土壤线虫是地球上数量最多的后生动物,具有迁移能力弱、世代周期短、功能类群丰富、占据食物网关键链接、对土地利用等变化扰动响应敏感等特点,是最常用的土壤质量与功能指示生物之一[1-2]。土壤线虫丰度、多样性等特征都会随着土壤环境的变化而表现出不同的变化趋势,其生态指数能够反映受扰动后或不同生态系统中土壤线虫群落结构和功能的变化,指示土壤有机物降解路径及食物网结构变化等特征[3]。钟爽等[4]、张雪艳等[5]和高飞等[6]研究均表明,随着种植年限增加,植物寄生线虫将引起连作障碍,对农业可持续发展产生严重的影响。还有研究表明,种植年限增加会使土壤的主要分解途径由细菌转化为真菌,且对土壤肥力、理化性质、酶和微生物群落产生负面影响,从而使土壤食物网遭到破坏,土壤健康状况恶化[7]。同时,人类干扰及环境变化也会对线虫的多样性产生影响[8]。例如,施肥处理会增加食微线虫比例,降低植物寄生线虫丰度,对维持土壤食物网结构与功能的成熟稳定具有正向调节作用[9]。因此,明确土壤线虫的营养类群及其生物多样性对土壤健康状况及农业发展具有重要的意义[10]。
树上干杏(Armeniaca vulgaris var.ansu)(俗称吊死干)是新疆伊犁特有的杏资源,具有极高的经济价值和引种价值[11]。在当前农业结构调整和农业多元化发展的大背景下,为推动耕地与果园协调共生,伊宁州霍城县三宫村将荒山改造成杏林等经济林,成为当地农民脱贫致富的主要途径之一[12]。笔者在本研究中依托伊犁霍城县三宫乡树上干杏种植园,选择不同林龄树上干杏林并以周边未开垦的荒地作为对照,通过研究树上干杏林土壤线虫群落结构的变化,分析土壤线虫生态指数、土壤理化性质对树上干杏林土壤线虫营养类群的影响等,评价不同林龄树上干杏林土壤质量的状况,以期为完善树上干杏林合理种植、管理技术和土地可持续利用提供一定的理论依据。
研究地点选择新疆伊犁哈萨克自治州霍城县三宫乡树上干杏种植林地,地理坐标80°09′~84°56′ E和42°14′~44°50′ N。该地区地势起伏不定,三面环山,东高西低,形成一种特殊的“湿岛”结构[13]。土壤为砂壤土,气候类型为温带大陆性半湿润荒漠气候,年平均气温10.4 ℃,年平均降水量417.6 mm,土地肥沃,水源充足[14]。这种地貌特征和气候环境使得该地区的水分蒸发和降水分配表现出显著的地域差异,为树上干杏的种植提供了有利条件[15]。研究区属于个人承包种植林地,施肥、灌溉等管理方法一致,基本条件相同。肥料施用主要依赖于厩肥、堆肥和牛粪尿等,此外还混合施用了钾素肥料和速效氮素化肥等,每株平均施用厩肥50 kg,同时配合1.2 kg N、P、K 三元复合肥。灌溉方式为滴灌,单行种植,种植密度为行株距5 m×4.2 m,每666.7 m2钟植17~19 株。树上干杏林周围大多为尚未开发利用的荒地。
1.2.1 土壤样品采集及土壤线虫分离鉴定 试验于2023 年9 月在霍城县三宫乡选择林龄4(S4)、8(S8)、10(S10)、14(S14)年生的树上干杏和周边荒地(对照)为研究样地进行样品采集。用GPS 测定采样地的地理位置与海拔,不同种植年份的树上干杏林分别选取5个树下林地作为样方(20 m×20 m),按0~10、10~20 cm 采集土样,采用五点采样法在每个树下林地距离树干基部0.5 m 的位置分别选择5个小样方(10 cm×10 cm)混合为1 个土样,5 个样地共计50份土样。在每个样方的各层取适量土样,混合均匀后风干,用于测定土壤理化性质。每袋土样称取50 g 新鲜土壤放入4 ℃冰箱中低温保存,并采用蔗糖密度梯度离心法对土壤线虫进行分离。用显微镜计数50 g 鲜土的线虫总数,然后根据土壤含水率将土壤线虫个体数量换算成100 g 干土中含有的线虫数目。用形态学法进行线虫科属的鉴定,随机抽取100 条线虫(不足100 条进行全量鉴定)进行鉴定。鉴定方法参考De Nematoden van Nederland[16]和《中国土壤动物检索图鉴》[17]。
1.2.2 土壤理化性质测定 依据《土壤农化分析》[18]测定土壤pH、含水率及铵态氮、全钾、速效磷、速效钾和钙含量。
1.2.3 指数计算 依据土壤线虫食性可将其分为食细菌线虫(bacterivores,Ba)、食真菌线虫(Fungivores,Fu)、植物寄生线虫(plant parasites,Pp)、捕食杂食线虫(predators omnivores,Op)四个营养类群[19];依据土壤线虫r 策略到k 策略的生活史策略将其分为5个类群,分别赋予c-p值[20]。
基于此,分别计算不同林龄树上干杏林土壤线虫多样性指数(shannon-weaver diversity index,H’)和生态指数。其中,生态指数包括:植物寄生线虫成熟度指数(plant parasites maturity index,PPI)、自由线虫成熟度指数(free live nematode maturity index,MI)、线虫通路比值(nematode channel ratio,NCR)、瓦斯乐斯卡指数(wasilewska index,WI)、富集指数(enrichment index,EI)和结构指数(structure index,SI)[21]。
1.2.4 数据分析 使用Excel 2010软件处理原始数据并计算土壤线虫多样性指数和生态功能指数,采用SPSS 26.0对数据进行单因素方差分析和Duncan多重比较,分析不同样地之间土壤线虫群落的差异,并采用独立样本t 检验分析不同土层之间的差异。采用冗余分析(RDA)和蒙特卡洛检验估算土壤环境因子对线虫群落的影响,采用Origin 2021 和CANOCO 5.0绘图。
从不同林龄树上干杏林共分离得到土壤线虫7066条,隶属于2纲6目23科52属(表1),优势属为拟丽突属(Acrobeloides)、针属(Paratylenchus)和小矛线属(Microdorylaimus)。其中,荒地土壤线虫优势属为捕食-杂食线虫小矛线属;4 年生树上干杏林优势属为食细菌线虫板唇属(Chiloplacus)、拟丽突属和食真菌线虫真滑刃属(Aphelenchus);8 年生树上干杏林优势属为植物寄生线虫拟盘旋属(Pararotylenchus)和盘旋属(Rotylenchus);10 年生树上干杏林优势属为植物寄生线虫针属和食细菌线虫拟丽突属;14年生树上干杏林优势属为植物寄生线虫拟盘旋属、螺旋属(Helicotylenchus)和盘旋属。
表1 (续) Table 1 (Continued)
注:“-”代表无;“+++”代表优势属,>10%;“++”代表常见属,1%~10%;“+”代表稀有属,<1%。
Note:“-”indicates none;“+++”indicates the dominant genus, >10%;“++”indicates the common genus, 1%-10%;“+”indicates the rare genus,<1%.
拟盘旋属Pararotylenchus盘旋属Rotylenchus肾状属Rotylenchulus具脊垫刃属Coslenchus细纹垫刃属Lelenchus叉针属Boleodorus剑尾垫刃属Malenchus平滑垫刃属Psilenchus头垫刃属Cephalenchus居中属Geocenamus默林属Merlinius那格尔属Nagelus长吻属Dolichorhynchus拟大矛属Paratrophurus五沟属Quinisulcius双垫刃属Bitylenchus短体属Pratylenchus吻球属Hoplotylus中轮属Criconemoides大节片属Macroposthonia鞘属Hemicycliophora毛刺属Trichodorus捕食杂食线虫Predators omnivores小矛线属Microdorylaimus峡咽属Discolaimium牙咽属Dorylaimellus单色矛属Monochromadora中矛线属Mesodorylaimus真矛线属Eudorylaimus盘咽属Discolaimus通俗属Ecumenicus线虫类群个体密度Individual density of nematode taxa/(No.·100 g-1)土壤线虫营养类群及属Soil nematode trophic groups and genera优势度Dominance c-p值c-p value相对丰度Relative abundance/%对照Control S4S8S10S14++++++--0.09 0.53 3.68+++++++++++++++++++1.95 3.53-0.08 1.48--333222222333333333333444534455 27.89 24.67 5.49 0.50-0.15 0.41 0.33 0.14 2.73 0.14 0.05 0.14 23.59 10.02 7.40-0.09 0.09--0.84-0.19 0.42-------0.50 0.88-1.94 0.18 0.51-----0.10 0.34---0.09 0.46 1.92 0.27 0.09 0.27 0.09----0.21 0.10-2.30 0.29 0.36-0.38 0.05 0.09 0.09 0.05--0.27 0.08 0.25 0.99 0.09-0.28-0.19-1.22------0.10-0.10-----+++++++++++26.40 5.65-1.24-0.06 0.28-362.22 5.82 2.95 0.13 0.19 0.13 6.21 4.49-0.12 7.91 8.17-0.09----------252.10 212.82 6.27 3.24-0.10 0.10 0.10 0.05 0.19 752.15 0.86 249.03
表1 不同林龄树上干杏林土壤线虫属的相对丰度
Table 1 Relative abundance of soil nematode genera in Shushanggan apricots plantations at different forest ages
食细菌线虫Bacterivores拟丽突属Acrobeloides盆咽属Panagrolaimus小杆属Rhabditis丽突属Acrobeles板唇属Chiloplacus鹿角唇属Cervidellus真头叶属Eucephalobus三等齿属Pelodera头叶属Cephalobus异头叶属Heterocephalobus Drilocephalobus食真菌线虫Fungivores茎属Ditylenchus真滑刃属Aphelenchus滑刃属Aphelenchoidides拟滑刃属Paraphelenchus膜皮属Diphtherophora垫咽属Tylencholaimus植物寄生线虫Plant parasites针属Paratylenchus巴兹尔属Basiria丝尾垫刃属Filenchus矮化属Tylenchorhynchus螺旋属Helicotylenchus土壤线虫营养类群及属Soil nematode trophic groups and genera优势度Dominance c-p值c-p value相对丰度Relative abundance/%对照Control S4S8S10S14+++++++++++++++14.33 0.43 3.00 4.35 24.16 8.98 0.31--0.83 4.94 1.03 26.72 3.50 6.44 0.81 1.19 2.47 3.55 1.76 1.55 2.82 1.10 2.12 1.46++++++3.19-4.05 4.02 3.13 2.60-0.08--2112222122222333432233---0.19 0.09 0.09------0.10----2.92 0.18-+++++++3.27 4.58 2.08 1.38 0.34-1.01 10.44 5.60 2.06-0.24 0.46 6.52 0.31 0.31 0.10-0.18 1.88 6.75 0.10--0.27 2.40 1.20 0.09-0.90+++++++++++4.99 4.75 8.92 6.45 0.19 5.70-0.22 1.62 0.75 3.30 1.24 0.15 0.10 7.20 27.39 0.19-0.96 0.05 7.78 0.27-0.18 14.23
不同林龄树上干杏林土壤线虫营养类群相对丰度存在较大差异(图1-A),荒地的Pp和Op较多,Ba和Fu 较少;4、10 年生树上干杏林Ba 占比高于同一样地其他线虫类群;8、14年生树上干杏林Pp高于同一样地其他线虫类群。
图1 不同林龄树上干杏林土壤线虫营养类群(A)及生活史(B)的相对丰度
Fig.1 Relative abundance of soil nematode tropic groups(A)and life history(B)in Shushanggan apricots plantations at different forest ages
不同林龄树上干杏林生活史的相对丰度也存在较大差异(图1-B),不同林龄树上干杏林以及荒地c-p2 类群或c-p3 类群土壤线虫表现出绝对优势,cp1 类群和c-p5 类群线虫极少。其中,4 年生树上干杏林c-p2 类群最多;8 年生和14 年生树上干杏林cp3类群最多;不同林龄树上干杏林c-p4类群均有所减少。
不同林龄树上干杏林土壤线虫垂直分布特征见图2,10 年生树上干杏林0~10 cm 土层与10~20 cm土层存在显著差异(p<0.05),10年生树上干杏林与荒地在0~10 cm 土层存在显著差异(p<0.05)。4 年生树上干杏林和荒地土壤线虫密度在0~10 cm土层较高,8、10、14年生树上干杏林土壤线虫密度在10~20 cm土层较高。同时,8年生树上干杏林土壤线虫密度最低,10年生树上干杏林土壤线虫密度最高。
图2 不同林龄树上干杏林各食性土壤线虫类群垂直分布(平均值±标准误)
Fig.2 Vertical distribution of soil nematode with all feeding habits in Shushanggan apricots plantations at different forest ages(mean±SE)
不同大写字母表示同一样地土壤线虫在不同土层间具有显著差异(p<0.05);不同小写字母表示同一土层土壤线虫在不同样地间具有显著差异(p<0.05)。
Different capital letters indicate that nematodes in the same sample plot have significant difference among different soil layers(p<0.05).Different small letters indicate that nematodes in the same soil layer have significant difference among different sample plots(p<0.05).
不同林龄树上干杏林土壤线虫生态指数存在显著差异(表2),10 年生树上干杏林多样性指数(H′)低于其他样地,不同林龄树上干杏林H′:对照>S4>S14>S8>S10。4 年生树上干杏林MI 与8、14年生树上干杏林呈显著差异(p<0.05),不同林龄树上干杏林MI:S8>对照>S14>S10>S4。不同林龄树上干杏林PPI 与荒地均呈显著差异(p<0.05),所有样地PPI:S8=S14>S10>S4>对照。10年生树上干杏林NCR与8年生树上干杏林呈显著差异(p<0.05),所有样地的NCR:S10>S4>S14>对照>S8。4 年生树上干杏林WI 与其他样地均呈显著差异(p<0.05),所有样地WI:S4>S10>S14>对照>S8,其中,4、10、14年生树上干杏林WI>1,表明土壤健康状况较好。线虫区系分析结果表明(图3),所有样地的土壤线虫区系均位于第二象限,表示土壤食物网的养分状况良好,土壤食物网结构相对来说都比较稳定且成熟。
图3 不同林龄树上干杏林土壤线虫区系分析
Fig.3 Analysis of soil nematode flora in Shushanggan apricots plantations at different forest ages
表2 不同林龄树上干杏林土壤线虫群落生态指数分析
Table 2 The analyses of ecological index of soil nematode community in Shushanggan apricots plantations at different forest ages
注:不同小写字母表示不同林龄树上干杏林土壤线虫群落生态指数具有显著差异(p<0.05)。下同。
Note:Different small letters indicate that ecological index of soil nematode community in Shushanggan apricots plantations at different forest ages have significant difference(p<0.05).The same below.
林龄Forest age/a WI H’MI PPI NCR对照Control S4 S8 S10 S14 0.78±0.05 b 5.78±1.06 a 0.30±0.10 b 2.10±0.69 b 1.61±0.93 b 2.54±0.14 a 2.31±0.07 ab 2.17±0.16 ab 2.09±0.17 b 2.26±0.09 ab 2.97±0.10 a 2.21±0.10 b 2.98±0.21 a 2.65±0.31 ab 2.91±0.23 a 2.47±0.06 b 2.87±0.04 a 2.98±0.03 a 2.92±0.03 a 2.98±0.04 a 0.61±0.02 ab 0.72±0.06 ab 0.52±0.06 b 0.80±0.01 a 0.62±0.13 ab
不同林龄树上干杏林0~20 cm土壤理化性质如表3。其中,8、14年生树上干杏林土壤全钾(TK)含量显著高于4、10年生树上干杏林,14年生树上干杏林pH 显著高于8 年生树上干杏林。10 年生树上干杏林土壤含水率(SM)显著高于荒地;荒地的钙(Ca)含量显著高于不同林龄树上干杏林。
表3 不同林龄树上干杏林0~20 cm 土壤基本特征
Table 3 The basic characteristics of 0-20 cm soil layer of Shushanggan apricots plantations at different forest ages
林龄Forest age/a对照Control S4 S8 S10 S14含水率SM/%3.51±0.75 b 7.26±1.37 ab 8.85±1.30 ab 12.92±4.54 a 7.71±1.43 ab w(铵态氮)NH4--N content/(g·kg-1)6.16±0.36 a 6.84±0.20 a 5.34±0.33 a 6.62±1.71 a 6.24±0.47 a w(全钾)TK content/(g·kg-1)18.46±0.05 c 19.31±0.08 b 19.61±0.07 a 19.21±0.13 b 19.77±0.10 a w(速效磷)R-AP content/(mg·kg-1)4.33±2.39 b 73.15±8.45 a 9.86±2.91 b 5.45±0.46 b 10.64±4.37 b w(速效钾)R-AK content/(mg·kg-1)118.19±32.69 c 658.65±41.20 a 305.16±63.59 bc 267.04±66.41 bc 444.97±87.16 b pH 7.99±0.09 ab 7.86±0.16 ab 7.72±0.08 b 8.10±0.06 ab 8.13±0.17 a w(钙)Ca content/(g·kg-1)2.09±0.36 a 1.02±0.14 b 0.78±0.14 b 0.63±0.04 b 1.13±0.37 b
以不同林龄树上干杏林土壤线虫营养类群和c-p类群为响应变量,以土壤理化性质为解释变量进行冗余分析(图4)。结果表明,前两轴分别解释了土壤线虫类群的26.16%和43.85%。由蒙特卡洛检验可知(表4),土壤全钾含量、含水率、pH和Ca含量是影响土壤线虫类群组成的重要因素(p<0.05)。土壤中全钾含量是解释度最高的环境因子(p<0.05),解释度为27.6%,其次是含水率(23.3%)、pH(17.5%)和钙含量(9.9%)。土壤全钾含量与c-p1和食细菌线虫(Ba)均呈显著负相关;土壤含水率(SM)与所有线虫营养类群和c-p 类群均呈正相关;土壤pH 和钙含量均与食真菌线虫(Fu)呈较显著的正相关,与c-p3和植物寄生线虫(Pp)呈较显著的负相关。
图4 土壤理化因子和土壤线虫群落生态指数的RDA 分析
Fig.4 RDA analysis of soil physicochemical factors and soil nematode community ecological index
表4 不同林龄树上干杏林土壤理化因子和土壤线虫群落的蒙特卡洛检验
Table 4 Monte Carlo test of soil physicochemical factors and soil nematode communities in Shushanggan apricots plantations at different forest ages
注:*.p<0.05.TK.土壤全钾含量;SM.土壤含水率;Ca.钙含量;R-AK.速效钾含量;NH4--N.铵态氮含量;TP.土壤全磷含量;R-AP.速效磷含量。
Note: *. p<0.05. TK. Soil total K content; SM. Soil Moisture content; Ca. Calcium content; R-AK. Rapid-available potassium content;NH4--N.Ammonium nitrogen content; TP. Soil total P content; R-AP.Rapid-available phosphorus content.
环境因子Environment factor TK SM pH Ca R-AK NH4--N R-AP解释率Explains/%27.6 23.3 17.5 9.9 8.8 7.6 2.2 F p 显著性Significance 3.0 3.3 3.3 4.9 1.9 2.0 2.0 0.022 0.040 0.032 0.028 0.150 0.162 0.316****---
在不同种植年限和管理措施下,土壤中线虫群落结构及多样性均表现出差异性[22]。笔者在本研究中的结果表明,线虫密度随着林龄增加呈现先上升后下降的变化趋势,10年生树上干杏林线虫密度最大,与王楠等[23]的研究结果一致。在本研究中共鉴定出土壤线虫52 属,优势属为针属、拟丽突属和小矛线属。研究表明,由于不同区域土壤生境以及植物寄主存在差异,导致土壤线虫的生态分布具有一定的地带性,不同区域线虫群落优势属均存在较大差异[24]。
8、10和14年生树上干杏林土壤线虫密度在10~20 cm 土层较高,这可能是由于高温干旱以及人为踩踏导致表层土壤空隙变小,含水量下降[25],从而使表层土壤线虫密度降低。相较于表层,深层土壤受到的人为干扰减少,食物网阻力低于表层,能够较为稳定地发挥其生态功能,为土壤线虫生存起到积极的正向作用[26]。
8和14年生树上干杏林主要营养类群为植物寄生线虫,4 和10 年生树上干杏林植物寄生线虫占比减少,食细菌线虫占比增大,表明4和10年生树上干杏林土壤线虫营养类群更健康[10]。早在2001 年,Ferris等[27]研究表明,c-p值较大的k策略者对食物网复杂性与稳定性发挥重要作用,但生命周期较长,在干扰后恢复速度较慢;而c-p值较小的r策略者在扰动后能够快速恢复。由于人工种植林地除草和翻耕等人为管理措施,因此对土壤环境的稳定性干扰较大[28]。在本试验中,荒地转种树上干杏林之后,不同林龄树上干杏林耐受性线虫c-p2与c-p3增加,敏感性线虫c-p4减少,说明不同林龄树上干杏林均受到不同程度干扰,其中4 年生树上干杏林受到的扰动最大,10年生次之。
10 年生树上干杏林土壤线虫多样性指数(H’)低于其他样地,表明10年生树上干杏林土壤线虫群落的多样性较低。10 年生树上干杏林土壤线虫密度高于其他样地,这可能是由于10年生树上干杏林受到的人为管控力度较大,而其他受扰动较小的样地土壤线虫密度较低,多样性较高,这与刘贝贝等[29]关于滩涂湿地土壤线虫群落特征的研究结果一致。
线虫成熟度指数(MI)越高表明土壤生态系统受干扰程度越小[16];线虫瓦斯乐斯卡指数(WI)反映食微生物线虫对植物寄生线虫的比例,WI<1,表明以植物寄生线虫为主,土壤健康状况差;WI>1,表明以食微线虫为主,土壤健康状况良好[30]。4年生树上干杏林土壤线虫MI指数低于其他样地,表明4年生树上干杏林受到的干扰较大,土壤食物网结构简单。其原因可能是树上干杏是慢生的落叶乔木植物,处于早期发展阶段的树上干杏林下生态系统并不成熟[31]。而4年生树上干杏林WI指数显著高于其他样地,这与4年生食微线虫丰度成正比,这可能是由于4年生树上干杏林施肥等人为农业管理措施较为频繁,肥料丰富了土壤微生物资源,这有助于食微线虫的繁殖发育,从而提高了食微线虫比例[32]。这也表明适度干扰反而更有利于维持树上干杏林土壤生产力和物种共存,这一结果与薛会英等[33]关于藏北高寒草甸土壤线虫群落对围封及自由放牧响应的研究结果一致。
本试验所有样地的NCR指数在0.5~0.8之间,表明细菌是不同林龄树上干杏林土壤有机质的主要分解者,这与刑树文等[34]关于不同种植年限蕉柑根际土壤线虫的研究结果一致。8 年生树上干杏林的NCR指数显著低于10年生树上干杏林,表明8年生树上干杏林土壤食物链较短,土壤富集程度较低,生物转化能力较差,而10 年生正好相反。但8 年生树上干杏林MI指数和PPI指数最高,表明其受到的干扰最小,植物寄生线虫丰度较高。
土壤线虫群落的动态不仅取决于植物根系的直接作用,还取决于通过土壤理化性质介导的间接作用[35]。在本试验中,土壤全钾含量、含水率、pH和钙含量是影响树上干杏林土壤线虫类群组成的主要环境因子(p<0.05)。侯磊等[36]在雪被厚度对色季拉山急尖长苞冷杉林的研究表明,土壤全钾含量、pH、含水率等是影响土壤线虫群落的主要因子,这与本研究的结果具有一致性。其中,土壤全钾含量与食细菌线虫(Ba)呈显著负相关,这可能是因为8、14年生树上干杏林土壤全钾含量显著高于4、10 年生树上干杏林,过高的钾含量抑制了c-p1 类群和Ba 类群[37]的形成,进而导致8、14年生树上干杏林Ba类群丰度降低。瞿云明等[38]关于氰氨化钙土壤改良剂的研究以及孙兆凯等[39]关于土壤pH 对根际线虫数量与生姜产量的影响等研究表明,氰氨化钙是一种新型的具有杀菌作用的“生态肥料”,能在阳光照射下产生高温、有毒的氰胺溶液,杀灭绝大多数的植物寄生性线虫及其虫卵,并能有效调控土壤pH,进而抑制植物寄生线虫的滋生,有效地保护作物的地下根系,为食微线虫的生存提供保障。在本研究中,土壤pH和Ca含量均与食真菌线虫(Fu)呈较显著的正相关,与植物寄生线虫(Pp)呈较显著的负相关,且不同林龄树上干杏林Ca 含量均显著低于荒地。可能是施加的钙肥量过少和不当的水肥管理,导致各林龄树上干杏林pH 过高,进而导致植物寄生线虫增多,食真菌线虫数量减少。
笔者在本研究中共分离得到土壤线虫7066条,隶属于2 纲6 目23 科52 属。8、10 和14 年生树上干杏林土壤线虫群落表现为向下递增的趋势,4 年生呈现相反趋势。10 年生树上干杏林土壤线虫多样性最低。4和10年生树上干杏林主要营养类群为食细菌线虫,土壤健康状况良好;8和14年生树上干杏林主要营养类群为植物寄生线虫,土壤健康状况较差。土壤全钾含量、含水率、pH 和钙含量是影响树上干杏林土壤线虫类群组成的主要环境因子。
[1] 孝惠爽,赵杰,傅声雷.华南典型尾叶桉纯林经营对土壤理化性质、微生物和线虫群落的影响[J].生态学报,2023,43(19):7963-7973.XIAO Huishuang,ZHAO Jie,FU Shenglei. Effects of Eucalyptus plantations and management on soil physico-chemical properties,microbial and nematode communities in South China[J].Acta Ecologica Sinica,2023,43(19):7963-7973.
[2] 包涵,吕丹丹,施赟,贺雨轩,赵金梦,许革学,李晓敏,王冬.豫西黄土高原果园生草对土壤线虫群落及结构的影响[J].草地学报,2024,32(1):96-104.BAO Han,LÜ Dandan,SHIYun,HE Yuxuan,ZHAO Jinmeng,XU Gexue,LIXiaomin,WANG Dong. Effects of orchard grass cover on soil nematode community and structure in the Loess Plateau of western Henan province[J]. Acta Agrestia Sinica,2024,32(1):96-104.
[3] GUAN P T,ZHANG X K,YU J,MA N N,LIANG W J.Variation of soil nematode community composition with increasing sand-fixation year of Caragana microphylla:Bioindication for desertification restoration[J]. Ecological Engineering,2015,81:93-101.
[4] 钟爽,何应对,韩丽娜,周兆禧,马蔚红,曾会才,金志强.连作年限对香蕉园土壤线虫群落结构及多样性的影响[J].中国生态农业学报,2012,20(5):604-611.ZHONG Shuang,HE Yingdui,HAN Li’na,ZHOU Zhaoxi,MA Weihong,ZENG Huicai,JIN Zhiqiang. Effect of continuous cropping of banana on soil nematode community structure and diversity[J]. Chinese Journal of Eco-Agriculture,2012,20(5):604-611.
[5] 张雪艳,张亚萍,许帆,田兴武,刘馨,祁娟霞,李建设.不同种植年限黄瓜温室土壤线虫群落结构及多样性的比较[J].植物营养与肥料学报,2017,23(3):696-703.ZHANG Xueyan,ZHANG Yaping,XU Fan,TIAN Xingwu,LIU Xin,QIJuanxia,LIJianshe. Comparison of soil nematodes community structure and diversity in cucumber greenhouses in different cultivation years[J].Journal of Plant Nutrition and Fertilizer,2017,23(3):696-703.
[6] 高飞,赵贺,周峰,倪玮,李辉信,焦加国,孙兴祥.江苏省不同种植年限的西/甜瓜农田土壤线虫群落特征[J].生态学杂志,2020,39(1):155-163.GAO Fei,ZHAO He,ZHOU Feng,NIWei,LIHuixin,JIAO Jiaguo,SUN Xingxiang. Community characteristics of nematodes in agricultural soil of watermelon and melon with different cultivation years in Jiangsu province[J].Chinese Journal of Ecology,2020,39(1):155-163.
[7] LIX Y,LEWIS E E,LIU Q Z,LIH Q,BAIC Q,WANG Y Z.Effects of long-term continuous cropping on soil nematode community and soil condition associated with replant problem in strawberry habitat[J].Scientific Reports,2016,6:30466.
[8] 黑雅娅,杨树,张欣,陈军宏,张扬,薛应钰.娄彻氏链霉菌ZZ-9 与阿维菌素复配对南方根结线虫病的防治效果[J].中国瓜菜,2022,35(5):96-101.HEIYaya,YANG Shu,ZHANG Xin,CHEN Junhong,ZHANG Yang,XUE Yingyu. Management of Meloidogyne incognita by using the combination of Streptomyces rochei ZZ-9 and avermectin[J].China Cucurbits and Vegetables,2022,35(5):96-101.
[9] NAHAR M S,GREWAL P S,MILLER S A,STINNER D,STINNER B R,KLEINHENZ M D,WSZELAKIA,DOOHAN D. Differential effects of raw and composted manure on nematode community,and its indicative value for soil microbial,physical and chemical properties[J].Applied Soil Ecology,2006,34(2/3):140-151.
[10] 黄芳,徐玉梅,王健,刘晓琴.山西省果树土壤线虫的群落结构及多样性研究[J].果树学报,2023,40(12):2591-2597.HUANG Fang,XU Yumei,WANG Jian,LIU Xiaoqin. Research on the community structure and diversity of soil nematodes in the orchards of Shanxi province[J]. Journal of Fruit Science,2023,40(12):2591-2597.
[11] 郑涛,苏柯星,丛桂芝,陈明杰,孙丙寅,刘淑明.树上干杏和梅杏果实品质分析与综合评价[J]. 食品与发酵工业,2021,47(9):201-207.ZHENG Tao,SU Kexing,CONG Guizhi,CHEN Mingjie,SUN Bingyin,LIU Shuming. Quality analysis and comprehensive evaluation of the‘Shushanggan’apricots and apricots[J]. Food and Fermentation Industries,2021,47(9):201-207.
[12] 张运平,林建平,黄艺敏,袁浩,冯桂贤,张佩怡.基于空间决策模型的耕-果错位空间分析与协调布局优化[J]. 农业工程学报,2024,40(6):330-338.ZHANG Yunping,LIN Jianping,HUANG Yimin,YUAN Hao,FENG Guixian,ZHANG Peiyi. Spatial analysis and coordinated layout optimization of farmland-orchard mismatch using spatial decision modeling[J].Transactions of the Chinese Society of Agricultural Engineering,2024,40(6):330-338.
[13] 周昌,黄顺.新疆伊犁黄土工程地质特征及致灾机理研究综述[J].工程地质学报,2023,31(4):1247-1260.ZHOU Chang,HUANG Shun. Mechanical properties and disaster-causing mechanism of loess in Ili,Xinjiang,China[J]. Journal of Engineering Geology,2023,31(4):1247-1260.
[14] 刘涛,赵琨,李宏钧,王洁.伊犁河谷地区公路路域野生植物资源特征分析[J].公路,2023,68(9):388-394.LIU Tao,ZHAO Kun,LIHongjun,WANG Jie.Analysis of wild plant resources in highway areas of Ili valley[J].Highway,2023,68(9):388-394.
[15] 刘廷,郝丽娜,魏立强.巩留树上干杏农产品地理标志种植技术规范[J].基层农技推广,2017,5(2):119-120.LIU Ting,HAO Li’na,WEILiqiang.Technical specification for geographical indication planting of agricultural products of‘Shushanggan’apricots on trees in Gongliu county[J]. Primary Agricultural Technology Extension,2017,5(2):119-120.
[16] BONGERS T.De Nematoden van Nederland[M].Utrecht:Stichting Uitgeverij Koninklijke Nederlandse Natuurhistorische Vereniging,1988.
[17] 尹文英.中国土壤动物检索图鉴[M].北京:科学出版社,1998.YIN Wenying. Pictorical keys to soil animals of China[M]. Beijing:Science Press,1998.
[18] 鲍士旦. 土壤农化分析[M]. 3 版. 北京:中国农业出版社,2000.BAO Shidan. Soil and agricultural chemistry analysis[M]. 3rd ed.Beijing:China Agriculture Press,2000.
[19] YEATES G W,BONGERS T,DE GOEDE R G,FRECKMAN D W,GEORGIEVA S S. Feeding habits in soil nematode families and genera:An outline for soil ecologists[J]. Journal of Nematology,1993,25(3):315-331.
[20] BONGERS T. The maturity index:An ecological measure of environmental disturbance based on nematode species composition[J].Oecologia,1990,83(1):14-19.
[21] 寇钊阳,李春越,肖凤娇,常顺,王益,党廷辉.氮磷添加对黄土旱塬农田土壤线虫群落及能量结构的影响[J].生态学报,2024,44(5):1962-1971.KOU Zhaoyang,LIChunyue,XIAO Fengjiao,CHANG Shun,WANG Yi,DANG Tinghui. Effects of nitrogen and phosphorus addition on soil nematode communities and energy structure in Loess Plateau farmland[J].Acta Ecologica Sinica,2024,44(5):1962-1971.
[22] HU N,LIH,TANG Z,LIZ F,TIAN J,LOU Y L,LIJ W,LIG C,HU X M. Community diversity,structure and carbon footprint of nematode food web following reforestation on degraded Karst soil[J].Scientific Reports,2016,6:28138.
[23] 王楠,黄菁华,霍娜,耿德洲,杨盼盼,张欣玥,赵世伟.黄土高原半干旱区不同林龄柠条人工林土壤线虫群落特征[J].生态学杂志,2022,41(2):236-245.WANG Nan,HUANG Jinghua,HUO Na,GENG Dezhou,YANG Panpan,ZHANG Xinyue,ZHAO Shiwei. Characteristics of soil nematode communities in Caragana korshinskii plantations with different stand ages in semi-arid region of Loess Plateau,Northwest China[J].Chinese Journal of Ecology,2022,41(2):236-245.
[24] 孙晓铭,段玉玺,赵磊,陈立杰.辽宁果树根围土壤线虫的多样性研究[J].果树学报,2010,27(3):410-415.SUN Xiaoming,DUAN Yuxi,ZHAO Lei,CHEN Lijie. Diversity of soil nematodes in orchards in Liaoning province[J]. Journal of Fruit Science,2010,27(3):410-415.
[25] 董锡文.科尔沁沙地沙丘植物恢复进程中土壤肥力变化及线虫群落空间分布特征研究[D].沈阳:沈阳农业大学,2010.DONG Xiwen. Changes of soil fertility and spatial distribution of nematodes after the establishment of vegetation on sand dune in Horqin[D]. Shenyang:Shenyang Agricultural University,2010.
[26] 代江慧,吴鹏飞,唐思思,王长庭,王玉英,任晓,魏雪.降水变化对高寒草甸土壤线虫群落的影响[J]. 生态学报,2023,43(22):9371-9383.DAIJianghui,WU Pengfei,TANG Sisi,WANG Changting,WANG Yuying,REN Xiao,WEIXue.Effects of altered precipitation on soil nematode communities in an alpine meadow[J].Acta Ecologica Sinica,2023,43(22):9371-9383.
[27] FERRIS H,BONGERS T,DE GOEDE R G M. A framework for soil food web diagnostics:Extension of the nematode faunal analysis concept[J].Applied Soil Ecology,2001,18(1):13-29.
[28] 侯春雨,魏雪,周磊,马金豪,任晓,王玉英,吴鹏飞.川西北高寒地区多年生禾本科人工草地土壤线虫群落动态[J].生态学报,2023,43(24):10104-10118.HOU Chunyu,WEIXue,ZHOU Lei,MA Jinhao,REN Xiao,WANG Yuying,WU Pengfei. Dynamics of soil nematode community in perennial Gramineae artificial grasslands in Northwest Sichuan[J]. Acta Ecologica Sinica,2023,43(24):10104-10118.
[29] 刘贝贝,叶成龙,虞丽,焦加国,刘满强,胡锋,李辉信.不同植被类型的滩涂湿地土壤线虫群落特征[J]. 应用生态学报,2012,23(11):3057-3064.LIU Beibei,YE Chenglong,YU Li,JIAO Jiaguo,LIU Manqiang,HU Feng,LIHuixin.Characteristics of soil nematode communities in coastal wetlands with different vegetation types[J].Chinese Journal of Applied Ecology,2012,23(11):3057-3064.
[30] WASILEWSKA L. Long-term changes in communities of soil nematodes on fen peats due to the time since their drainage[J].Ekologia Polska,1991,39(1):59-104.
[31] 马金豪,栾军伟,王晖,叶晓丹,王一,明安刚,刘世荣.乔木根系和凋落物对南亚热带3 种人工林土壤线虫群落的差异化影响[J].生态学报,2023,43(18):7367-7380.MA Jinhao,LUAN Junwei,WANG Hui,YE Xiaodan,WANG Yi,MING Angang,LIU Shirong. Differential impacts of tree root and litter on soil nematode communities in three artificial stands in subtropical South China[J]. Acta Ecologica Sinica,2023,43(18):7367-7380.
[32] WILSCHUT R A,GEISEN S.Nematodes as drivers of plant performance in natural systems[J]. Trends in Plant Science,2021,26(3):237-247.
[33] 薛会英,罗大庆,王鸿源,屈兴乐.藏北高寒草甸土壤线虫群落对围封及自由放牧的响应[J]. 土壤学报,2017,54(2):480-492.XUE Huiying,LUO Daqing,WANG Hongyuan,QU Xingle.Effects of free grazing or enclosure on soil nematodes in alpine meadows in North Tibet,China[J]. Acta Pedologica Sinica,2017,54(2):480-492.
[34] 邢树文,李云,李金林,张银珊.不同种植年限蕉柑根际土壤线虫群落及营养类群结构特征[J]. 果树学报,2017,34(12):1599-1609.XING Shuwen,LIYun,LIJinlin,ZHANG Yinshan. Distribution characteristics of soil nematode communities and trophic group in the rhizosphere of Citrus reticulata Blanco‘Tankan’with different planting years[J]. Journal of Fruit Science,2017,34(12):1599-1609.
[35] VAN DEN HOOGEN J,GEISEN S,ROUTH D,…,CROWTHER T W. Soil nematode abundance and functional group composition at a global scale[J]. Nature,2019,572(7768):194-198.
[36] 侯磊,任毅华,卢杰,薛会英.雪被厚度对色季拉山急尖长苞冷杉林土壤线虫群落的影响[J].生态学报,2023,43(6):2348-2356.HOU Lei,REN Yihua,LU Jie,XUE Huiying. Effects of snow cover on soil nematode community in Abies georgei var. smithii forest in Sejila Mountain[J].Acta Ecologica Sinica,2023,43(6):2348-2356.
[37] 张宏芝,陈兴武,雷钧杰,乔旭,赵奇,张新志,努尔买买提·拖合尼牙孜.杏麦间作模式下杏树根系对小麦根系及产量的影响[J].新疆农业科学,2015,52(5):802-807.ZHANG Hongzhi,CHEN Xingwu,LEI Junjie,QIAO Xu,ZHAO Qi,ZHANG Xinzhi,Nuermaimaiti·Tuoheniyazi. Effect of apricot tree roots on the wheat roots and yield in apricotwheat intercropping[J].Xinjiang Agricultural Sciences,2015,52(5):802-807.
[38] 瞿云明,徐小燕.氰氨化钙处理酸化土壤后配施微生物菌肥对花椰菜的影响[J].中国瓜菜,2023,36(5):115-119.QU Yunming,XU Xiaoyan. Effect of calcium cyanamide treatment of acidified soil combined with bacterial fertilizer on cauliflower[J]. China Cucurbits and Vegetables,2023,36(5):115-119.
[39] 孙兆凯.土壤pH 对根际线虫数量与生姜产量的影响分析[J].农业展望,2019,15(4):64-69.SUN Zhaokai. Effect of soil pH on rhizosphere nematode quantity and ginger yield[J]. Agricultural Outlook,2019,15(4):64-69.
Community characteristics of soil nematode in Shushanggan apricot plantations of different ages in the Yili River Valley