设施栽培,又称设施园艺或保护地栽培,是一种在露地不适于园艺作物生长的季节(如寒冷或炎热季节)或地区,利用特定设施(如温室、塑料大棚、小拱棚、养殖棚等)人为地创造适宜园艺作物生长发育的小气候环境的农业生产方式[1-2]。设施果树栽培,作为现代农业的重要组成部分,对提高果树产量、改善果实品质、满足市场需求以及推动农业产业结构调整具有重要的意义[3-5]。栽培装备是设施果树栽培的关键要素,近年来,随着科技的不断进步和农业现代化的深入推进,中国设施果树栽培装备的研究与应用取得了显著成果,实现了从简单到复杂、从单一到多元的转变,涵盖了温室大棚、水肥一体化设备、环境调控设备与农机作业机具等多个方面[6-7]。这些装备的应用不仅改善了果树生长的环境条件,还实现了对果树生长过程的精准控制,有效提升了果树的产量和品质。笔者旨在系统梳理中国设施果树栽培装备的研究应用现状,分析其存在的主要问题,并探讨未来的发展趋势,以期为全面提高中国设施果树栽培装备研究应用水平提供有益参考。
如图1 所示,中国设施果树栽培装备按不同功能可由建筑设施、测控装置、环境调控设备和生产设备与机具组成[8-10]。建筑设施是设施果树栽培的关键装备,其通常由不同结构的大棚、温室等组成,可以提供保温、遮阳、通风、防虫等功能,可帮助果树在寒冷的冬季和早春之间生长,保护果树免受恶劣天气和害虫的侵害。测控装置包括安装在设施内的各种传感器(如温度、光照度、CO2浓度、土壤含水率传感器等)和数据分析决策终端,传感器用于实时监测果树生长环境的各项参数,了解果树所处环境的状态,智能决策终端通过对传感器采集数据的分析,形成相关决策传递给设施内的环境调控设备(补光、增温、加湿、通风、气体调控等),使得设施内的环境更适宜果树的生长。生产设备与机具由水肥一体化装备与农机作业装备组成,水肥一体化装备的功能是通过自动化搅拌装备将水和肥料混合并准确地送到果树的根部,有效地控制果树的水分和营养供应,以满足果树的生长需求,可以根据果树的生长阶段和需求调整水肥的比例和供应量,提高果树的产量和质量。农机作业装备主要包括割草机、修枝机、果实采摘机等,其主要功能是代替人工进行设施内的相关生产环节作业,提高果树生产效率和栽培质量。
图1 设施果树栽培装备构成
Fig.1 Composition of equipment for protected cultivation of fruit trees
1.1.1 建筑设施类型与特点 常用的设施果树栽培的建筑设施主要有日光温室、塑料大棚和连栋玻璃温室,其结构特点与材料组成如表1 所示。日光温室是节能日光温室的简称,又称暖棚,由两侧山墙、维护后墙体、支撑骨架及覆盖材料组成[11-12],在中国北方地区广泛应用,是一种在室内不加热的温室,通过后墙体对太阳能吸收实现蓄放热,维持室内一定的温度水平,以满足作物生长的需要[13];塑料大棚俗称冷棚,是一种简易实用的保护地栽培设施,利用竹木、钢材等材料,并覆盖塑料薄膜,搭成拱形棚,具有建造容易、使用方便、投资较少等优点,在中国南方被广泛应用,其有利于果树防御自然灾害,能提早或延迟供应鲜果,提高单位面积产量;连栋玻璃温室是一种以钢结构为主体,利用玻璃作为覆盖材料的温室类型,内置了采暖、通风、灌溉等配套设备,其采光好、强度高、环境调节能力强,在中国南方经济发达省份已少部分推广使用,但建造成本较高[14-15]。
表1 设施果树栽培建筑设施的类型
Table 1 Types of architectural facilities for protected cultivation of fruit trees
建筑设施Building facilities日光温室Solar greenhouse结构与材料特点Structural and material characteristics温室顶部采用斜面或拱形设计,设置有两侧山墙和后墙体(倾斜),材料主要有红砖、黏土、钢结构骨架、泡沫板、玻璃等。The greenhouse features a sloping or arched roof design,with two gable walls on the sides and an inclined rear wall.The primary materials used include red bricks, clay, steel structural framework,foam boards,glass,etc..使用金属或塑料材料作为框架结构,采用塑料薄膜覆盖。Using metal or plastic materials as the framing structure,and covering it with plastic film.优缺点Advantages and disadvantages优点:结构坚固、保温与节能性好。Advantages: Robust structure, excellent thermal insulation, and high energy efficiency.缺点:土地利用率较低、造价较高。Disadvantages: Low land utilization efficiency and high construction costs.塑料大棚Plastic greenhouse连栋玻璃温室Multi-span glass greenhouse采用钢结构作为骨架,钢化玻璃为主要覆盖材料。A steel structure is employed as the skeleton, with tempered glass serving as the primary covering material.优点:安装拆卸方便,成本低,土地利用率高。Advantages: Easy to install and dismantle, cost-effective, and with high land utilization efficiency.缺点:易损坏,通风和保温性能差。Disadvantages: Prone to damage, with poor ventilation and insulation performance.优点:结构坚固,采光优良,自动化程度高,适合规模化生产。Advantages: Robust structure, excellent lighting, high degree of automation,suitable for large-scale production.缺点:成本高,冬季需额外保温措施。Disadvantages: High cost, requiring additional insulation measures in winter.
1.1.2 建筑设施结构研究 在设施果树栽培中,建筑设施的结构设计直接关系到温室的稳定性、耐久性以及果树的生产效率,合理的结构设计不仅能有效抵御风雪等自然灾害,还能最大化利用光照资源,为果树创造适宜的生长环境[16]。中国农业科学院果树研究所浆果类创新团队设计了一种适合国情的低成本、节能型日光温室[17],并在不同地区进行了试验验证,结果显示该温室在保温、采光及积雪清理方面表现优异,对葡萄等果树的生长质量和果实品质有显著提升。郭利民等[18]设计了一种高脊、大跨度、空间宽敞的钢结构日光温室,其结构稳固性显著提升,增强了抵抗自然灾害的能力。陈吉[19]和陆琳等[20]针对不同地域和气候条件分别设计了果树专用大棚和适应低纬高原气候的新型日光温室。闫冬梅等[21]利用有限元软件建模分析了不同作物吊挂模式等对温室结构内力的影响,发现柱脚铰接的单管拱架在作物荷载两点吊挂时会出现强烈的局部应力集中现象,提出应采用前柱脚铰接、后柱脚固接、后墙立柱为格构柱的结构形式,以达到最小和最大应力及最合理的应力分布。此外,郄丽娟等[22]设计了一种装配式异质复合墙体日光温室,使用环保建材和装配式钢骨架,与传统温室相比,该温室墙体热阻高、传热系数低,且具有更高的放热效率和升温速率,室内温度更稳定,且结构安全性更好。王蕊等[23]的研究结果表明,针对北方土质墙体日光温室,黏土、粉质黏土和沙土含水量超26%、16%和14%时墙体易失稳,外坡角增至70°加剧风险,建议控制含水量,外坡角60°~70°为宜。
1.1.3 建筑设施环境与能耗研究 建筑设施环境与能耗的研究是提升设施果树生产效率和实现绿色发展的关键,降低能耗、提高能源利用效率,不仅能降低生产成本,还能减轻对环境的影响,推动设施果树栽培向更加环保、可持续的方向发展[24-26]。赵晓彤等[27]通过实时监测典型日光温室的环境因子,分析了温室的能耗情况,发现传热能耗在冬季夜间占主导地位,其次为冷风渗透能量消耗,土壤在日光温室夜间起到室内保温作用。王超等[28]的研究结果表明,最冷月和冬至日的日光温室采暖能耗需求随纬度升高而增加,冬至日需求量分布不均,关键影响因素为南屋面保温和换气次数。史宇亮等[29]通过测试最冷季节(30 d)温室内气温、墙体温度、室外气温及室外太阳辐照度等数据,分析了土墙温室内外温度分布规律,结果表明,墙体表面及浅层温度随温室气温周期性变化,深层温度稳定,墙体夜间放热效率为43%。许红军等[30]研究结果表明,日光温室墙体可划分为保温层、稳定层、蓄热层,各层的厚度与墙体蓄热材料、保温材料的热物性有关,墙体厚度大于30 cm时,温室内温度波动平缓。在温室结构、保温性能不变的情况下,温室蓄热层厚度及波动情况受外界光温环境的综合影响较小。
1.1.4 建筑设施覆盖材料研究 设施果树栽培中,建筑设施的覆盖材料选择多样,主要包括塑料薄膜(如PVC、PE、PO 膜)、玻璃、遮阳网、无纺布、草苫(或草帘)以及水帘等[31-33]。其中,塑料薄膜因其成本低、透光保温性能优良且安装维护简便,得到广泛应用。玻璃则以其出色的透光隔热性著称,但成本相对较高。遮阳网和无纺布等半透明材料,能够有效调节设施内的光照和温度,满足特定栽培需求。草苫和草帘等不透明材料,则主要用于保温,确保果树在寒冷季节的正常生长。此外,水帘在夏季用于降温,以保持设施内的适宜温度。在选择这些覆盖材料时,应综合考虑作物生长需求、当地气候条件、成本效益以及环保因素,以实现最佳栽培效果。王伟等[34]通过CFD方法对比发现,双膜拱棚在夏季能减少高温积聚,冬季则保持较高平均温度,特别适合寿光地区气候。魏巍等[35]的研究显示,双膜日光温室能显著提高浅层土壤温度,且室内热环境更稳定。杨小锋等[36]则提出了覆盖PE 薄膜较之白色防虫网和露地处理,可提高棚内温度,调节设施温差和光环境,防止害虫侵入,显著改善果实品质,提高果实产品安全性,促进杧果植株生长。杨定伟等[37]和程丽等[38]的研究则分别揭示了装配式砾石和土模块温室的优异保温蓄热性能,以及双层薄膜覆盖和复合材料后墙体对保温性能的提升作用。
设施果树栽培通过监测系统的应用,果农可更加准确地掌握果树生长环境的变化,精确调节灌溉和养分供应,提高果树的生长效率和产量,并减少资源的浪费[39],其工作原理如图2 所示。监测系统一般包括光照传感器、温湿度传感器、CO2气体浓度传感器、土壤水分养分检测装置等[40-41]。李振东[42]设计了涉及物联网、ZigBee、ARM,以及4G 通信技术的智能葡萄大棚监测系统,通过信息采集器对温室环境信息数据进行采集,然后通过无线传感网络将数据传递到协调器上,以ARM作为核心处理器替代传统单片机进行数据处理,最后通过4G网络通信技术将数据传送到云管理,从而实现管理人员对葡萄大棚的实时监测与控制。陈春玲等[43]基于北方果树栽培日光温室环境,提出一种基于无线传感器的数据融合方法,以提高实时数据精度,通过格拉布斯判定准则剔除粗大误差,再结合自适应加权平均算法进行数据融合,试验结果显示,该方法能有效提高数据精度,为温室环境监测和控制提供更精准的基础数据。孙昌权等[44]设计开发了一种设施草莓智慧生产管控系统,包括生长环境信息感知系统和设施内的环境调控系统2 个部分,该系统结合多传感器数据融合算法和专家决策控制系统模型,提高环境参数采集的准确性和真实性,保证草莓各生长阶段对生长环境和水肥需求的精准控制。
图2 设施果树栽培监测系统原理
Fig.2 Principle of monitoring system for facility fruit tree cultivation
环境调控设备包括温湿度控制装置(如温控器、加热设备、卷膜器、加湿装置等)、光照调控设备(如光温室自动卷帘机、LED 补光灯等)、CO2发生装置和通风装置(风道、排风设备)等组成,环境调控设备的应用可有效优化果树的生长环境,提高生产效率,提高产量和果品质量[45-46]。
1.3.1 温湿度控制装置 在设施果树栽培中,温湿度控制装置通过温湿度传感器收集数据,依据预设范围自动调节风机、卷膜器和加湿器等,维持最佳生长环境。张明秋[47]采用先进的随机森林算法,设计了人工光源设施内的温湿度控制系统。该系统通过多变量解耦内模控制方法,实现了对温湿度的精准控制,试验证明其性能稳定且满足生产需求。李亨[48]通过对比多种控制方法,发现模糊解耦控制在设施内温湿度调控方面表现最佳。刘云骥等[49]研发了日光温室正压式湿帘风机降温系统,并优化了结构参数,该系统在夏季能显著降低温度,提供均匀的温湿度环境。宋财柱等[50]则利用L-M 算法的BP 神经网络模型,成功建立了温室内空气温湿度的预测模型,为温室内的环境调控提供了有力支持。陈辛格等[51]针对中高纬度地区温室冬季面临的问题,提出了结合窄槽式集热器与固体除湿剂的调控系统,显著改善了作物生长环境。薛晓萍等[52]研究结果表明,自然通风降湿能力弱,温室内湿度呈现明显的下高上低垂直分布,高风速降湿能力强,温室北侧湿度高于南侧,偏东风降湿效率高,北风效果差。
1.3.2 自动卷帘机 自动卷帘机能自动卷放保温覆盖物,调节棚内光照、温度和湿度,提高劳动效率,减小劳动强度,是设施果树栽培不可或缺的装备[53]。刘洋等[54]设计了一种锥形滚筒式翻越卷放装置,该装置由卷被轴、摇杆、主机、辅助翻越机构组成,通过绳索传动实现保温被的翻越卷放,有效解决了保温被卷起后的问题。吴若丁等[55]研发了一种新型日光温室双稳态折叠结构保温设施,通过充气或抽气进行状态切换,免除了卷帘机的使用。张国祥等[56]设计的协调铺卷装置,能实现多种覆盖物的协调铺卷,展现出较好的控制精度和稳定性。裴雪等[57]设计了基于温光耦合的卷帘机精准控制系统,该系统采用光照与温度传感器实时监测,结合温光耦合模型决策,通过中间继电器及红外限位开关控制卷帘机,提高其控制精度与使用安全性。董亮等[58]设计了一款自动接缝的日光温室卷帘装置,实现中间覆盖材料同步卷放,可折叠且与卷帘轴同步运行,保持恒定角度避免碰撞。
1.3.3 CO2发生装置 CO2发生装置一般安装在设施中央部,利用化学反应产生CO2,通过排气管将产生的CO2均匀释放至整个空间,促进果树光合作用,提高果树产量与果实品质[59-60]。辛敏[61]设计的零浓度差CO2施肥系统,能够将室内CO2浓度有效补充至室外相同水平,不仅降低了成本,还提高了CO2的利用率。马凯等[62]设计了日光温室CO2施肥系统,试验结果表明,日光温室的施肥区CO2 浓度提高12.4%,油桃光合速率提高48.2%,品质显著改善,增施CO2气肥可有效提高油桃光合速率及品质。
1.3.4 通风装置 通风装置是设施果树栽培的重要设备,主要由进风口、出风口、风机及控制系统等组成,其通过风机驱动空气流动,实现温室与外界的空气交换,有效降低室内温度,减少病虫害发生,一些先进的通风装置还集成了降温、加湿等功能,进一步提升了设施果树栽培的效率和果实品质[63-67]。胡万玲等[68]研究不同的送/回风方式对日光温室的影响,发现下送上回的通风方式效果最佳。万敏等[69]研究发现开启后墙通风口及调整其位置能提高降温效率、降低作物蒸腾速率。郑若琳等[70]则通过数值模拟揭示,通风形式显著影响温室内气流与温湿度分布,上下通风口同时开启在炎热天气下效果最佳,有效降低室内温湿度,而下通风口单独使用则会导致分布不均。
1.4.1 水肥一体化装备 设施果树栽培可通过水肥一体化装备,将水与肥料混合后,经过精确的灌溉系统,将水分和养分均匀地输送到果树的根部,为果树精确供应水肥,优化果树的生长环境[71-73]。水肥一体化装备一般由储水装置、肥料储存与混合装置、灌溉系统和控制系统组成,如图3 所示。储水装置储存各种水源以确保灌溉连续,肥料储存装置混合适合果树吸收的营养液,灌溉系统将水肥溶液均匀送至果树根部,实现节水、节肥、高效灌溉;控制系统监控管理整个装备,根据果树生长、环境条件和用户需求,自动调整水肥混合比例、灌溉时间和频率,确保果树获得最佳水肥供应[74]。黄卿宜等[75]研究水肥一体化条件下设施甜瓜施肥灌溉制度,试验结果表明,增加施肥量能显著提升甜瓜株高和茎粗,高灌水下限可促使作物早熟,提高市场价值。李增源等[76]设计了设施葡萄智能化水肥管理系统,其基于NB-IoT网络传输的固态电阻传感器设备对设施葡萄根系土壤水分进行实时监测,建立基于土壤水分张力的设施葡萄灌溉决策指标,并依托水肥一体化设备实现自动灌溉。
图3 水肥一体化装备
Fig.3 Integrated equipment for water and fertilizer management
1.4.2 农机作业装备 设施果树栽培的农机作业装备包括微耕机、割草机、修枝机、植保机、采摘机等[77-79],其性能参数如表2所示。微耕机是小型土壤耕作机械,适用于狭小空间,能进行旋耕、松土、开沟等作业,可根据需求更换刀具和附件;割草机以电动遥控式为主,高效除草,保持果园整洁;修枝机则根据果树需求修剪枝条,保持树形和通风,有手动、电动、气动等类型;植保机用于病虫害防治,喷洒化学药剂,电动植保机喷雾均匀且高效;采摘机则能自动采摘成熟度和大小合适的果实,提高采摘效率,有振动式、吸入式等多种类型,这些机械大大提高了设施果树的生产效率[80-82]。姬丽雯等[83]研究设计了一种应用于日光温室的草莓采摘机器人,该机器人使用激光雷达构建地图与定位,双目深度相机识别成熟草莓,并由6自由度机械臂进行抓取和放置,能实现自主路径规划,行走过程中识别成熟草莓并完成采摘。
表2 设施果树栽培农机作业装备组成
Table 2 Composition of agricultural machinery equipment for facility fruit tree cultivation
作业速度:3~5 km·h-1;顶部最大切割高度:4 m;最大修枝直径:8 cm。Operating speed:3-5 km·h- 1; Maximum cutting height at the top:4 m;Maximum pruning diameter:8 cm.农机装备Agricultural machinery equipmentimages/BZ_208_308_1965_586_2223.png装备名称Equipment name微耕机Micro-cultivator主要性能参数Main performance parameters作业速度:0.5~1.5 km·h-1;工作幅宽:500~800 mm;油耗:≤35 kg·hm-2。Operating speed: 0.5-1.5 km·h-1;Working width:500-800 mm; Fuel consumption≤35 kg·hm-2.images/BZ_208_309_2247_585_2453.pngimages/BZ_208_300_2477_594_2718.pngimages/BZ_208_284_2742_610_2961.png割草机Grass cutter修枝机Pruning machine植保机Plant protection machine作业速度:3~5 km·h-1;遥控距离:200~800 m;切割高度:20~180 mm;割草幅宽:600~800 mm。Operating speed:3-5 km·h-1; Remote control distance:200-800 m; Cutting height:20-180 mm;Grass cutting width:600-800 mm.作业速度:4~7 km·h-1;药箱容积:20~30 L;液泵流量:0~3.6 L·min-1;喷幅:4~7 m。Operating speed:4-7 km·h-1; Tank capacity: 20-30 L; Liquid pump flow rate:0-3.6 L·min-1;Spraying width:4-7 m.images/BZ_208_290_2985_604_3201.png果实采摘机器人Fruit picking robot作业速度:3~5 km·h-1;续航时间:6~12 h;摘果速度:2~3 s·次-1。Operating speed:3-5 km·h-1;Endurance:6-12 hours;Fruit picking speed:2-3 seconds per pick.
国外设施果树栽培装备的研究起步较早,呈现高度集成化、智能化与绿色化的发展趋势,以荷兰、日本、澳大利亚、美国、以色列等发达国家的成果显著[84-87],这些国家多采用现代化的大型连栋大棚及日光温室作为主要栽培设施,并结合先进的保温、通风、遮阳及加温系统,能够精准调控环境参数,为果树生长创造最适条件[88-91]。
美国新建造的果树栽培温室单体面积均在1 hm2以上,并大量采用无土栽培技术[92];荷兰的设施果树栽培连栋玻璃温室如图4 所示,温室以文洛式结构设计,具有超大空间和跨度,便于中大型农业机械进入作业,采用中空铝合金骨架代替传统温室的单层铁材质天沟,不仅减少了设施温室的支撑结构,也降低了支撑结构的遮光面积,提升了采光及保温效果,设施顶部覆盖高透光漫反射玻璃,透光率在90%以上,为果树提供了充足的光照条件。同时温室内配备先进的环境调控系统和智能化管理系统,能够精确控制温室的环境参数,为果树提供最佳的生长环境[93-95]。
图4 荷兰设施果树栽培连栋玻璃温室
Fig.4 Dutch fruit tree cultivation glass greenhouse
日本的设施葡萄栽培大棚如图5 所示,大棚多采用坚固耐用的钢架结构作为支撑,覆盖材料则选用透光性好、耐用的聚乙烯长寿无滴膜等;大棚设计充分考虑采光、保温和通风需求,通常坐北朝南、东西延长,确保葡萄能够充分接受光照;大棚尺寸适中,一般脊高在4.5~5 m 之间,长度在80~120 m 之间,既方便管理又适宜机械化,大棚内配备了传感器及水肥一体化系统,以实现葡萄生长环境的实时监测和精准控制。
图5 日本设施葡萄大棚
Fig.5 Japanese facility grape greenhouse
美国、荷兰、以色列等发达国家,通过将工业的先进技术融入到农业生产中,较早地提出了“工厂化农业”的理念,这些国家已研发了系列的设施果树生产配套装备,如小型微耕机、除草机、修枝机及采摘机器人等,实现了从土壤耕整、树体修剪到果实采摘的设施生产全程机械化作业,提高了设施果树的栽培效率[96-97]。此外,荷兰还研制出大型温室清洗装置,专门用于清除温室屋面的灰尘,以此提高温室的透光效果,进一步优化农业生产条件。
设施果树栽培需要一系列专用的设施来支持,包括温室、大棚、灌溉系统、施肥系统等。然而,目前市场上针对设施果树栽培的专用设施并不多[98-100]。同时受经济条件和技术水平限制,许多果农往往选择结构简单、材料廉价的简易大棚或温室栽培果树,据统计,中国简易设施面积约占设施总面积的2/3[9],这些简易设施结构规格不一,虽然能够在一定程度上满足果树生长的基本需求,但往往缺乏必要的保温、通风和遮阳等功能,导致设施内环境波动大,不利于果树的稳定生长;同时这种设施跨度小、高度矮,内部空间不足,无法进行机械化作业,限制了设施果树生产效率的提高[101]。
设施果树栽培需要对温度、湿度、光照等环境因子进行精准调控,以满足果树不同生长阶段的需求。然而,由于设施结构简陋,缺乏相应自动化环境调控设备,如温湿度控制系统、补光系统、通风系统等,这导致设施内环境无法得到有效调控,难以满足果树生长的最佳条件[102]。
设施果树栽培需要使用一些专用的覆盖材料(耐候性强、透光性好),然而市场上的专用设施覆盖材料不多,很多只能使用普通的农业材料进行替代[103]。传统的覆盖材料(如草苫、保温被等)存在透光性能差、易损坏、保温效果不好等缺陷,难以满足设施果树对光、温的精细调控需求。这不仅增大了环境调控难度,还限制了果树的正常生长,进而影响了果品的产量与品质。
目前,中国设施果树栽培的机械化程度较低,综合机械化率不足40%,很多生产环节仍以人力为主[77,104]。设施果树栽培因其特殊的种植模式和狭小的空间布局,急需小型化、灵活性强的专用农机具,然而当前市场上针对设施果树栽培的专用小型农机种类有限,且功能相对单一,难以满足多样化、精细化的生产需求。同时农机自动化、智能化水平较低,很多需要人力辅助作业,这都增加了设施果树的生产成本,限制了生产效率。
未来的建筑设施不仅提供基础的保温、遮阳等功能,还将结合智能材料、物联网技术,实现自动化调节和生态循环[105]。例如,温室可采用智能玻璃或智能棚膜,根据光照度自动调节透光度;同时,设施内部将构建生态循环系统,如雨水收集、再利用,以及通过植物和微生物的协同作用实现废弃物的自然降解。这种发展方向旨在提高设施的自适应性和生态可持续性。
首先测控装置将进化为全面感知果树生长状态的智能系统,除了现有的温度、光照等传感器,还将引入更多类型的生物传感器,如叶片气孔导度、果实可溶性固形物含量、果实香气成分等,以全方位地监测果树生长。数据分析决策终端将运用更先进的算法,如深度学习、模式识别等,对感知数据进行实时分析,为环境调控提供精准指导,通过大数据和人工智能技术的结合,管理系统能自动制定和调整灌溉、施肥、病虫害防治等方案,以满足果树生长的各种需求。这种全面感知与智能决策的发展趋势,将极大地提高设施果树栽培的管理水平和生产效益[106]。
在未来设施果树栽培中,农机与农艺将高度融合[107-109]。首先,结合果树生长特性,采用标准的设施果树栽培模式,包括科学地确定株行距、培养适宜的树形,拓宽设施内机耕道路,平整土地,以适应机械化作业的需求。其次,一系列智能农机将被广泛应用,设施内的智能农机装备将结合先进的导航、识别和通信技术,实现自动化和智能化的作业,如修剪机器人能够自动识别树枝的生长情况和修剪需求,进行精准的修剪操作;采摘机器人则能通过视觉识别和机械手臂的精确控制,实现无损、高效的果实采摘。再次,多台农机装备之间还将实现实时的信息共享和协同作业,通过先进的通信技术和协同算法,共同完成复杂的果树栽培任务。农机农艺高度融合将极大地提升设施果树栽培的作业效率和生产质量,推动其向更高水平发展[110-111]。
[1] 许奇志,邓朝军,蒋际谋,陈秀萍.避雨设施葡萄对套种枇杷生长与结果的影响[J].果树学报,2023,40(10):2149-2159.XU Qizhi,DENG Chaojun,JIANG Jimou,CHEN Xiuping. Effects of grapes in shelter facilities on tree growth and fruiting of interplanted loquat[J]. Journal of Fruit Science,2023,40(10):2149-2159.
[2] 李都岳,吴延军.补光对设施栽培樱桃果实成熟和糖分积累的影响[J].果树学报,2023,40(10):2183-2194.LIDuyue,WU Yanjun. Effects of supplementary light on ripening and sugar accumulation of cherry under protected cultivation[J].Journal of Fruit Science,2023,40(10):2183-2194.
[3] 刘凤之,王海波,李莉,宣景宏.我国设施果树产业现状、存在问题与发展对策[J].中国果树,2021(11):1-4.LIU Fengzhi,WANG Haibo,LILi,XUAN Jinghong. Current situation,issue and suggestion of the protected fruit industry in China[J].China Fruits,2021(11):1-4.
[4] 王海波,周泽宇,杨振锋,曹玉芬,张彩霞,程存刚,周宗山,王文辉,胡成志,冯学杰,吕鑫,曹永生.我国果业高质量发展的制约因素探析[J].中国果树,2023(7):1-9.WANG Haibo,ZHOU Zeyu,YANG Zhenfeng,CAO Yufen,ZHANG Caixia,CHENG Cungang,ZHOU Zongshan,WANG Wenhui,HU Chengzhi,FENG Xuejie,LÜ Xin,CAO Yongsheng.Constraints on the high-quality development of Chinese fruit industry[J].China Fruits,2023(7):1-9.
[5] 杨玉香.中国北方设施果树产业现状与发展对策[J].落叶果树,2024,56(3):63-65.YANG Yuxiang.Current situation and development strategies of facility fruit tree industry in Northern China[J]. Deciduous Fruits,2024,56(3):63-65.
[6] 戚行江,梁森苗,陈海豹,俞浙萍,孙鹂,郑锡良,张淑文.促早栽培对杨梅叶片形态及果实成熟与品质的影响[J].果树学报,2023,40(11):2403-2412.QIXingjiang,LIANG Senmiao,CHEN Haibao,YU Zheping,SUN Li,ZHENG Xiliang,ZHANG Shuwen. Effects of forcing cultivation on the leaf morphology,fruit ripening and quality of Myrica rubra[J]. Journal of Fruit Science,2023,40(11):2403-2412.
[7] 解冰芊,郭天然,李玉婷,任利慧,黄建.冬枣光响应模型及不同物候期光合变化动态研究[J].果树学报,2024,41(8):1617-1626.XIE Bingqian,GUO Tianran,LIYuting,REN Lihui,HUANG Jian. Light response model and photosynthetic dynamics at different phenological stages of Dongzao jujube[J]. Journal of Fruit Science,2024,41(8):1617-1626.
[8] 李天来,齐明芳,孟思达.中国设施园艺发展60 年成就与展望[J].园艺学报,2022,49(10):2119-2130.LITianlai,QIMingfang,MENG Sida.Sixty years of facility horticulture development in China:Achievements and prospects[J].Acta Horticulturae Sinica,2022,49(10):2119-2130.
[9] 李天来.加快发展好中国特色设施种植业[J].寒旱农业科学,2022,1(1):1-3.LITianlai. Speeding up the development of facility planting industry with Chinese characteristics[J]. Journal of Cold-Arid Agricultural Sciences,2022,1(1):1-3.
[10] 齐明芳,刘兴安,孟思达,李天来.我国节能日光温室发展历程[J].新农业,2023(19):4-7.QIMingfang,LIU Xing’an,MENG Sida,LITianlai.The development history of energy-saving solar greenhouses in China[J].New Agriculture,2023(19):4-7.
[11] LIY M,YAN J,LIZ Z,HE M,LIU X G,LIT L.A globalized methodology of energy-saving solar greenhouse design in high latitudes[J].Energy,2024,304:132117.
[12] YANG A Q,XU X,JIA S C,HAO W X. Heat storage and release performance of solar greenhouses made of composite phase change material comprising methyl palmitate and hexadecanol in cold climate[J]. Thermal Science and Engineering Progress,2024,54:102837.
[13] WAN X C,XIA T Y,LIY M,SUN Z P,LIU X G,LIT L.Study on a novel water heat accumulator below the north roof in Chinese solar greenhouse:System design[J].Applied Thermal Engineering,2023,234:121316.
[14] 王蕊,杨小龙,马健,须晖,李天来.温室透光覆盖材料的种类与特性分析[J].农业工程技术,2016,36(16):9-12.WANG Rui,YANG Xiaolong,MA Jian,XU Hui,LITianlai.Analysis of types and characteristics of light-transmitting covering materials for greenhouses[J].Agricultural Engineering Technology,2016,36(16):9-12.
[15] 周长吉. 日光温室主动加温技术与设备[J]. 中国蔬菜,2023(7):7-19.ZHOU Changji. Active heating technology and equipment for Chinese solar greenhouse[J].China Vegetables,2023(7):7-19.
[16] 张惠楠,李明,祝鹏.北方日光温室构造的研究进展[J].智慧农业导刊,2024,4(6):64-68.ZHANG Huinan,LIMing,ZHU Peng. Progress in the structure of the northern solar greenhouse[J]. Journal of Smart Agriculture,2024,4(6):64-68.
[17] 王志强,王海波,刘凤之,王孝娣,王小龙,李鹏,史祥宾.设施农业大棚冬季除雪注意事项及方法[J].果树实用技术与信息,2022(12):45-46.WANG Zhiqiang,WANG Haibo,LIU Fengzhi,WANG Xiaodi,WANG Xiaolong,LIPeng,SHIXiangbin. Points for attention and methods for snow removal in winter from facility agricultural greenhouses[J].Applied Technology and Information for Fruit Trees,2022(12):45-46.
[18] 郭利民,常聚普,吴亚冉,王磊,于利强,桑圣奇.一种新型适宜果树反季节栽培的钢结构日光温室[J].北方园艺,2019(19):45-48.GUO Limin,CHANG Jupu,WU Yaran,WANG Lei,YU Liqiang,SANG Shengqi.A novel steel-framed solar greenhouse suitable for off-season cultivation of fruit trees[J].Northern Horticulture,2019(19):45-48.
[19] 陈吉. 果树专用连栋大棚设计与应用[J]. 农业开发与装备,2017(9):88-89.CHEN Ji. Design and application of a specialized multi-span greenhouse for fruit trees[J].Agricultural Development&Equipments,2017(9):88-89.
[20] 陆琳,于菲,仇明华,张晏.一种新型日光温室及其在果树栽培中的应用[J].农业工程技术,2017,37(25):38-40.LU Lin,YU Fei,QIU Minghua,ZHANG Yan. A novel solar greenhouse and its application in fruit tree cultivation[J]. Agricultural Engineering Technology,2017,37(25):38-40.
[21] 闫冬梅,徐开亮,周长吉,张秋生.柔性保温墙椭圆管单管拱架日光温室内力分析及结构优化[J]. 农业工程学报,2023,39(14):215-222.YAN Dongmei,XU Kailiang,ZHOU Changji,ZHANG Qiusheng.Internal force analysis and structure optimization of single oval tube arch solar greenhouse with flexible insulation wall[J].Transactions of the Chinese Society of Agricultural Engineering,2023,39(14):215-222.
[22] 郄丽娟,韩建会,李永.装配式异质复合墙体日光温室热性能分析与评价[J].中国农业大学学报,2023,28(4):159-169.QIE Lijuan,HAN Jianhui,LIYong.Thermal performance analysis and evaluation on solar greenhouse with assembled heterogeneous composite wall[J].Journal of China Agricultural University,2023,28(4):159-169.
[23] 王蕊,杨小龙,王小雯,马健,李天来,须晖.含水量对日光温室土质墙体稳定性影响的有限元分析[J].沈阳农业大学学报,2017,48(3):277-283.WANG Rui,YANG Xiaolong,WANG Xiaowen,MA Jian,LITianlai,XU Hui. Finite element analysis of effect of water content on earth-wall stability of Chinese solar greenhouse[J].Journal of Shenyang Agricultural University,2017,48(3):277-283.
[24] 蒋国振,胡耀华,刘玉凤,邹志荣.基于CFD 的下沉式日光温室保温性能分析[J].农业工程学报,2011,27(12):275-281.JIANG Guozhen,HU Yaohua,LIU Yufeng,ZOU Zhirong.Analysis on insulation performance of sunken solar greenhouse based on CFD[J]. Transactions of the Chinese Society of Agricultural Engineering,2011,27(12):275-281.
[25] 孙树鹏,董朝阳,黎贞发,杨涵洧.基于CFD 的不同环境温度下日光温室内部温度变化研究[J]. 天津农业科学,2020,26(10):43-47.SUN Shupeng,DONG Chaoyang,LIZhenfa,YANG Hanwei.Study on temperature change of solar greenhouse at different environmental temperature based on CFD[J]. Tianjin Agricultural Sciences,2020,26(10):43-47.
[26] BERROUG F,LAKHAL E K,EL OMARIM,FARAJIM,EL QARNIA H.Thermal performance of a greenhouse with a phase change material north wall[J]. Energy and Buildings,2011,43(11):3027-3035.
[27] 赵晓彤,须晖,李天来,王蕊.东北地区日光温室冬季能量分配模型的建立[J].沈阳农业大学学报,2019,50(1):43-50.ZHAO Xiaotong,XU Hui,LITianlai,WANG Rui. Establishment of winter energy distribution model for solar greenhouse in Northeast China[J].Journal of Shenyang Agricultural University,2019,50(1):43-50.
[28] 王超,方慧,张义,桑硕,曹轲菲.轻简柔性墙体装配式日光温室能耗分析[J].农业工程学报,2023,39(3):190-197.WANG Chao,FANG Hui,ZHANG Yi,SANG Shuo,CAO Kefei. Energy consumption analysis of simply soft insulated wallassembled Chinese solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering,2023,39(3):190-197.
[29] 史宇亮,王秀峰,魏珉,李清明,刘福胜,侯加林.日光温室土墙体温度变化及蓄热放热特点[J]. 农业工程学报,2016,32(22):214-221.SHIYuliang,WANG Xiufeng,WEIMin,LIQingming,LIU Fusheng,HOU Jialin. Temperature variation,heat storage and heat release characteristics of soil wall in solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering,2016,32(22):214-221.
[30] 许红军,曹晏飞,李彦荣,阿拉帕提,高杰,蒋卫杰,邹志荣.基于CFD 的日光温室墙体蓄热层厚度的确定[J]. 农业工程学报,2019,35(4):175-184.XU Hongjun,CAO Yanfei,LIYanrong,Alapati,GAO Jie,JIANG Weijie,ZOU Zhirong. Determination of thickness of thermal storage layer of solar greenhouse wall based on CFD[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(4):175-184.
[31] 赵洪满.设施温室材料选择及建造模式[J].农业工程,2022,12(6):75-77.ZHAO Hongman. Material selection and construction mode of facility greenhouse[J].Agricultural Engineering,2022,12(6):75-77.
[32] 刘晨霞,马承伟,王平智,赵淑梅,程杰宇,王明磊.日光温室保温被传热的理论解析及验证[J].农业工程学报,2015,31(2):170-176.LIU Chenxia,MA Chengwei,WANG Pingzhi,ZHAO Shumei,CHENG Jieyu,WANG Minglei.Theoretical analysis and experimental verification of heat transfer through thick covering materials of solar greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering,2015,31(2):170-176.
[33] 于威,刘文合,白义奎,丁小明.基于CFD 的两连跨日光温室热环境模拟[J].农业工程学报,2023,39(16):215-222.YU Wei,LIU Wenhe,BAIYikui,DING Xiaoming. Simulating thermal environment in a two-span solar greenhouse using CFD[J].Transactions of the Chinese Society of Agricultural Engineering,2023,39(16):215-222.
[34] 王伟,方慧,伍纲,程瑞锋,张义,袁余.基于CFD 模型的双膜大跨度拱棚热环境模拟[J].中国农业大学学报,2024,29(5):115-124.WANG Wei,FANG Hui,WU Gang,CHENG Ruifeng,ZHANG Yi,YUAN Yu. Thermal environment simulation in a doublefilm large-span greenhouse based on CFD model[J]. Journal of China Agricultural University,2024,29(5):115-124.
[35] 魏巍,杨林艳,柴云娥,顾金寿,刘孝敏,刘叶瑞.双膜日光温室土壤-空气换热器土壤温度试验研究[J]. 科学技术与工程,2024,24(5):1930-1936.WEIWei,YANG Linyan,CHAIYun’e,GU Jinshou,LIU Xiaomin,LIU Yerui. Experimental study on soil temperature of soilair heat exchanger in double-film solar greenhouse[J]. Science Technology and Engineering,2024,24(5):1930-1936.
[36] 杨小锋,李劲松,杨沐,陈明乐,黄植.设施栽培覆盖材料对芒果品质及设施环境的影响[J].中国果树,2011(6):44-48.YANG Xiaofeng,LI Jinsong,YANG Mu,CHEN Mingle,HUANG Zhi. Effects of covering materials on mango quality and facility environment in protected cultivation[J]. China Fruits,2011(6):44-48.
[37] 杨定伟,荆海薇,景炜婷,何斌,邹志荣,鲍恩财,曹晏飞.不同墙体材料的装配式日光温室的热性能对比分析[J].中国农业大学学报,2023,28(10):194-205.YANG Dingwei,JING Haiwei,JING Weiting,HE Bin,ZOU Zhirong,BAO Encai,CAO Yanfei.Comparative analysis of thermal performance of fabricated solar greenhouses with different wall materials[J]. Journal of China Agricultural University,2023,28(10):194-205.
[38] 程丽,张国辉,杨帅,王春雨,林娜,潘凯.高寒地区冬季不同类型日光温室内环境的比较[J].北方园艺,2023(12):44-50.CHENG Li,ZHANG Guohui,YANG Shuai,WANG Chunyu,LIN Na,PAN Kai. Comparative analysis of internal environment of different types of solar greenhouses in winter in alpine regions[J].Northern Horticulture,2023(12):44-50.
[39] 王柯如,任妮,金晶,毛晓娟,刘杨.设施环境调控技术研究现状与挑战[J].中国农业信息,2024,36(2):73-82.WANG Keru,REN Ni,JIN Jing,MAO Xiaojuan,LIU Yang.Current status and challenges of research in facility environmental control technology[J]. China Agricultural Informatics,2024,36(2):73-82.
[40] KOCHHAR A,KUMAR N.Wireless sensor networks for greenhouses:An end-to-end review[J]. Computers and Electronics in Agriculture,2019,163:104877.
[41] 徐鹏,张冠智,李洋,徐晓东,杨振超.智慧设施农业中控制系统的研究进展[J].中国农学通报,2023,39(3):156-164.XU Peng,ZHANG Guanzhi,LIYang,XU Xiaodong,YANG Zhenchao.Control system in smart facility agriculture:Research progress[J]. Chinese Agricultural Science Bulletin,2023,39(3):156-164.
[42] 李振东.智能葡萄大棚监测系统设计[D].淮南:安徽理工大学,2019.LIZhendong. Design of intelligent grape greenhouse monitoring system[D]. Huainan:Anhui University of Science & Technology,2019.
[43] 陈春玲,崔琳,许童羽,周云成,李天来,王一情.日光温室无线传感器多数据融合技术研究[J].沈阳农业大学学报,2016,47(1):86-91.CHEN Chunling,CUILin,XU Tongyu,ZHOU Yuncheng,LITianlai,WANG Yiqing. Wireless-sensor and multi-data fusion technological research of sunlight greenhouse[J]. Journal of Shenyang Agricultural University,2016,47(1):86-91.
[44] 孙昌权,高菊玲.设施草莓智慧生产管控系统设计与实现[J].中国农机化学报,2021,42(12):80-86.SUN Changquan,GAO Juling. Design and implementation of intelligent control system for strawberry greenhouse[J]. Journal of Chinese Agricultural Mechanization,2021,42(12):80-86.
[45] 李玉亮,王尚华,鱼亚兰,牟佳,王旭东.设施农业温室环境调控装备的研究与进展[J].中国农机装备,2024(7):57-59.LIYuliang,WANG Shanghua,YU Yalan,MOU Jia,WANG Xudong. Research progress of greenhouse environment control equipment in facility agriculture[J]. China Agricultural Machinery Equipment,2024(7):57-59.
[46] HE X L,WANG J,GUO S R,ZHANG J,WEIB,SUN J,SHU S. Ventilation optimization of solar greenhouse with removable back walls based on CFD[J].Computers and Electronics in Agriculture,2018,149:16-25.
[47] 张明秋.人工光源型植物工厂温湿度环境控制与试验研究[D].大庆:黑龙江八一农垦大学,2021.ZHANG Mingqiu. Experimental study on temperature and humidity environment control in plant factory with artificial light source[D]. Daqing:Heilongjiang Bayi Agricultural University,2021.
[48] 李亨.基于模糊神经网络的植物工厂温湿度控制研究[D].天津:天津职业技术师范大学,2019.LIHeng. Study on temperature and humidity control of plant factory based on fuzzy neural network[D]. Tianjin:Tianjin University of Technology and Education,2019.
[49] 刘云骥,徐继彤,庞松若,孙周平,李天来.日光温室正压式湿帘风机系统设计及其降温效果[J].中国农业大学学报,2019,24(5):130-139.LIU Yunji,XU Jitong,PANG Songruo,SUN Zhouping,LITianlai. Design of positive-pressure wet curtain fan system for solar greenhouse and its cooling effects[J]. Journal of China Agricultural University,2019,24(5):130-139.
[50] 宋财柱,塔娜,闫彩霞,孙云峰,甄琦,李晓凯.日光温室环境因子预测模型及应用:基于BP 神经网络[J].农机化研究,2024,46(10):175-179.SONG Caizhu,TA Na,YAN Caixia,SUN Yunfeng,ZHEN Qi,LIXiaokai. Establishment and application of environmental factor model of solar greenhouse—based on BP neural network[J].Journal of Agricultural Mechanization Research,2024,46(10):175-179.
[51] 陈辛格,伍纲,冯朝卿,姬亚宁,马前磊,程瑞锋.基于窄槽式集热器的日光温室昼夜双循环热湿调控研究[J].工程热物理学报,2024,45(4):962-969.CHEN Xinge,WU Gang,FENG Chaoqing,JIYaning,MA Qianlei,CHENG Ruifeng.Study on diurnal double-cycle heat and humidity control system of solar greenhouse based on solar narrow trough collector[J]. Journal of Engineering Thermophysics,2024,45(4):962-969.
[52] 薛晓萍,宿文.基于CFD 的自然通风对日光温室湿度分布模拟分析[J].海洋气象学报,2019,39(4):90-96.XUE Xiaoping,SU Wen. CFD simulation of humidity distribution in solar greenhouse under natural ventilation[J]. Journal of Marine Meteorology,2019,39(4):90-96.
[53] 张国祥,傅泽田,张领先,严谨,张标,李鑫星.中国日光温室机械卷帘技术发展现状与趋势[J].农业工程学报,2017,33(增刊1):1-10.ZHANG Guoxiang,FU Zetian,ZHANG Lingxian,YAN Jin,ZHANG Biao,LIXinxing. Development status and prospect of mechanical rolling shutter technology in solar greenhouse in China[J].Transactions of the Chinese Society of Agricultural Engineering,2017,33(Suppl.1):1-10.
[54] 刘洋,宋卫堂,王平智.外保温塑料大棚锥形滚筒式翻越卷放装置的设计与试验[J]. 中国农业大学学报,2023,28(9):158-166.LIU Yang,SONG Weitang,WANG Pingzhi. Design and experiment of a conical reel type over-top rolling machine for thermal quilt in external thermal arch shed[J]. Journal of China Agricultural University,2023,28(9):158-166.
[55] 吴若丁,何斌,张亦博,龚健林,赵昱权.双稳态折叠结构日光温室前屋面保温设施的设计与试验[J].中国农业科技导报,2023,25(5):112-122.WU Ruoding,HE Bin,ZHANG Yibo,GONG Jianlin,ZHAO Yuquan. Design and experiment of thermal insulation facilities for the front roof of bistable folding solar greenhouse[J]. Journal of Agricultural Science and Technology,2023,25(5):112-122.
[56] 张国祥,张璐,李鑫星,龚志文,董玉红,马云飞.日光温室前屋面覆盖物协调铺卷装置设计与试验[J].农业机械学报,2023,54(5):348-358.ZHANG Guoxiang,ZHANG Lu,LIXinxing,GONG Zhiwen,DONG Yuhong,MA Yunfei.Design and experiment of coordinative operation device of covers on front roof of Chinese solar greenhouse[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(5):348-358.
[57] 裴雪,范奥华,刘焕宇,王孝龙,王东,范叶满,翟长远.基于温光耦合的温室卷帘机控制设备开发[J].农机化研究,2018,40(4):83-86.PEIXue,FAN Aohua,LIU Huanyu,WANG Xiaolong,WANG Dong,FAN Yeman,ZHAIChangyuan. Development of greenhouse rolling machine control equipment based on temperature and light coupling[J].Journal of Agricultural Mechanization Research,2018,40(4):83-86.
[58] 董亮,王家忠,孔德刚,刘江涛,袁永伟.日光温室卷帘机自动接缝装置设计[J].河北农业大学学报,2016,39(6):107-111.DONG Liang,WANG Jiazhong,KONG Degang,LIU Jiangtao,YUAN Yongwei.A design of automatic seamless device for solar greenhouse rolling machine[J]. Journal of Agricultural University of Hebei,2016,39(6):107-111.
[59] 李伟静.设施果树栽培增补二氧化碳的作用和方法[J].北方果树,2023(1):23-25.LIWeijing.Effects and methods of carbon dioxide supplementation in protected cultivation of fruit trees[J]. Northern Fruits,2023(1):23-25.
[60] 张俊清,丁宏斌.温室增施二氧化碳气肥技术试验效果探析[J].当代农机,2017(2):12-13.ZHANG Junqing,DING Hongbin. Analysis of the Experimental effects of carbon dioxide fertilization technology in greenhouses[J].Contemporary Farm Machinery,2017(2):12-13.
[61] 辛敏.引进室外冷源的植物工厂零浓度差CO2 施肥系统[D].北京:中国农业科学院,2015.XIN Min. Null CO2 concentration difference enrichment system by introducing outside cold air in plant factor[D]. Beijing:Chinese Academy of Agricultural Sciences,2015.
[62] 马凯,韩立群,闫鹏,克里木·伊明,梅闯,王继勋.南疆日光温室油桃CO2施肥效应研究[J].新疆农业科学,2015,52(3):467-471.MA Kai,HAN Liqun,YAN Peng,Kelimu·Yimin,MEIChuang,WANG Jixun. Study on effects of enrichment to nectarine in greenhouses[J]. Xinjiang Agricultural Sciences,2015,52(3):467-471.
[63] 牟华伟,王金星,刘双喜,于莲双,范连祥,傅生辉.日光温室集中式最优化控制通风系统[J].农机化研究,2015,37(9):113-117.MOU Huawei,WANG Jinxing,LIU Shuangxi,YU Lianshuang,FAN Lianxiang,FU Shenghui.Greenhouse centralized optimization control ventilation system[J]. Journal of Agricultural Mechanization Research,2015,37(9):113-117.
[64] 刘林,侯加林,姜斌.日光温室通风系统的设计与实现[J].山东农业科学,2015,47(5):115-118.LIU Lin,HOU Jialin,JIANG Bin. Design and implementation of intelligent greenhouse ventilation system[J]. Shandong Agricultural Sciences,2015,47(5):115-118.
[65] MASHONJOWA E,RONSSE F,MILFORD J R,PIETERS J G.Modelling the thermal performance of a naturally ventilated greenhouse in Zimbabwe using a dynamic greenhouse climate model[J].Solar Energy,2013,91:381-393.
[66] 方慧,杨其长,张义,程瑞锋,张芳,卢威.日光温室热压风压耦合自然通风流量的模拟[J]. 中国农业气象,2016,37(5):531-537.FANG Hui,YANG Qichang,ZHANG Yi,CHENG Ruifeng,ZHANG Fang,LU Wei. Simulation on ventilation flux of solar greenhouse based on the coupling between stack and wind effects[J]. Chinese Journal of Agrometeorology,2016,37(5):531-537.
[67] AL-HELAL IM,WAHEEB S A,IBRAHIM A A,SHADY M R,ABDEL-GHANY A M. Modified thermal model to predict the natural ventilation of greenhouses[J]. Energy and Buildings,2015,99:1-8.
[68] 胡万玲,陈冲,管勇,马乔乔,叶文涛.拱架送/回风方式对日光温室冬季作物冠层区热环境的影响[J].农业工程学报,2024,40(4):262-272.HU Wanling,CHEN Chong,GUAN Yong,MA Qiaoqiao,YE Wentao.Effects of arch frame air supply and return mode on the indoor thermal environment of crop canopy area for solar greenhouse in winter[J]. Transactions of the Chinese Society of Agricultural Engineering,2024,40(4):262-272.
[69] 万敏,杨魏,刘竹青,徐晨曦,刘东.不同通风方式日光温室微环境模拟与作物蒸腾研究[J].农业机械学报,2024,55(1):328-338.WAN Min,YANG Wei,LIU Zhuqing,XU Chenxi,LIU Dong.Microenvironment simulation and crop transpiration analysis of solar greenhouse with different ventilation modes[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(1):328-338.
[70] 郑若琳,杨魏,刘竹青.不同通风形式日光温室湿热特性的数值模拟[J].中国农业大学学报,2023,28(3):140-150.ZHENG Ruolin,YANG Wei,LIU Zhuqing. Numerical simulation of humid heat characteristics in solar greenhouse under different ventilation modes[J]. Journal of China Agricultural University,2023,28(3):140-150.
[71] 刘思汝,石伟琦,马海洋,王国安,陈清,徐明岗.果树水肥一体化高效利用技术研究进展[J].果树学报,2019,36(3):366-384.LIU Siru,SHIWeiqi,MA Haiyang,WANG Guoan,CHEN Qing,XU Minggang. Advances in research on efficient utilization of fertigation in fruit trees[J]. Journal of Fruit Science,2019,36(3):366-384.
[72] 冯紫荟,但晨歆,薛鑫海,丘智晃,陈煜林,涂攀峰,邓兰生.水肥一体化技术在荔枝上的应用[J]. 安徽农业科学,2023,51(6):144-147.FENG Zihui,DAN Chenxin,XUE Xinhai,QIU Zhihuang,CHEN Yulin,TU Panfeng,DENG Lansheng.Application of integrated water and fertilizer technology in litchi[J]. Journal of Anhui Agricultural Sciences,2023,51(6):144-147.
[73] 胡亮亮,熊橙梁,张庆富,瞿水根,陈金,方志超,杨柳,何激光,邓小华.水肥一体化技术研究现状及在我国的推广应用[J].现代农业科技,2023(20):104-109.HU Liangliang,XIONG Chengliang,ZHANG Qingfu,QU Shuigen,CHEN Jin,FANG Zhichao,YANG Liu,HE Jiguang,DENG Xiaohua. Research status of fertigation technology and its promotion and application in our country[J].Modern Agricultural Science and Technology,2023(20):104-109.
[74] 李红,汤攀,陈超,张志洋,夏华猛.中国水肥一体化施肥设备研究现状与发展趋势[J].排灌机械工程学报,2021,39(2):200-209.LIHong,TANG Pan,CHEN Chao,ZHANG Zhiyang,XIA Huameng. Research status and development trend of fertilization equipment used in fertigation in China[J]. Journal of Drainage and Irrigation Machinery Engineering,2021,39(2):200-209.
[75] 黄卿宜,孙一迪,周明耀,王恬,陈喜锋.水肥一体化条件下设施甜瓜灌溉施肥制度试验研究[J].节水灌溉,2022(4):71-76.HUANG Qingyi,SUN Yidi,ZHOU Mingyao,WANG Tian,CHEN Xifeng. Experimental study on irrigation and fertilization regime of protected melon under water and fertilizer integration[J].Water Saving Irrigation,2022(4):71-76.
[76] 李增源,王绍雷,姬廷廷,张卫峰.设施葡萄智能化水肥管理体系研究[J].中国土壤与肥料,2022(1):73-80.LIZengyuan,WANG Shaolei,JITingting,ZHANG Weifeng.Research on intelligent water and fertilizer management system of greenhouse grape[J]. Soil and Fertilizer Sciences in China,2022(1):73-80.
[77] 潘殿莲,王志强.我国设施果树全程机械化生产现状与趋势研究[J].中国果树,2024(4):148-151.PAN Dianlian,WANG Zhiqiang. Research on the current situation and trends of mechanized production of protected fruit trees in China[J].China Fruits,2024(4):148-151.
[78] 周桂官,苏生平,苏宇翔,吴剑铭,夏冰.江苏省设施西瓜机械化应用现状及发展建议[J].中国蔬菜,2021(11):113-117.ZHOU Guiguan,SU Shengping,SU Yuxiang,WU Jianming,XIA Bing. Current status and development suggestions for mechanized application in facility watermelon production in Jiangsu province[J].China Vegetables,2021(11):113-117.
[79] 孙锦,高洪波,田婧,王军伟,杜长霞,郭世荣.我国设施园艺发展现状与趋势[J].南京农业大学学报,2019,42(4):594-604.SUN Jin,GAO Hongbo,TIAN Jing,WANG Junwei,DU Changxia,GUO Shirong. Development status and trends of protected horticulture in China[J]. Journal of Nanjing Agricultural University,2019,42(4):594-604.
[80] LIU J Z,ZHAO S Y,LIN,FAHEEM M,ZHOU T,CAIW J,ZHAO M Z,ZHU X Y,LIP P.Development and field test of an autonomous strawberry plug seeding transplanter for use in elevated cultivation[J]. Applied Engineering in Agriculture,2019,35(6):1067-1078.
[81] XIONG Y,GE Y Y,GRIMSTAD L,FROM P J.An autonomous strawberry-harvesting robot:Design,development,integration,and field evaluation[J]. Journal of Field Robotics,2020,37(2):202-224.
[82] 阎应红.柑桔机械化和机器人采收研发现状与展望[J].中国南方果树,2023,52(2):203-209.YAN Yinghong. Current status and future prospects of research and development on mechanization and robotic harvesting of citrus[J].South China Fruits,2023,52(2):203-209.
[83] 姬丽雯,刘永华,高菊玲,吴丹.温室草莓采摘机器人设计与试验[J].中国农机化学报,2023,44(1):192-198.JILiwen,LIU Yonghua,GAO Juling,WU Dan. Design and experiment of strawberry picking robot in greenhouse[J]. Journal of Chinese Agricultural Mechanization,2023,44(1):192-198.
[84] 刘霓红,蒋先平,程俊峰,李惠玲,李苇,薛坤鹏,侯露,熊征.国外有机设施园艺现状及对中国设施农业可持续发展的启示[J].农业工程技术,2023,43(6):78.LIU Nihong,JIANG Xianping,CHENG Junfeng,LIHuiling,LIWei,XUE Kunpeng,HOU Lu,XIONG Zheng.Current status of organic protected horticulture abroad and its implications for sustainable development of protected agriculture in china[J]. Agricultural Engineering Technology,2023,43(6):78.
[85] 束胜,康云艳,王玉,袁凌云,钟珉,孙锦,郭世荣.世界设施园艺发展概况、特点及趋势分析[J].中国蔬菜,2018(7):1-13.SHU Sheng,KANG Yunyan,WANG Yu,YUAN Lingyun,ZHONG Min,SUN Jin,GUO Shirong.Analysis of the development status,characteristics,and trends of global facility horticulture[J].China Vegetables,2018(7):1-13.
[86] EZZAERI K,FATNASSI H,WIFAYA A,BAZGAOU A,AHAROUNE A,PONCET C,BEKKAOUIA,BOUIRDEN L.Performance of photovoltaic Canarian greenhouse:A comparison study between summer and winter seasons[J].Solar Energy,2020,198:275-282.
[87] REGANOLD J P,WACHTER J M. Organic agriculture in the twenty-first century[J].Nature Plants,2016,2:15221.
[88] RAHMANN G,REZA ARDAKANIM,BÀRBERIP,BOEHM H,CANALIS,CHANDER M,DAVID W,DENGEL L,ERISMAN J W,GALVIS-MARTINEZ A C,HAMM U,KAHL J,KÖPKE U,KÜHNE S,LEE S B,LØES A K,MOOS J H,NEUHOF D,NUUTILA J T,OLOWE V,OPPERMANN R,REMBIAŁKOWSKA E,RIDDLE J,RASMUSSEN I A,SHADE J,SOHN S M,TADESSE M,TASHIS,THATCHER A,UDDIN N,VON FRAGSTEIN UND NIEMSDORFF P,WIBE A,WIVSTAD M,WU W L,ZANOLIR.Organic agriculture 3.0 is innovation with research[J]. Organic Agriculture,2017,7(3):169-197.
[89] RAMIN SHAMSHIRIR,KALANTARIF,TING K C,THORP K R,HAMEED IA,WELTZIEN C,AHMAD D,MOJGAN SHAD Z.Advances in greenhouse automation and controlled environment agriculture:A transition to plant factories and urban agriculture[J]. International Journal of Agricultural and Biological Engineering,2018,11(1):1-22.
[90] FATNASSIH,BOURNET P E,BOULARD T,ROY J C,MOLI-NA-AIZ F D,ZAABOUL R. Use of computational fluid dynamic tools to model the coupling of plant canopy activity and climate in greenhouses and closed plant growth systems:A review[J].Biosystems Engineering,2023,230:388-408.
[91] CHU C R,LAN T W,TASIR K,WU T R,YANG C K. Winddriven natural ventilation of greenhouses with vegetation[J].Biosystems Engineering,2017,164:221-234.
[92] FERENTINOS K P,KATSOULAS N,TZOUNIS A,BARTZANAS T,KITTAS C. Wireless sensor networks for greenhouse climate and plant condition assessment[J].Biosystems Engineering,2017,153:70-81.
[93] CHAUHAN P S,KUMAR A. Performance analysis of greenhouse dryer by using insulated north-wall under natural convection mode[J].Energy Reports,2016,2:107-116.
[94] KAWASHIMA H. Development of a new energy-saving pipeframed greenhouse[J]. Japan Agricultural Research Quarterly,2015,49:235-243.
[95] HOFFMAN J,LOEBER A.Exploring the micro-politics in transitions from a practice perspective:The case of greenhouse innovation in the Netherlands[J]. Journal of Environmental Policy &Planning,2016,18(5):692-711.
[96] DOUGKA G,BRIASSOULIS D. Load carrying capacity of greenhouse covering films under wind action:Optimising the supporting systems of greenhouse films[J]. Biosystems Engineering,2020,192:199-214.
[97] KUZNETSOV S,POSPISIL S. Full-scale measurements of local wind loads on a high-rise building using wind tunnel based predictions[J]. IOP Conference Series:Materials Science and Engineering,2019,471:052053.
[98] KIM R W,LEE IB,YEO U H,LEE S Y. Evaluation of various national greenhouse design standards for wind loading[J]. Biosystems Engineering,2019,188:136-154.
[99] 窦宗信,李宽莹,庞勇,王宝春,徐鉴民,李冠男,王永旭.北方设施葡萄发展现状与对策探析[J].南方农机,2023,54(8):17-19.DOU Zongxin,LIKuanying,PANG Yong,WANG Baochun,XU Jianmin,LIGuannan,WANG Yongxu. Present situation and development countermeasures of protected grape in North China[J]. China Southern Agricultural Machinery,2023,54(8):17-19.
[100] 牟德生,郭艳兰,张斌,王鑫,赵连鑫,李强,马尚有,陈岩辉.河西走廊设施葡萄产业现状及高质量发展对策建议[J].中外葡萄与葡萄酒,2024(3):114-118.MU Desheng,GUO Yanlan,ZHANG Bin,WANG Xin,ZHAO Lianxin,LIQiang,MA Shangyou,CHEN Yanhui.Current situation and high quality development countermeasures of facility grape industry in Hexi Corridor[J]. Sino-Overseas Grapevine &Wine,2024(3):114-118.
[101] 田跃,姚冠新.江苏省设施果树产业发展现状、问题及对策[J].中国果树,2022(3):98-102.TIAN Yue,YAO Guanxin. The current situation, problems and countermeasures of the development of protected fruit industry in Jiangsu Province[J].China Fruits,2022(3):98-102.
[102] 郑宁宁.物联网技术在温室大棚中推广问题与对策研究[J].山东农业工程学院学报,2022,39(6):28-31.ZHENG Ningning. Research on the problems and countermeasures of popularization of internet of things technology in greenhouses[J]. The Journal of Shandong Agriculture and Engineering University,2022,39(6):28-31.
[103] 刘秀先.提高设施果树栽培光照效果的树形研究[J].农业开发与装备,2022(2):235-237.LIU Xiuxian. Research on tree shapes to improve lighting effects in protected fruit tree cultivation[J].Agricultural Development&Equipments,2022(2):235-237.
[104] 陈建,张文河.北方果树设施栽培的现状及展望[J].现代农业研究,2021,27(7):115-116.CHEN Jian,ZHANG Wenhe. Present situation and prospect of fruit tree cultivation facilities in North China[J]. Modern Agriculture Research,2021,27(7):115-116.
[105] 王婷.探究果树设施栽培发展现状与展望[J].现代园艺,2020(10):10-11.WANG Ting. Exploration of the current status and prospects for development of protected cultivation of fruit trees[J]. Xiandai Horticulture,2020(10):10-11.
[106] 齐飞,李恺,李邵,何芬,周新群.世界设施园艺智能化装备发展对中国的启示研究[J].农业工程学报,2019,35(2):183-195.QIFei,LIKai,LIShao,HE Fen,ZHOU Xinqun. Development of intelligent equipment for protected horticulture in world and enlightenment to China[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(2):183-195.
[107] 赵立虹,薛梅.智能化农机装备助力设施园艺发展探析[J].农业装备与车辆工程,2021,59(9):153-155.ZHAO Lihong,XUE Mei.Analysis on development of protected horticulture with intelligent agricultural machinery equipment[J]. Agricultural Equipment & Vehicle Engineering,2021,59(9):153-155.
[108] 古宁宁.“农艺-农机-设施”深度融合推动设施园艺高效发展[J].农业工程技术,2024,44(3):12-14.GU Ningning. Deep integration of agronomy,agricultural machinery,and facilities to promote efficient development of facility horticulture[J].Agricultural Engineering Technology,2024,44(3):12-14.
[109] 宋卫堂,李明.以“农艺-农机-设施”深度融合推动设施园艺高效发展[J].农业工程技术,2020,40(1):44-47.SONG Weitang,LIMing. Promote the efficient development of protected horticulture through the deep integration of agricultureagricultural machinery- facilities[J]. Agricultural Engineering Technology,2020,40(1):44-47.
[110] 王连泉,王旭东.智能化机械装备在设施农业中的应用及创新[J].中国农机装备,2024(7):66-68.WANG Lianquan,WANG Xudong. Application and innovation of intelligent machinery and equipment in facility agriculture[J].China Agricultural Machinery Equipment,2024(7):66-68.
[111] 郭娜,田素博,须晖,关旭生,李天来.设施园艺植保装备及其精准施药技术研究进展[J].农机化研究,2022,44(11):1-10.GUO Na,TIAN Subo,XU Hui,GUAN Xusheng,LITianlai.Research progress on precision spraying technology and equipment of protected horticulture[J]. Journal of Agricultural Mechanization Research,2022,44(11):1-10.
Research status and prospects of equipments for protected fruit tree cultivation in China