4个葡萄品种改接的阳光玫瑰光合特性和果实品质的差异分析

翟文婷,张宗翊,陈红梅,刘子恒,赵宝龙,孙军利*

(石河子大学农学院·特色果蔬栽培生理与种质资源利用兵团重点实验室,新疆 石河子 832003)

摘 要:【目的】研究4个葡萄品种改接的阳光玫瑰光合特性及果实品质的差异,以期筛选出适宜新疆石河子地区改接阳光玫瑰的老品种葡萄。【方法】以维多利亚、巨峰、无核紫、克瑞森无核作砧木改接的阳光玫瑰为试验材料,测定并分析4个砧穗组合的光合参数、叶绿素荧光参数、叶绿素含量、果实品质等生理指标的差异,采用相关性分析、主成分分析法对各砧穗组合进行综合评价。【结果】研究表明,以克瑞森无核作砧木改接阳光玫瑰后,单穗质量达919.19 g,可溶性固形物含量(w,后同)达21.63%,固酸比达62.08,果实品质较优;叶绿素a、叶绿素b、总叶绿素含量以及光合特性指标、PSII的最大光能转换效率(Fv/Fm)较高,光合能力较强。以无核紫作砧木改接的阳光玫瑰初始荧光(F0)、最大荧光产量(Fm)较高,光能利用效率较弱,但PSⅡ反应中心电子传递能力较强。主成分分析表明,由克瑞森无核改接的阳光玫瑰综合得分最高。【结论】以克瑞森无核作砧木改接的阳光玫瑰光合作用较强,果实品质更优,综合表现较好,克瑞森无核是4个葡萄品种中改接阳光玫瑰的最适品种。

关键词:阳光玫瑰;改接;砧穗组合;光合特性;果实品质

阳光玫瑰(Shine Muscat)葡萄为欧美杂交种,其亲本为安芸津21 号(Steuben × Muscat of Alexandria)和白南(Katta Kourgan×甲斐路),2003年由日本选育,于2009年引入中国[1-2]。阳光玫瑰葡萄因其浓郁的玫瑰香味、高糖、低酸、果穗整齐美观、耐储运、货架期长等特点,引起了众多专家学者和果农的关注,被视为葡萄园更新换代的首选品种[3]。近年来,新疆地区栽植的葡萄品种维多利亚(Victoria)果实含糖量、可溶性固形物含量低,品质不佳;无核紫(Black Monukka)葡萄抗病性差、果粒难以着色;巨峰(Kyoho)葡萄坐果率低;克瑞森无核(Crimson Seedless)成熟期极晚,在石河子地区往往尚未成熟就会遭受早霜危害,影响品质。由于栽植阳光玫瑰幼苗进入丰产期时间较长[4],故采用大树改接的方法进行换种[5],以实现品种的快速更新。

高接换种技术是在保留原树体构架基础上,对骨干枝进行品种的快速改良[6],通过充分利用原栽品种的强大根系为接穗的快速生长提供营养物质[4],嫁接次年即可结果,3年即可实现丰产,因此在果树上得以广泛应用[7]。已有研究表明,对大龄葡萄夏黑高接阳光玫瑰进行品种更新,成活率高达96%,经济效益快速提高[8];桃夏季高接换种显著提高了嫁接的成活率[9];新球蜜荔、妃子笑和草莓荔等22 个荔枝品种(优株)与怀枝进行高接换种的嫁接成活率均较高,并且果实品质和成熟期具有丰富的多样性[10]

由于原栽葡萄品种根系会对接穗的营养生长、光合特性和果实品质产生不同的影响,故笔者在本研究中选择4 个葡萄品种改接的阳光玫瑰为材料,研究原栽品种对阳光玫瑰光合特性及果实品质的影响,以期筛选出适宜新疆石河子地区改接阳光玫瑰的老品种葡萄。

1 材料和方法

1.1 试验地概况

试验于2023年8—9 月在石河子农业科学院葡萄研究所北疆示范基地(N 43°26′-45°20′,E 84°58′-86°24′)进行。该试验地地势平坦,地处天山北麓中段,准噶尔盆地南部,自东南向西北倾斜,属典型的温带大陆性气候。年平均温度8 ℃,平均海拔450.8 m,年平均降水量在166.5 mm,无霜期为169~172 d,一年中大于0 ℃的活动积温为4023~4118 ℃,年日照时数为2721~2818 h,日照充沛。供试土壤有机质含量(w,后同)34.38 g·kg-1,土壤pH 8.15,碱解氮含量50.38 mg·kg-1,速效钾含量127.67 mg·kg-1,速效磷含量34.05 mg·kg-1

1.2 供试材料

于2012年种植4 个葡萄品种,分别为维多利亚(Victoria)、巨峰(Kyoho)、无核紫(Black Monukka)、克瑞森无核(Crimson Seedless),均为自根苗,各品种植株健康、长势一致。2021年5月,采用绿枝嫁接法,对树龄9 a(年)的4 个葡萄品种进行改接,分别记为SM/VI、SM/KY、SM/BM、SM/CR,至2023年均已进入盛果期。采用高“厂”字形水平叶幕方式进行整形,株行距为3.0 m×1.5 m,东西走向,葡萄树两侧铺设滴灌带,共4条,每侧各2条。

留梢密度及花果管理:新梢距离20~25 cm,单株留穗12~14穗,留果方式单枝单穗。花前修穗,保留穗尖20 个左右的小穗轴;满花后1~2 d 使用植物生长调节剂(25 mg·L-1赤霉素酸+3 mg·L-1氯吡脲)进行第一次喷穗无核化处理;间隔10 d对果穗进行修整,每穗留果70~80粒,并在第一次植物生长调节剂溶液浓度的基础上加1 mg·L-1噻苯隆对果穗进行第二次喷穗膨大处理。果实生长发育过程中未进行套袋处理。

1.3 测定指标及方法

1.3.1 果实外观品质测定 于果实成熟期(9 月5日),每个组合随机选取1株,每株随机摘取5穗果,3次重复。每穗果于中部随机选取10粒,用于果实外观品质的测定。使用游标卡尺测量果实纵径和横径,并计算果形指数(果形指数=果实纵径/果实横径)。单粒质量和单穗质量使用电子天平测定;根据果穗数和单穗质量折算单位面积产量[11]

1.3.2 果实内在品质测定 将上述测定外观品质的10粒果,与其对应果穗上的所有果实全部取下,揉碎过滤取汁,用于果实内在品质的测定。使用PAL-1手持测糖仪测定可溶性固形物含量(soluble solids content,SSC),酸碱滴定法测定可滴定酸(titratable acid,TA)含量,紫外分光光度法快速测定维生素C(vitamin C,VC)含量,蒽酮试剂法测定可溶性糖(soluble sugar,SS)含量,考马斯亮蓝G-250 染色法测定可溶性蛋白(soluble protein,SP)含量[12]。根据可溶性固形物含量和可滴定酸含量计算固酸比(RTT)。

1.3.3 果皮颜色测定 使用CR-400 便携式色差仪测定果皮色差的L*a*b*值,并计算出色泽饱和度(chroma,c*)值,色调角(hue angle,h°)值[13]。果皮颜色指标中,L*值代表果皮亮度,L*值越大,果面越亮;a*值代表果皮红绿色差,-a*到+a*变化过程代表绿色减退、红色增强;b*值代表果皮黄蓝色差,-b*到+b*变化过程代表蓝色减退、黄色增强。色泽饱和度c*值越大,颜色越纯;h°值代表果皮色调,h°在0°~180°之间,h°=0°为紫红色,h°=90°时为黄色,h°=180°为绿色[14]

1.3.4 光合指标测定 2023年8 月下旬,选择无云的晴天,连续3 d,在09:00—11:00,采用Licor-6800光合仪(美国LI-COR 公司生产)测定果穗以上第4枚叶的光合气体交换参数,包括净光合速率(net photosynthetic rate,Pn)、气孔导度(stomatal conductance,Gs)、蒸腾速率(transpiration rate,Tr)、胞间CO2浓度(intercellular carbon dioxide concentration,Ci);并计算水分利用率(water use efficiency,WUE)。

1.3.5 叶绿素含量测定 利用分光光度计法检测叶片的叶绿素含量[15]:于8月30日,每个组合随机选取4 个结果枝,每个结果枝选取果穗以上第6 叶,避开叶脉用直径6 mm 的打孔器打取20 个圆片,3 次重复,混匀后称取0.2 g,加入石英砂、95%无水乙醇研磨为匀浆,定容于10 mL容量瓶,置于暗处浸提24 h,直至叶片完全变白后,提取上清液分别测定645 nm和663 nm波长下的吸光值。

1.3.6 叶绿素荧光参数测定 叶绿素荧光参数测定参照胡琳莉[16]的方法:于8月30日,每个组合随机选取4个结果枝,每个结果枝摘取果穗以上第6叶,用湿棉球包裹整片叶,黑暗处理1 h,3 次重复。使用PAM(调制叶绿素荧光仪,Modulated Chlorophyll Fluorometer)测定叶片叶绿素荧光参数。

1.4 数据处理

采用Microsoft Excel统计数据,采用SPSS 25进行数据分析,采用Origin 2022绘制相关性热图。

2 结果与分析

2.1 4个葡萄品种改接的阳光玫瑰果实外观品质的差异

2.1.1 4 个葡萄品种改接的阳光玫瑰果实大小差异 从表1 可以看出,SM/CR 的果粒纵径最大,为28.47 mm,显著高于其他3 种砧穗组合;SM/BM 的果粒横径最小,为19.00 mm,显著低于SM/CR。单粒质量以SM/CR 最大,为13.24 g;SM/BM 最小,为9.99 g,二者差异显著。SM/BM的单穗质量最小,为682.82 g,显著低于其他3 种砧穗组合,分别比SM/KY、SM/VI、SM/CR 低138.37 g、203.45 g、236.37 g。SM/BM的每666.7 m2产量显著低于其他3种砧穗组合,每666.7 m2产量分别比SM/VI、SM/KY、SM/CR低287.12、422.16、490.48 kg。

表1 4 个葡萄品种改接的阳光玫瑰果实大小差异
Table 1 The fruit size of Shine Muscat grafted on 4 grape varieties

注:同列不同小写字母表示在0.05 水平差异显著(p<0.05)。下同。
Note:Means followed by different small letters in the same column are significantly difference p<0.05.The same below.

砧穗组合Stock-scion combination SM/VI SM/KY SM/BM SM/CR果粒纵径Longitudinal diameter/mm 26.21±0.76 b 25.35±0.70 bc 24.25±0.12 c 28.47±0.23 a果粒横径Transverse diameter/mm 21.45±0.49 a 21.68±0.53 a 19.00±0.08 b 23.53±1.13 a果形指数Shape index 1.22±0.01 a 1.17±0.05 a 1.28±0.01 a 1.21±0.05 a单粒质量Berry mass/g 11.57±0.12 b 10.86±0.32 bc 9.99±0.42 c 13.24±0.31 a单穗质量Single cluster mass/g 821.19±33.50 a 886.27±55.60 a 682.82±16.39 b 919.19±37.15 a产量Yield/(kg·666.7 m-2)1 704.06±69.51 a 1 839.10±115.38 a 1 416.94±34.00 b 1 907.42±77.09 a

参照《葡萄种质资源描述规范和数据标准》[17],果形指数在1.1~1.3 之间,果实呈椭圆形;介于1.0~1.1 之间,果实呈圆形;小于1.0 时,果实呈扁圆形。在这4 种砧穗组合中,果形指数均在1.1~1.3 之间,果粒呈椭圆形。市场普遍认为阳光玫瑰的果粒为椭圆形,因此说明,这4种砧木对阳光玫瑰果形的影响较小。

2.1.2 4 个葡萄品种改接的阳光玫瑰果实色泽差异 由表2可知,SM/CR的L*值最大,为50.79,显著高于其他3 种砧穗组合;a*值以SM/KY 最小,果皮颜色较绿;SM/CR的b*值最小,果皮黄色偏浅;SM/BM 的c*值最大,显著大于SM/CR,果皮颜色较纯;SM/VI、SM/KY 的果皮色调h°值显著大于SM/BM、SM/CR,果皮绿色由深到浅依次为:SM/VI、SM/KY、SM/CR、SM/BM。

表2 4 个葡萄品种改接的阳光玫瑰果实色泽差异
Table 2 Fruit color parameters of Shine Muscat grafted on 4 grape varieties

砧穗组合Stock-scion combination SM/VI SM/KY SM/BM SM/CR L*49.64±0.29 b 48.46±0.44 c 49.13±0.31 bc 50.79±0.27 a a*-3.60±0.58 b-3.74±0.20 b-2.78±0.03 ab-2.30±0.21 a b*12.14±0.31 b 13.49±0.26 ab 14.22±0.95 a 12.05±0.41 b c*12.68±0.45 ab 14.00±0.27 ab 14.49±0.93 a 12.30±0.44 b h°178.71±0.04 a 178.70±0.01 a 178.62±0.01 b 178.63±0.01 b

2.2 4个葡萄品种改接的阳光玫瑰果实内在品质的差异

由表3可知,SM/CR的可溶性固形物含量最高,为21.63%,显著高于其他3 种砧穗组合。可滴定酸含量由高到低依次为SM/KY>SM/VI>SM/CR>SM/BM,分别为0.41、0.39、0.35、0.32 g·L-1,各组合间差异显著。SM/CR的固酸比、可溶性糖含量显著高于SM/BM,SM/CR 的固酸比、可溶性糖含量分别为62.08、18.02%,SM/BM 的固酸比、可溶性糖含量分别为45.28、15.66%;SM/KY、SM/VI 的固酸比、可溶性糖含量无显著差异,SM/KY 的固酸比最低,为37.33,SM/BM的可溶性糖含量最低,为15.66%。维生素C 含量各组合间差异显著,以SM/CR 最高,为12.15 mg·kg-1,以SM/BM 最低,为10.52 mg·kg-1。可溶性蛋白含量以SM/KY 最高,为11.74 mg·kg-1,显著高于其他3 种砧穗组合,分别比SM/CR、SM/BM、SM/VI高0.09、0.33、0.80 mg·kg-1

表3 4 个葡萄品种改接的阳光玫瑰果实内在品质的差异
Table 3 The internal quality parameters of Shine Muscat grafted on 4 grape varieties

砧穗组合Stock-scion combination SM/VI SM/KY SM/BM SM/CR w(可溶性固形物)Soluble solid content/%14.87±0.54 b 15.20±0.06 b 14.40±0.12 b 21.63±0.15 a ρ(可滴定酸)Titratable acid content/(g·L-1)0.39±2.06 b 0.41±3.39 a 0.32±2.94 d 0.35±3.80 c固酸比Solid to acid ratio 38.41±1.59 c 37.33±0.30 c 45.28±0.30 b 62.08±0.31 a w(可溶性糖)Soluble sugar content/%16.10±0.55 ab 16.70±0.36 ab 15.66±0.47 b 18.02±0.83 a w(维生素C)Vitamin C content/(mg·kg-1)11.70±0.08 b 11.08±0.05 c 10.52±0.13 d 12.15±0.01 a w(可溶性蛋白)Soluble protein content/(mg·kg-1)10.94±0.01 d 11.74±0.03 a 11.41±0.01 c 11.65±0.03 b

2.3 4 个葡萄品种改接的阳光玫瑰光合特性的差异

2.3.1 4个葡萄品种改接的阳光玫瑰叶绿素含量差异 由图1-A 所示,叶绿素a(Chl a)含量以SM/CR最高,为2.60 mg·g-1,而后依次为SM/VI>SM/KY>SM/BM,分别为2.40、2.23、1.79 mg·g-1。由图1-B、1-C 可知,SM/CR、SM/VI 的叶绿素b(Chl b)、总叶绿素(Chl a+b)含量显著高于SM/KY 和SM/BM,SM/CR 的Chl b、Chl a+b 含量均最高,分别是1.35、3.95 mg·g-1,SM/BM的Chl b、Chl a+b含量均最低,分别是0.68、2.45 mg·g-1;SM/CR的Chl a+b含量分别比SM/VI、SM/KY、SM/BM 高0.43、1.03、1.50 mg·g-1。由图1-D 可知,各砧穗组合间叶绿素a/b(Chl a/b)的值,由高到低排序为SM/KY、SM/BM、SM/VI、SM/CR,分别为3.25、2.70、2.14、1.98。由此可知,SM/CR的Chl a、Chl b、Chl a+b含量均最高。

图1 4 个葡萄品种改接的阳光玫瑰叶绿素含量的差异
Fig.1 Chlorophyll contents of Shine Muscat grafted on 4 grape varieties

不同小写字母表示差异显著(p<0.05)。下同。
Different small letters show significant difference(p<0.05).The same below.

2.3.2 4 个葡萄品种改接的阳光玫瑰光合指标差异 植物的净光合速率(Pn)直接决定了植株的生长速度和产量。由图2-A 可知,4 种砧穗组合的Pn表现为,SM/CR 最高,为15.45 μmol·m-2·s-1,分别比SM/VI、SM/KY、SM/BM 显著提高1.73、1.91、5.67 μmol·m-2·s-1

图2 4 个葡萄品种改接的阳光玫瑰光合指标差异
Fig.2 Differences in photosynthetic indexes of Shine Muscat grafted on 4 grape varieties

蒸腾速率(Tr)反映了植物的水分状况和生理状态。由图2-B 可知,4 种砧穗组合的Tr表现为,SM/CR 最高,为3.85 mmol·m-2·s-1,其次是SM/KY,为3.76 mmol·m-2·s-1,两组合间无显著差异,SM/VI、SM/BM 的Tr分别为3.45、2.85 mmol·m-2·s-1,两组合间差异显著。

CO2是植物光合作用的主要碳源,通过光合作用转化为有机物,是构建生物体的物质基础。由图2-C 可知,胞间CO2浓度(Ci)由高到低依次为SM/CR>SM/KY>SM/VI>SM/BM,分别为279.02、256.44、237.27、229.37 μmol·mol-1

气孔导度(Gs)作为植物叶片与外界进行气体交换的主要通道,直接影响植物的光合作用、呼吸作用以及蒸腾作用。由图2-D 可知,气孔导度(Gs)以SM/BM最低,为0.08 mol·m-2·s-1,分别显著低于SM/CR、SM/VI 0.11、0.08 mol·m-2·s-1

水分利用率(WUE)是蒸腾消耗单位质量水所制造的干物质量,受到净光合速率(Pn)和蒸腾速率(Tr)的影响。由图2-E可知,SM/CR、SM/VI的WUE显著高于SM/KY、SM/BM,SM/CR的WUE最高,为4.01 mmol·mol-1,SM/BM 最低,为3.43 mmol·mol-1。以上结果说明由克瑞森无核改接的阳光玫瑰相较于其他3种砧穗组合,叶片光合能力较强。

2.3.3 4个葡萄品种改接的阳光玫瑰叶绿素荧光参数差异 将叶绿素荧光参数标准化后,绘制雷达图,由图3 可知,SM/CR 的PSII 的最大光能转换效率(maximum photochemical efficiency of PSIIFv/Fm)、光化学淬灭系数(photochemical quenching coefficient,qP)高于其他3 种砧穗组合,初始荧光(initial fluorescence,F0)低于其他3种砧穗组合,差异显著,分别比SM/BM、SM/KY、SM/VI 低38.89%、32.01%、30.38%。SM/BM 的最大荧光产量(maximum fluorescence yield,Fm)高于其他3 种砧穗组合。SM/KY的PSII的实际光化学效率[actual photochemical efficiency of PSIIY(Ⅱ)]高于其他3 种砧穗组合。SM/VI 的非光化学淬灭系数[non-photochemical quenching coefficient,Y(NPQ)]高于其他砧穗组合,差异显著。

图3 4 个葡萄品种改接的阳光玫瑰叶绿素荧光参数差异
Fig.3 Chlorophyll fluorescence parameters of Shine Muscat grafted on 4 grape varieties

2.4 4个葡萄品种改接的阳光玫瑰光合特性和果实品质的评价

2.4.1 相关性分析 对不同砧穗组合的光合特性与果实品质等21 个生理指标进行相关性分析,由图4可知,葡萄果实的单粒质量与影响光合速率的TrPnCiGs呈极显著正相关,与单穗质量、L*、RTT、SS、Fv/Fm呈显著正相关,葡萄果实的VC含量与影响光合速率的TrPnGs呈极显著正相关,与SS含量、Ci呈显著正相关;从叶绿素含量角度看,Chl a+b与PnGs、Chl a、Chl b、VC 含量呈极显著正相关,与CiTrL*、单穗质量呈显著正相关;从叶绿素荧光角度来看,F0与单粒质量、L*、RTT、PnCiFv/Fm呈显著负相关,与单穗质量、VC 含量呈极显著负相关,Fv/Fm与RTT、L*a*呈极显著正相关。

图4 4 个葡萄品种改接的阳光玫瑰光合特性和果实品质相关性分析
Fig.4 Correlation analysis of photosynthetic characteristics and fruit quality of Shine Muscat grafted on 4 grape varieties

2.4.2 主成分分析 对4 个砧穗组合的9 个指标进行主成分分析,如表4所示,发现前两个主成分的特征值分别为5.850、1.477,提取出的2个主成分,累积方差贡献率达81.415%,对应的方差贡献率分别为65.004%、16.411%,表明这2个主成分具有较强的信息代表。

表4 4 个葡萄品种改接的阳光玫瑰光合特性和果实品质主成分分析
Table 4 Principal component analysis of photosynthetic characteristics and fruit quality of Shine Muscat grafted on 4 grape varieties

指标Indexes 2总叶绿素含量Total chlorophyll content(X1)蒸腾速率Tr(X2)净光合速率Pn(X3)胞间CO2浓度Ci(X4)气孔导度Gs(X5)固酸比Solid acid ratio(X6)维生素C含量Vitamin C content(X7)可溶性蛋白含量Soluble protein content(X8)可溶性糖含量Soluble sugar content(X9)特征值Eigenvalue贡献率Contribution rate/%累积贡献率Cumulative contribution rate/%主成分Principal component 1 0.813-0.414 0.908 0.937 0.908 0.899 0.571 0.868 0.018-0.240 0.333-0.138 0.296-0.410 0.354 0.805 5.850 65.004 65.004 0.878 0.303 1.477 16.411 81.415

两个主成分的对应方程表达式如下:

在第一主成分的方程表达式中,第2、3、4、5、7、9项系数较大,代表的指标分别是TrPnCiGs、VC和SS含量;在第二主成分的方程表达式中,第1、6、8项系数较大,代表的指标分别是Chl a+b含量、RTT、SP含量。

由表5 可知,通过主成分综合模型计算综合得分,根据综合得分对4 种砧穗组合进行排序:SM/CR>SM/KY>SM/VI>SM/BM。

表5 4 个葡萄品种改接的阳光玫瑰葡萄综合评价
Table 5 Comprehensive evaluation of Shine Muscat grafted on 4 grape varieties

砧穗组合Stock-scion combination SM/VI SM/KY SM/BM SM/CR主成分1得分Principal component 1 score-0.27 0.29-1.16 3.20主成分2得分Principal component 2 score-1.95 0.78 0.76 0.40综合得分Comprehensive score-0.50 0.32-2.00 2.14排名Rank 3241

3 讨论

砧木是嫁接果树的基础,对接穗品种的生长发育及果实品质有重要影响[18]。已有研究表明,8B砧木嫁接阳光玫瑰增加其果实大小和硬度,1103P、5BB 砧木嫁接后果实固酸比增大[19];郑碧霞等[20]研究表明,贝达砧木嫁接阳光玫瑰果实可溶性固形物和可溶性糖含量最高,果实成熟期早于SO4、5BB砧木1~2周。可溶性糖含量高低是判断葡萄是否成熟的一个重要指标[21],固酸比又是反映果实口感及成熟度的重要指标。在本研究中,SM/CR、SM/KY、SM/VI 的单粒质量显著大于SM/BM,其中SM/CR的可溶性固形物含量较高,达21.63%,固酸比最高达62.08,可溶性糖含量达18.02%,说明以克瑞森无核作砧木改接阳光玫瑰果实成熟度较高,口感更甜,风味更佳。

光合作用是影响树体生长及果实品质的重要因素之一。净光合速率、气孔导度、胞间CO2浓度和蒸腾速率是反映光合作用的重要指标[22-23]。在霞多丽葡萄上的研究表明,不同砧木对树体长势和光合特性均有显著影响,其中以1103P-CFC57-34、1103PCFC60-30 作砧木的净光合速率、气孔导度较高,光合效率明显高于其他砧木的嫁接树[24]。笔者在本研究中发现,以克瑞森无核作砧木改接阳光玫瑰,净光合速率、蒸腾速率、胞间二氧化碳浓度和气孔导度均高于其他3 种砧穗组合。由此可见,以克瑞森无核作砧木改接阳光玫瑰叶片光合能力较强。

叶绿体是植物进行光合作用的场所,叶绿素的含量与植株的光合作用呈正相关[25]。叶绿素含量能够反映出植株对外部光照的适应性和光合作用的强度,高叶绿素含量有助于维持高的光合速率,从而改善植株的光合速率[26-27]。许凯等[28]研究表明,砧木SA15显著提升了赤霞珠和脆光叶片的净光合速率,提高了叶片中叶绿素含量。笔者在本研究中发现,SM/CR的Chl a、Chl b、Chl a+b含量均显著高于SM/BM。对试验数据进行相关性分析,发现Chl a+b含量与影响光合速率的指标PnTrCiGS均呈显著正相关,这与贾瑞瑞等[29]关于不同砧木对楸树嫁接苗生长及光合特性影响的研究结果一致。说明叶片光合能力的强弱受Chl a+b含量影响较大,这可能是导致SM/CR叶片光合能力较强的直接原因。

植物叶绿素荧光参数与植物光合作用关系密切,是研究植物光合作用的有效探针[30],可快速、准确、无损伤地检测植物的光合作用状况,已广泛应用在植物光合水平的相关研究中[31]PSⅡ最大光能转换效率(Fv/Fm)被认为是叶片光合效率的重要衡量指标,反映了植物叶片利用光能的能力[32-33]。在叶片吸收的光能过程中,高PSII实际光化学效率Y(II)通常意味着高光合效率[34]。王强等[35]对不同砧木嫁接辣椒叶绿素荧光参数的研究表明,以佳伴辣椒品种作为砧木嫁接陇椒2 号的PSⅡ最大光能转换效率(Fv/Fm)显著高于dw-21/陇椒2 号,具有潜在的最大光合能力。笔者在本研究中发现,SM/CR 的Fv/Fm较高,SM/KY 的Y(II)较高,说明SM/CR、SM/KY 叶片利用光能的能力较强。初始荧光(F0)是PS 反应中心处于完全开放时的荧光产量[36]Fm可反映PSⅡ反应中心的电子传递情况。F0体现出植物对光能的利用效率以及光反应中心保护机制的变化,F0越高说明植物对光能的利用效率越低,反之则越高[37]。刘春燕等[38]研究表明,9个砧穗组合嫁接苗叶片的初始荧光(F0)存在显著性差异。笔者在本研究中发现,SM/BM 的初始荧光(F0)、最大荧光(Fm)均高于其他3种砧穗组合,差异显著,说明其光能利用效率较弱,而PSⅡ反应中心电子传递的能力较强。

4 结论

相较与其他3 个葡萄品种,以克瑞森无核作砧木改接阳光玫瑰,果实的可溶性糖、可溶性固形物含量、糖酸比较高,叶片的叶绿素含量较高;光合作用较强,果实品质更优,综合表现较好,因此克瑞森无核是4个葡萄品种中改接阳光玫瑰的最适品种。

参考文献 References:

[1] YAMADA M,YAMANE H,SATO A. Development and extention of a new grape cultivar‘Shine Muscat’[J].Horticultural Research(Japan),2017,16(3):229-237.

[2] 李婉雪.‘阳光玫瑰’葡萄优质栽培技术研究[D].南京:南京农业大学,2016.LI Wanxue. The study of high quality and key cultivation techniques of‘Shine Muscat’grape[D]. Nanjing:Nanjing Agricultural University,2016.

[3] 杨治元,陈哲.阳光玫瑰葡萄规模种植情况调查初报[J].中外葡萄与葡萄酒,2017(1):59-60.YANG Zhiyuan,CHEN Zhe.Preliminary report on the investigation of the scale planting situation of Shine Muscat grape[J]. Sino-Overseas Grapevine&Wine,2017(1):59-60.

[4] 辛守鹏,李明,郝紫微,司少鹏.不同葡萄品种对嫁接‘阳光玫瑰’生长及果实品质的影响[J].北方果树,2022(3):19-20.XIN Shoupeng,LI Ming,HAO Ziwei,SI Shaopeng. Effects of different grape varieties on the growth and fruit quality of grafted‘Shine Muscat’[J].Northern Fruits,2022(3):19-20.

[5] 李育洲.葡萄改接换头技术[J].河北林业,2010(5):34.LI Yuzhou. Technique of grafting and head replacement of grape[J]. The Journal of Hebei Forestry Science and Technology,2010(5):34.

[6] 李玉生,刘美玲,陈龙,刘晓东,吴雅琴,程和禾,吴永杰,赵洪刚,赵艳华.甜樱桃高接换种及早花早果技术[J].河北果树,2023(4):33.LI Yusheng,LIU Meiling,CHEN Long,LIU Xiaodong,WU Yaqin,CHENG Hehe,WU Yongjie,ZHAO Honggang,ZHAO Yanhua. Technology of high substitution and early flowering and early fruit of sweet cherry[J].Hebei Fruits,2023(4):33.

[7] 佚名.澳洲坚果高接换种技术[J].云南农业,2023(1):52-53.Anon. Macadamia high substitution technique[J]. Yunnan Agriculture,2023(1):52-53.

[8] 陈晶和,史树仁.大龄葡萄夏秋季节高接换种技术[J].果农之友,2021(5):18-20.CHEN Jinghe,SHI Shuren. High transfer technique of older grape in summer and autumn Fruit[J]. Fruit Growers’Friend,2021(5):18-20.

[9] CHEN W F,YANG Y,DENG W.Effects of top grafting on survival rate and growth of peach in summer[J]. Agricultural Science&Technology,2023,24(1):1-5.

[10] 李冬波,彭宏祥,徐宁,李鸿莉,侯延杰,邱宏业,张树伟,朱建华,丁峰,秦献泉,李平.35 个荔枝品种与‘怀枝’高接换种的亲和性及性状评价[J].西南农业学报,2023,36(2):386-395.LI Dongbo,PENG Hongxiang,XU Ning,LI Hongli,HOU Yanjie,QIU Hongye,ZHANG Shuwei,ZHU Jianhua,DING Feng,QIN Xianquan,LI Ping. Grafting compatibility and fruit characteristics of 35 litchi varieties top grafting on litchi cv.‘Huaizhi’[J]. Southwest China Journal of Agricultural Sciences,2023,36(2):386-395.

[11] 郑聪丽,白茹,高登涛,魏志峰,刘丽,魏春晓.不同砧木对郑州地区‘阳光玫瑰’葡萄生长及果实品质的影响[J].经济林研究,2023,41(4):101-108.ZHENG Congli,BAI Ru,GAO Dengtao,WEI Zhifeng,LIU Li,WEI Chunxiao. Effects of different rootstocks on the growth and fruit quality of‘Shine Muscat’grape in Zhengzhou[J].Nonwood Forest Research,2023,41(4):101-108.

[12] 高俊凤. 植物生理学实验指导[M]. 北京:高等教育出版社,2006.GAO Junfeng. Experimental guidance for plant physiology[M].Beijing:Higher Education Press,2006.

[13] 唐莎莎.无核白葡萄果实品质评价研究[D].乌鲁木齐:新疆农业大学,2013.TANG Shasha.The research on evaluation of fruit quality of the Thompson Seedless grape[D]. Urumqi:Xinjiang Agricultural University,2013.

[14] 郭淑萍,杨顺林,杨玉皎,张永辉,孟富宣,何建军,张俊松,金杰.GA3 和CPPU 对无核翠宝葡萄果实品质的影响[J].果树学报,2022,39(10):1834-1844.GUO Shuping,YANG Shunlin,YANG Yujiao,ZHANG Yonghui,MENG Fuxuan,HE Jianjun,ZHANG Junsong,JIN Jie. Effect of GA3 and CPPU treatments on fruit quality of Wuhe Cuibao grape[J].Journal of Fruit Science,2022,39(10):1834-1844.

[15] 叶尚红,陈疏影,刘平祖.农业院校植物生理生化实验教材体系探讨[J].植物生理学通讯,2004,40(4):487-488.YE Shanghong,CHEN Shuying,LIU Pingzu. Discussion on teaching material system of plant physiology and biochemistry experiment in agricultural colleges[J].Plant Physiology Communications,2004,40(4):487-488.

[16] 胡琳莉.铵硝营养缓解小型大白菜幼苗弱光胁迫的生理和分子机制[D].兰州:甘肃农业大学,2016.HU Linli.Physiological and molecular mechanism of the alleviation role of ammonium:Nitrate in mini Chinese cabbage under low light intensity[D]. Lanzhou:Gansu Agricultural University,2016.

[17] 郭景南,刘崇怀,冯义彬,樊秀彩,李民.《葡萄种质资源描述规范和数据标准》概述及使用讨论[J]. 果树学报,2010,27(5):784-789.GUO Jingnan,LIU Chonghuai,FENG Yibin,FAN Xiucai,LI Min. Outlining“The Description and Data Standard for Grape(Vitis)”and discussion on its use[J]. Journal of Fruit Science,2010,27(5):784-789.

[18] 胡利明,夏仁学,周开兵,黄仁华,王明元,谭美莲.不同砧木对温州蜜柑光合特性的影响[J].园艺学报,2006,33(5):937-941.HU Liming,XIA Renxue,ZHOU Kaibing,HUANG Renhua,WANG Mingyuan,TAN Meilian. Effects of different rootstocks on the photosynthesis of Satsuma mandarin[J]. Acta Horticulturae Sinica,2006,33(5):937-941.

[19] 沈乐意,王立如,徐悦,陈天池,徐涛,郭雁飞,房聪玲,范林洁,吴月燕.不同砧木对’阳光玫瑰’葡萄果实品质及糖异生相关基因表达的影响[J]. 农业生物技术学报,2023,31(12):2490-2505.SHEN Leyi,WANG Liru,XU Yue,CHEN Tianchi,XU Tao,GUO Yanfei,FANG Congling,FAN Linjie,WU Yueyan. Effect of different rootstocks on fruit quality and expression of genes related to gluconeogenesis in‘Shine Muscat’grapes (Vitis vinfera)[J]. Journal of Agricultural Biotechnology,2023,31(12):2490-2505.

[20] 郑碧霞,戢小梅,李长林,龚林忠,方林川.不同砧木对阳光玫瑰葡萄生长和果实品质的影响[J].中国果树,2023(1):27-32.ZHENG Bixia,JI Xiaomei,LI Changlin,GONG Linzhong,FANG Linchuan. Effects of different rootstocks on the growth and fruit quality in‘Shine Muscat’grapevine[J]. China Fruits,2023(1):27-32.

[21] SCHARFETTER J,NELSON A,WORKMASTER B A,ATUCHA A. Evaluation of ripening indicators for harvest-time decision making in cold climate grape production[J].American Journal of Enology and Viticulture,2020,71(4):319-333.

[22] 焦念元,李亚辉,李法鹏,胡浩博,穆耀东,张煜帛,张岳.间作玉米穗位叶的光合和荧光特性[J]. 植物生理学报,2015,51(7):1029-1037.JIAO Nianyuan,LI Yahui,LI Fapeng,HU Haobo,MU Yaodong,ZHANG Yubo,ZHANG Yue.Photosynthesis and chlorophyll fluorescence characteristics in ear leaves of intercropped maize[J].Plant Physiology Journal,2015,51(7):1029-1037.

[23] 张秀珍,宋文龙,梁海永,王志彬.四倍体白榆叶片形态特征和光合特性研究[J].林业科技,2022,47(6):1-4.ZHANG Xiuzhen,SONG Wenlong,LIANG Haiyong,WANG Zhibin. Study on leaf morphology and photosynthetic characteristics of tetraploid Ulmus pumila[J]. Forestry Science & Technology,2022,47(6):1-4.

[24] 李双岑,胡宏远,王振平.不同砧木对1年生霞多丽葡萄生长和光合特性的影响[J].江苏农业科学,2016,44(10):213-215.LI Shuangcen,HU Hongyuan,WANG Zhenping. Effects of different rootstocks on growth and photosynthetic characteristics of one-year Chardonnay grapes[J]. Jiangsu Agricultural Sciences,2016,44(10):213-215.

[25] 苏晓琼,王美月,束胜,孙锦,郭世荣.外源亚精胺对高温胁迫下番茄幼苗快速叶绿素荧光诱导动力学特性的影响[J].园艺学报,2013,40(12):2409-2418.SU Xiaoqiong,WANG Meiyue,SHU Sheng,SUN Jin,GUO Shirong. Effects of exogenous spd on the fast chlorophyll fluorescence induction dynamics in tomato seedlings under high temperature stress[J]. Acta Horticulturae Sinica,2013,40(12):2409-2418.

[26] 刘兆新,刘妍,刘婷如,何美娟,姚远,杨坚群,甄晓宇,栗鑫鑫,杨东清,李向东.控释复合肥对麦套花生光系统Ⅱ性能及产量和品质的调控效应[J].作物学报,2017,43(11):1667-1676.LIU Zhaoxin,LIU Yan,LIU Tingru,HE Meijuan,YAO Yuan,YANG Jianqun,ZHEN Xiaoyu,LI Xinxin,YANG Dongqing,LI Xiangdong. Effect of controlled-release compound fertilized on photosystem Ⅱperformance,yield and quality of intercropped peanut with wheat[J]. Acta Agronomica Sinica,2017,43(11):1667-1676.

[27] 陆志峰,鲁剑巍,潘勇辉,鲁飘飘,李小坤,丛日环,任涛.钾素调控植物光合作用的生理机制[J]. 植物生理学报,2016,52(12):1773-1784.LU Zhifeng,LU Jianwei,PANYonghui,LU Piaopiao,LI Xiaokun,CONG Rihuan,REN Tao. Physiological mechanisms in potassium regulation of plant photosynthesis[J].Plant Physiology Journal,2016,52(12):1773-1784.

[28] 许凯,李佩昆,黄文尉,高振,牛锐敏,杜远鹏.砧木‘SA15’对‘赤霞珠’和‘脆光’葡萄生长和果实品质的影响[J].中外葡萄与葡萄酒,2023(2):50-55.XU Kai,LI Peikun,HUANG Wenwei,GAO Zhen,NIU Ruimin,DU Yuanpeng. Effects of rootstock‘SA15’on growth and fruit quality of‘Cabernet sauvignon’and‘Cuiguang’grapevine[J].Sino-Overseas Grapevine&Wine,2023(2):50-55.

[29] 贾瑞瑞,祝艳艳,杨秀莲,付钰,岳远征,王良桂.不同砧木对楸树嫁接苗生长及光合特性的影响[J].南京林业大学学报(自然科学版),2023,47(5):97-106.JIA Ruirui,ZHU Yanyan,YANG Xiulian,FU Yu,YUE Yuanzheng,WANG Lianggui. Effects of different rootstocks on growth and photosynthetic characteristics of grafted seedlings of Catalpa bungei[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2023,47(5):97-106.

[30] BAKER N R.A possible role for photosystem II in environmental perturbations of photosynthesis[J]. Physiologia Plantarum,1991,81(4):563-570.

[31] GUANTER L,ZHANG Y G,JUNG M,JOINER J,VOIGT M,BERRY J A,FRANKENBERG C,HUETE A R,ZARCO-TEJADA P,LEE J E,MORAN M S,PONCE-CAMPOS G,BEER C,CAMPS- VALLS G,BUCHMANN N,GIANELLE D,KLUMPP K,CESCATTI A,BAKER J M,GRIFFIS T J. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(14):E1327-E1333.

[32] 武传兰,隆小华,金善钊,刘玲,王长海,刘兆普.盐胁迫对不同品系杨树幼苗生长和叶绿素荧光的效应[J]. 生态学杂志,2012,31(6):1347-1352.WU Chuanlan,LONG Xiaohua,JIN Shanzhao,LIU Ling,WANG Changhai,LIU Zhaopu.Effects of NaCl stress on the growth and chlorophyll fluorescence characteristics of poplar seedlings[J].Chinese Journal of Ecology,2012,31(6):1347-1352.

[33] SARIJEVA G,KNAPP M,LICHTENTHALER H K. Differences in photosynthetic activity,chlorophyll and carotenoid levels,and in chlorophyll fluorescence parameters in green sun and shade leaves of Ginkgo and Fagus[J]. Journal of Plant Physiology,2007,164(7):950-955.

[34] 蔡倩,白一光.果粮间作对仁用杏生长及叶绿素荧光参数的影响[J].农业科技与装备,2020(6):1-4.CAI Qian,BAI Yiguang. Effect of fruit-grain intercropping on growth and chlorophyll fluorescence parameters of kernel-apricot[J].Agricultural Science &Technology and Equipment,2020(6):1-4.

[35] 王强,帕提古丽,张常荣,王浩,杨涛,杨生保,王柏柯,李宁,唐亚萍,余庆辉.不同砧木嫁接对辣椒光合特性及叶绿素荧光参数的影响[J].新疆农业科学,2015,52(4):660-666.WANG Qiang,Patiguli,ZHANG Changrong,WANG Hao,YANG Tao,YANG Shengbao,WANG Baike,LI Ning,TANG Yaping,YU Qinghui. Influence of different rootstock grafting on photosynthetic characteristics and chlorophyll fluorescence parameters in chilli pepper[J]. Xinjiang Agricultural Sciences,2015,52(4):660-666.

[36] MURCHIE E H,LAWSON T. Chlorophyll fluorescence analysis:A guide to good practice and understanding some new applications[J]. Journal of Experimental Botany,2013,64(13):3983-3998.

[37] WAN Y L,ZHANG Y X,ZHANG M,HONG A Y,YANG H Y,LIU Y. Shade effects on growth,photosynthesis and chlorophyll fluorescence parameters of three Paeonia species[J]. PeerJ,2020,8:e9316.

[38] 刘春燕,侯毅兴,马丽花,薛婧,郭雅文,周龙.9 个砧穗组合葡萄嫁接苗叶片光合及叶绿素荧光参数比较[J].经济林研究,2023,41(2):194-204.LIU Chunyan,HOU Yixing,MA Lihua,XUE Jing,GUO Yawen,ZHOU Long. Comparison of photosynthetic characteristics and chlorophyll fluorescence parameters of grapes grafted seedlings of nine rootstock-scion combinations[J]. Non-wood Forest Research,2023,41(2):194-204.

Analysis of photosynthetic characteristics and fruit quality of Shine Muscat grafted on 4 grape varieties

ZHAI Wenting,ZHANG Zongyi,CHEN Hongmei,LIU Ziheng,ZHAO Baolong,SUN Junli*

(Agriculture College of Shihezi University/Key Laboratory of Special Fruits & Vegetables Cultivation Physiology and Germplasm Resources Utilization,Xinjiang Production and Construction Corp,Shihezi 832003,Xinjiang,China)

Abstract: 【Objective】Xinjiang is an important grape producing region in China, with unique natural conditions and huge industrial scale. In recent years, Shine Muscat has attracted the attention of many fruit farmers because of its rich rose fragrance, high sugar content, low acid and other characteristics,and is regarded as the first choice for vineyard upgrading.The rapid renewal of varieties can be realized through the top-grafting method. In this study, the photosynthetic characteristics and fruit quality of Shine Muscat grafted on Victoria,Kyoho, Black Monukka, and Crimson seedless were studied in order to screen out old varieties suitable for grafting with Shine Muscat in Shihezi region of Xinjiang.【Methods】In May 2021, four nine-year-old grape varieties (Victoria, Kyoho, Black Monukka, and Crimson Seedless) were grafted using the greenwood grafting method and were designated as SM/VI, SM/KY,SM/BM,and SM/CR,respectively.Fruit appearance quality including transverse and longitudinal diameter, berry mass, single cluster mass, fruit color were assessed at the fructescence on September 5th,2023.Intrinsic qualities including soluble solid content,titrable acid content,vitamin C content,soluble sugar content and soluble protein content were also measured. In late August 2023, the photosynthetic parameters including net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), intercellular CO2 concentration (Ci), chlorophyll content, and chlorophyll fluorescence were measured.For data analysis, single-factor analysis of variance was performed on the obtained experimental data.Correlation analysis was used to explore the relevance between indicators, and principal component analysis was used for comprehensive evaluation of the 4 stock-scion combinations.【Results】The results showed that the fruit quality of Shine Muscat was affected by the four rootstocks.Shine Muscat on Crimson Seedless had lower titratable acid and soluble protein contents and exhibited higher levels of soluble solids,soluble sugars,vitamin C,and solid to acid ratio.It had a single cluster mass of 919.19 g,with soluble solids reaching 21.63% and a solid to acid ratio of 62.08. The contents of chlorophyll a(Chl a),chlorophyll b(Chl b)and total chlorophyll(Chl a+b),net photosynthetic rate(Pn),stomatal conductance (Gs), transpiration rate (Tr), intercellular CO2 concentration (Ci), water use efficiency (WUE),and the maximum photochemical quantum yield of PSII (Fv/Fm) were highest in plants of SM/CR. The initial fluorescence(F0)and the maximum fluorescence yield(Fm)were highest in SM/BM.The correlation analysis showed that the berry mass had a highly significant positive correlation with indicators affecting photosynthetic rate. Total chlorophyll content had a significant positive correlation with photosynthetic characteristics and soluble proteins, and a highly significant positive correlation with chlorophyll b, soluble sugars, and intercellular carbon dioxide concentration. The initial fluorescence had a significant negative correlation with berry mass,L*,solid to acid ratio,net photosynthetic rate,intercellular carbon dioxide concentration,and the maximum light energy conversion efficiency of PSⅡ,and a highly significant negative correlation with single cluster mass and vitamin C content. The maximum light energy conversion efficiency of PSII had a highly significant positive correlation with solid to acid ratio,L*,a*,and h°values.The composite score was calculated based on the principal component comprehensive model,and according to the composite score,the performance of the four stock-scion combinations were in the order of SM/ CR>SM/ KY>SM/VI>SM/ BM.【Conclusion】The results show that compared with Shine Muscat on the other three grape varieties,Shine Muscat grafted on Crimson seedless had higher contents of soluble sugars,soluble solids and sugar to acid ratio,with higher chlorophyll contents, stronger photosynthesis, and superior fruit quality. Overall, Crimson seedless is the most suitable rootstock among the four grape varieties for Shine Muscat.

Key words: Shine Muscat;Grafting;Stock-scion combination;Photosynthetic characteristic;Fruit quality

中图分类号:S663.1

文献标志码:A

文章编号:1009-9980(2024)09-1789-11

DOI: 10.13925/j.cnki.gsxb.20240098

收稿日期:2024-02-29

接受日期:2024-06-22

基金项目:国家自然科学基金项目(32060647,32060648,31560542);石河子葡萄科技小院

作者简介:翟文婷,女,在读硕士研究生,研究方向为果树栽培生理。E-mail:2497226397@qq.com

*通信作者 Author for correspondence.E-mail:1530322722@qq.com