic efficiency in fruit trees. Different tree species have varying light requirements, and different red-to-blue light ratios have distinct effects on the same species. Based on the variety, growth stage and desired indicators of fruit trees, high-quality production can be achieved by adjusting the red and blue light ratio. Insufficient light can significantly inhibit the photosynthesis of fruit trees, leading to a reduction in photosynthetic products, which in turn affects the normal growth and development of fruit trees.This is characterized by weak-vigour trees,yellowing leaves,poor flower bud differentiation,severe flower and fruit drop, small fruit size and poor quality. On the other hand, excessive light also negatively impacts fruit trees.Overexposure can cause sunburn on leaves and even fruits,damage chloroplast structures,reduce photosynthesis and impair nutrient absorption in the affected areas,ultimately hindering the normal growth of fruit trees. In addition, uneven light quality distribution can cause the phenomenon of light spots on plants.Uneven light distribution in the canopy of fruit trees results in insufficient light reaching certain areas,leading to uneven growth and affecting the overall growth potential and yield distribution on the tree canopy. This paper summarizes the development process in plant supplemental lighting and reviews the effects of light quality, intensity, duration and distribution on the growth and development of fruit trees.Additionally, future research directions for artificial lighting in fruit cultivation are proposed,aiming to provide a reference for further studies on artificial light supplementation for fruit trees.

Key words: Fruit trees;Artificial lighting;Growth and development

中图分类号:S66

文献标志码:A

文章编号:1009-9980(2024)12-2595-11

DOI: 10.13925/j.cnki.gsxb.20240430

收稿日期:2024-08-29

接受日期:2024-10-23

基金项目:国家重点研发计划(2022YFD1600700);河南省重点研发与推广专项(242102110221);河南省重点研发专项(221111111800);国家现代农业产业技术体系(CARS-26);河南省现代农业产业技术体系建设专项(HARS-22-09-S)

作者简介:张研宗,男,在读硕士研究生,研究方向为猕猴桃栽培技术。E-mail:2949247933@qq.com;#为共同第一作者。

*通信作者 Author for correspondence.E-mail:qixiujuan@caas.cn;E-mail:chenjinyong@caas.cn