宁海白和大房枇杷F1代叶、花和果抗氧化活性分析与评价

朱启轩1,2,李晓颖1,葛 航1,武军凯2,3,王志轩1,2,陈俊伟1,徐红霞1*

1浙江省农业科学院园艺研究所,杭州 310021;2河北科技师范学院园艺科技学院,河北 秦皇岛 066600;3河北省特色园艺种质挖掘与创新利用重点实验室,河北 秦皇岛 066600)

摘 要:【目的】探讨枇杷F1代的叶、花和果中总酚、类黄酮含量及抗氧化活性的多样性,以期为枇杷新品种选育与功能性物质成分开发利用提供参考。【方法】利用Folin-Ciocalteu法、亚硝酸钠-三氯化铝法、DPPH(1,1-二苯基-2-苦基苯肼)法、ABTS[2,2’-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐]法、FRAP(铁离子还原能力)法测定亲本宁海白(Ninghaibai)和大房(Oobusa)及其29个杂交F1代的叶、花、果中总酚含量、类黄酮含量和体外抗氧化活性,并对其进行多样性分析、相关性分析、聚类分析以及抗氧化活性综合评价。【结果】F1代的叶、花、果中总酚含量、类黄酮含量和抗氧化活性变异系数为9.51%~49.48%,除花的总酚含量外,其余各性状分离广泛并且叶中性状的遗传变异相较花、果更为丰富。此外,总酚含量、类黄酮含量和抗氧化活性在杂交后代不同器官中的含量存在较大差异,主要表现为花>叶>果。相关性分析表明,叶、果中的总酚、类黄酮含量与抗氧化活性呈极显著相关,花中的总酚、类黄酮含量与抗氧化活性具有一定相关性,但性状在叶、花、果等不同器官间无明显相关性。可通过APC(antioxidant potency composite)指数与聚类分析在杂交后代中筛选出抗氧化活性较强的株系。【结论】枇杷杂交F1代的总酚、类黄酮含量以及抗氧化活性存在丰富的多样性,总酚和类黄酮是枇杷叶、花、果中重要抗氧化活性成分,总酚、类黄酮以及抗氧化活性在不同器官间无明显相关性。研究结果可为高抗氧化活性枇杷新品种的选育提供理论依据,也可为枇杷抗氧化物质的开发利用提供参考。

关键词枇杷;总酚;类黄酮;抗氧化活性;相关性

枇杷[Eriobotrya japonica(Thunb.)Lindl.]为蔷薇科枇杷属的多年生常绿果树,原产于中国,具有悠久的栽培与药用历史。中医认为枇杷的叶、花、果等部位均可入药,并有润肺下气、止渴等功效。酚类物质是天然的抗氧化剂,广泛存在于枇杷各个器官中。研究发现,枇杷中的酚类提取物具有抗氧化、消除炎症、预防糖尿病、预防癌症、改善肝肾功能等多种生物活性[1]

关于酚类物质和抗氧化活性相关研究一直受到国内外学者广泛关注。已有研究表明,酚类物质与抗氧化活性密切相关。黄春辉等[2]在猕猴桃的研究中发现抗氧化活性与总酚含量呈显著正相关。Ma等[3]对杧果的酚类物质和抗氧化活性进行分析发现,在多酚、类黄酮、黄烷醇和维生素C等物质中,多酚和类黄酮对抗氧化活性的影响最大。卢登洋等[4]研究则发现总酚、类黄酮以及13种酚类物质均与梨果实抗氧化活性显著相关。Zhou等[5]对枇杷花提取液进行抗氧化分析,发现采用ABTS 方法测得的抗氧化活性与总酚、类黄酮含量的相关性最高。Xu等[6]证明类黄酮和总酚是枇杷果实主要的抗氧化成分。马小雪等[7]对59 份李种质资源进行分析,发现总酚含量及不同方法测得的抗氧化活性在李品种间存在一定差异,美洲李的总酚含量及抗氧化活性均高于其他品种。卢娟芳等[8]研究发现酚类物质的组分与含量在桃品种间存在较大差异,并且用不同方法测得的抗氧化活性强弱同样存在差异,但整体表现为蟠桃高于水蜜桃和油桃。Xu 等[9]对12 个枇杷品种的果实品质进行分析,同样发现不同品种的总酚、类黄酮含量以及抗氧化活性存在较大差异,并从12 个品种中筛选出营养价值较高的Bingtangzhong和Tianzhong。Hong 等[10]研究则发现野生枇杷叶的酚类物质含量和抗氧化活性都要高于栽培枇杷,总酚、类黄酮含量与抗氧化活性在不同器官间存在差异。王慧心[11]研究发现,次生代谢产物在柑橘不同器官中的种类和含量不同,并且不同方法均测得新叶的抗氧化活性高于根、茎、枝、种子等其他器官。冉露霞等[12]研究发现百香果果籽的总酚、类黄酮含量以及抗氧化活性高于果汁和果皮。王鹏等[13]和吴媛琳等[14]研究则发现枇杷花蕾中的总酚、类黄酮含量以及抗氧化活性较叶片更丰富。此外,有研究表明总酚、类黄酮含量以及抗氧化活性在杂交后代不同株系间也存在较大差异。付鸿博等[15]对欧李正、反交F1代的性状进行遗传变异分析,发现总酚、类黄酮含量以及体外抗氧化活性等性状在杂交后代不同株系间的变异系数大于20%,杂交后代广泛分离,并从中筛选出了具有高类黄酮含量和强抗氧化活性的株系。

枇杷叶、花等器官含有较为丰富的抗氧化物质,目前在医药卫生、保健品、食品等领域已经得到了广泛的应用[16-17]。同时,随着人们生活水平的逐渐提高,鲜食枇杷的保健效果也愈发受到消费者的重视。目前,对枇杷酚类物质和抗氧化活性的研究大多只关注叶、花、果等单一器官,缺乏不同器官间的比较分析。另外,有关枇杷抗氧化活性的评价主要通过对采用不同方法测得的抗氧化活性分别进行排序与评价,而对综合评价方法研究较少。笔者在本研究中以宁海白和大房及其29 个杂交后代株系为研究对象,探究总酚、类黄酮含量及抗氧化活性在枇杷杂交后代叶、花、果中的多样性,并通过APC指数以及聚类分析对抗氧化活性进行综合评价,以期为枇杷高功能物质成分品种的选育及其有效开发利用提供理论依据。

1 材料和方法

1.1 材料

试验在浙江省农业科学院海宁杨渡创新基地进行。以宁海白为母本,大房为父本的杂交群体中的29 株F1代作为试验材料,双亲作为对照,进行枇杷叶、花、果的总酚、类黄酮含量和抗氧化活性的多样性分析。2023年5—6月,在各单株树冠外围中上部分别随机采集20个成熟果实剥取果肉,经液氮处理后-80 ℃低温保存。2023年9 月,在各单株树冠外围中上部分别采集20 枚健康春梢叶片,清水洗净、擦干后去除叶脉并剪碎,经液氮处理后-80 ℃低温保存。2023年11—12月,在各单株树冠外围中上部分别采集20 个花穗,取花穗中含苞待放的花蕾,并用液氮处理后置于-80 ℃超低温冰箱中贮藏待用。

1.2 方法

1.2.1 提取液的制备 准确称取0.5 g枇杷叶片、花粉末,分别加入25 mL无水甲醇并搅拌均匀;准确称取3 g枇杷果实粉末,加入10 mL无水甲醇并搅拌均匀。将上述3 种样品匀浆后在4 ℃下放置12 h,10 000g离心20 min,收集上清液贮藏在-20 ℃冰箱中,用于总酚含量、类黄酮含量、DPPH自由基清除能力(DPPH值)、ABTS阳离子自由基清除能力(ABTS值)、铁离子还原能力(FRAP值)的测定。每个处理3次重复,测定仪器为酶标仪(Gen5,BioTek,美国)。

1.2.2 总酚、类黄酮含量的测定 总酚含量的测定采用Folin-Ciocalteu 比色法,以没食子酸为标准品建立标准曲线;类黄酮含量的测定采用亚硝酸钠-三氯化铝法,以芦丁为标准品建立标准曲线[9]

1.2.3 抗氧化活性的测定 参照Xu等[9]的方法,分别使用DPPH 法、ABTS 法、FRAP 法测定体外抗氧化活性。

1.2.4 抗氧化活性综合评价指数的计算 通过APC(Antioxidant potency composite)指数对DPPH值、ABTS值和FRAP值三种抗氧化活性进行综合评价[18]。APC 指数/%=(DPPH 值/DPPH 值最大值+ABTS 值/ABTS 值最大值+FRAP 值/FRAP 值最大值)/3×100。

1.3 数据处理与分析

使用Excel 2016 进行数据统计分析与表格绘制,使用IBM SPSS Statistics 26.0对数据进行相关性分析以及单因素方差分析,使用Origin 2018 对数据进行聚类分析。

2 结果与分析

2.1 宁海白与大房的杂交F1代及亲本不同器官中总酚、类黄酮含量的比较分析

2.1.1 总酚含量的比较分析 如表1 所示,杂交后代不同株系间的总酚含量存在一定差异,变异大小为叶>果>花,变异系数分别为23.84%、16.50%、9.51%,总酚含量在杂交后代叶、果中的变异幅度较大,而在花中的变异幅度较小。叶中的总酚含量(w,后同)为103.00~296.34 mg·g-1,平均含量为162.21 mg·g-1,其中含量最低的是ND148,最高的是ND107;花中的总酚含量为185.70~269.63 mg·g-1,平均含量为223.22 mg·g-1,其中含量最低的是ND127,最高的是ND164;果中的总酚含量为4.18~7.74 mg·g-1,平均含量为6.00 mg·g-1,其中含量最低的是ND165,最高的是大房。

表1 枇杷杂交后代及其亲本叶、花、果中的总酚含量
Table 1 Total phenolic content in the leaves,flowers and fruits of loquat hybrids and their parents

注:同一列不同字母表示相互间存在显著差异(p<0.05)。下同。
Note:Different letters within the same column indicate significant differences(p<0.05).The same below.

种质编号Germplasm No.宁海白Ninghaibai大房Oobusa ND004 ND007 ND024 ND026 ND028 ND029 ND031 ND037 ND045 ND069 ND080 ND082 ND085 ND106 ND107 ND119 ND121 ND122 ND123 ND127 ND128 ND130 ND134 ND135 ND136 ND148 ND164 ND165 ND166 F1代平均值F1 generation average变异系数CV/%w(总酚)Total phenolic content/(mg·g-1)叶Leaf 169.38±15.75 hij 242.98±11.81 c 150.50±14.67 klm 127.74±5.51 p 129.31±10.04 op 168.29±9.20 ij 171.49±6.16 ghi 137.08±15.91 nop 170.61±7.16 ghi 143.69±15.5 lmn 153.23±8.44 kl 179.12±1.44 fgh 116.43±12.07 q 199.09±6.03 d 151.73±2.70 klm 135.24±16.61 nop 296.34±3.98 a 142.32±7.56 mn 182.33±10.79 ef 139.05±8.63 no 153.23±2.82 kl 137.83±13.93 no 255.45±7.76 b 154.25±3.75 k 154.05±5.24 k 190.78±3.88 de 169.38±14.00 hij 103.00±6.94 r 151.93±7.34 klm 180.01±4.30 fg 160.45±5.08 jk 162.21 23.84果Fruit 4.31±0.35 kl 7.74±0.28 a 6.69±0.72 bcde 6.66±0.35 bcdef 5.51±0.46 ghij 5.53±0.21 ghij 6.22±0.10 cdefg 5.81±1.16 efghi 6.99±0.22 abc 7.00±0.63 abc 7.34±0.44 ab 6.26±0.20 cdefg 4.73±0.56 jkl 4.45±0.24 kl 4.97±0.27 ijkl 7.32±0.78 ab 5.91±0.38 defgh 4.69±0.08 jkl 6.74±0.20 bcd 6.74±0.61 bcd 6.12±2.14 cdefg 5.37±0.15 ghij 6.98±0.41 abc 5.14±0.21 hijk 5.40±0.25 ghij 4.22±0.22 l 7.28±0.18 ab 7.03±0.41 abc 5.79±1.78 fghi 4.18±0.10 l 6.89±0.48 abc 6.00 16.50花Flower 225.06±5.30 fghij 224.14±14.60 fghij 209.42±6.39 jklm 232.21±6.23 defg 185.91±10.22 n 196.84±11.45 mn 189.18±9.55 n 245.09±19.9 cd 227.10±8.30 efghi 216.06±11.98 hijkl 260.12±28.39 ab 205.63±9.33 klm 214.83±11.88 ijkl 238.04±8.70 cdef 219.33±8.80 ghijkl 241.21±7.81 cde 212.79±4.84 ijkl 220.25±13.36 ghijk 238.14±7.47 cdef 209.62±8.24 jklm 241.41±8.74 cde 185.70±4.87 n 203.69±2.38 lm 223.52±21.34 fghij 218.41±14.98 ghijkl 210.54±14.39 jklm 238.04±3.89 cdef 250.31±14.46 bc 269.63±10.86 a 239.37±11.78 cdef 231.09±10.56 defgh 223.22 9.51

宁海白和大房杂交后代及其亲本中的总酚含量在不同器官间存在明显差异,除大房、ND107、ND128的总酚含量表现为叶>花>果外,其余各株系不同器官间的总酚含量均表现为花>叶>果,其中,花中总酚含量的平均值是叶的1.38倍,是果的37.20倍。

2.1.2 类黄酮含量的比较分析 如表2 所示,杂交后代各株系间的类黄酮含量存在较大差异,变异大小为叶>果>花,变异系数分别为49.48%、44.67%、13.38%。杂交后代叶中的类黄酮含量为0.60~11.19 mg·g-1,平均含量为4.20 mg·g-1,其中含量最低的是ND148,最高的是ND107;花中的类黄酮含量为5.70~10.11 mg·g-1,平均含量为8.04 mg·g-1,其中含量最低的是ND127,最高的是ND037;果中的类黄酮含量为0.06~0.76 mg·g-1,平均含量为0.33 mg·g-1,其中含量最低的是ND080,最高的是大房。

表2 枇杷杂交后代及其亲本叶、花、果中的类黄酮含量
Table 2 The flavonoids content in the leaves,flowers and fruits of loquat hybrids and their parents

种质编号Germplasm No.宁海白Ninghaibai大房Oobusa ND004 ND007 ND024 ND026 ND028 ND029 ND031 ND037 ND045 ND069 ND080 ND082 ND085 ND106 ND107 ND119 ND121 ND122 ND123 ND127 ND128 ND130 ND134 ND135 ND136 ND148 ND164 ND165 ND166 F1代平均值F1 generation average变异系数CV/%w(类黄酮)Flavonoids content/(mg·g-1)叶Leaf 5.02±0.50 ef 10.78±0.43 a 4.01±0.23 ijk 2.71±0.28 mn 1.88±0.43 o 4.88±0.66 efg 4.81±0.96 efg 2.20±0.77 no 5.78±0.43 d 2.43±0.86 no 2.62±0.46 mn 4.39±0.36 fghij 2.24±0.64 no 4.77±0.48 efgh 3.69±0.26 jkl 2.89±1.04 mn 11.19±0.54 a 2.74±0.14 mn 4.72±0.44 efghi 3.27±0.49 lm 3.77±0.25 jkl 4.06±1.00 hijk 8.67±0.31 b 4.62±0.28 efghi 4.22±0.30 ghijk 6.84±0.26 c 5.21±0.91 de 0.60±0.16 p 3.56±0.50 kl 4.78±0.29 efgh 4.33±0.30 fghij 4.20 49.48花Flower 8.31±0.31 defgh 8.72±0.38 cdef 7.15±0.41 kl 9.25±0.43 bc 7.28±0.75 jkl 7.42±0.90 ijkl 7.26±0.40 jkl 8.31±1.03 defgh 9.59±0.97 ab 10.11±1.13 a 8.88±0.37 bcde 6.71±0.52 l 6.80±0.26 l 8.11±1.14 efghij 7.46±0.33 hijkl 7.34±0.35 jkl 8.23±0.36 defghi 7.77±0.86 hijk 9.00±0.71 bcd 9.31±0.65 abc 9.17±0.68 bc 5.70±0.61 m 7.41±0.28 ijkl 9.71±0.96 ab 7.85±0.72 ghijk 7.33±0.30 jkl 9.20±0.69 bc 7.98±0.35 fghijk 8.68±0.30 cdefg 7.43±0.21 ijkl 6.73±0.40 l 8.04 13.38果Fruit 0.16±0.02 rs 0.76±0.05 a 0.56±0.04 c 0.39±0.05 ghi 0.19±0.01 qr 0.28±0.02 mn 0.41±0.03 efgh 0.26±0.01 no 0.49±0.05 d 0.39±0.02 ghij 0.43±0.02 ef 0.28±0.03 mn 0.06±0.01 u 0.10±0.01 t 0.35±0.02 jk 0.71±0.02 b 0.36±0.01 ijk 0.23±0.01 op 0.44±0.03 e 0.40±0.03 fghi 0.22±0.03 pq 0.28±0.01 mn 0.43±0.02 efg 0.33±0.02 kl 0.17±0.04 rs 0.18±0.01 qr 0.30±0.01 lm 0.38±0.01 hij 0.21±0.09 pq 0.14±0.01 s 0.54±0.02 c 0.33 44.67

宁海白和大房杂交后代及其亲本中的类黄酮含量在不同器官间存在明显差异,其中大房、ND107、ND128 的类黄酮含量表现为叶>花>果,其余各株系不同器官间的类黄酮含量均表现为花>叶>果,其中花中类黄酮含量的平均值是叶的1.91 倍,是果的24.36倍。

2.2 宁海白与大房的杂交F1代及亲本不同器官中抗氧化活性的比较分析

2.2.1 DPPH值的比较分析 如表3所示,杂交后代各株系间叶、花、果中DPPH值的变异大小为叶>果>花,变异系数分别为23.93%、17.28%、15.77%。叶中的DPPH值为95.37~253.44 U·g-1,平均值为139.35 U·g-1,其中最低的是ND007,最高的是ND107;花中的DPPH值为122.60~270.96 U·g-1,平均值为211.79 U·g-1,其中最低的是ND069,最高的是ND121;果中的DPPH值为2.11~4.83 U·g-1,平均值为3.44 U·g-1,其中最低的是宁海白,最高的是ND106。

表3 枇杷杂交后代及其亲本叶、花、果中的DPPH 值
Table 3 DPPH value in the hybrid offspring of loquat and its parents in leaves,flowers and fruits

种质编号Germplasm No.宁海白Ninghaibai大房Oobusa ND004 ND007 ND024 ND026 ND028 ND029 ND031 ND037 ND045 ND069 ND080 ND082 ND085 ND106 ND107 ND119 ND121 ND122 ND123 ND127 ND128 ND130 ND134 ND135 ND136 ND148 ND164 ND165 ND166 F1代平均值F1 generation average变异系数CV/%DPPH值DPPH value/(U·g-1)叶Leaf 149.21±27.17 def 213.37±12.40 b 140.13±9.64 defg 95.37±5.34 h 120.10±17.39 fgh 137.31±18.81 efg 120.72±11.12 fgh 116.66±13.16 fgh 150.77±3.30 def 127.61±22.44 efgh 133.24±8.61 efgh 145.14±18.79 defg 115.72±46.63 fgh 189.90±7.87 bc 114.46±6.77 fgh 106.01±28.65 gh 253.44±11.07 a 121.04±11.77 fgh 161.73±13.19 cde 117.59±4.63 fgh 145.45±31.80 defg 141.70±32.49 defg 204.61±9.25 b 139.50±9.12 defg 132.62±23.50 efgh 178.32±15.37 bcd 125.73±13.15 efgh 96.00±49.13 h 141.70±15.51 defg 149.52±13.84 def 119.16±17.21 fgh 139.35 23.93花Flower 224.01±5.17 bcdef 224.01±13.16 bcdef 191.46±9.80 efghi 233.09±4.23 abcde 193.97±23.05 efghi 205.86±16.59 cdefgh 199.60±11.59 defgh 244.05±22.85 abcd 234.34±4.23 abcde 235.91±17.35 abcde 171.43±30.99 ghi 122.60±26.30 j 151.09±20.59 ij 249.37±41.53 abc 220.57±13.31 bcdef 256.25±26.87 ab 205.55±8.96 cdefgh 216.82±12.42 bcdefg 270.96±13.94 a 210.24±13.05 bcdefgh 236.85±12.61 abcde 168.30±8.52 hi 183.95±1.63 fghi 182.07±28.93 fghi 234.34±16.54 abcde 204.61±13.15 cdefgh 198.97±20.34 defgh 241.86±8.92 abcd 250.93±35.85 abc 219.32±13.68 bcdef 207.43±79.38 cdefgh 211.79 15.77果Fruit 2.11±0.58 m 4.26±0.16 bc 3.50±0.07 efgh 3.53±0.35 efg 2.80±0.12 ijkl 3.40±0.05 fghi 3.67±0.24 cdef 3.64±0.27 defg 4.31±0.20 ab 4.10±0.11 bcde 3.70±0.05 cdef 3.37±0.11 fghij 2.77±0.22 jkl 2.62±0.12 klm 3.13±0.35 fghijk 4.83±0.24 a 4.07±0.35 bcde 2.90±0.14 hijkl 4.19±0.08 bcd 3.69±0.25 cdef 2.35±0.29 lm 3.37±0.13 fghij 3.21±0.27 fghijk 3.37±0.59 fghij 3.19±0.44 fghijk 3.04±0.33 ghijk 4.07±0.05 bcde 4.02±0.85 bcde 2.62±0.46 klm 2.60±0.03 klm 3.63±0.25 defg 3.44 17.28

宁海白和大房杂交后代及其亲本中的DPPH值在不同器官间存在明显差异,其中ND069、ND107、ND128的DPPH值表现为叶>花>果,其他各株系不同器官的DPPH 值均表现为花>叶>果,其中花中DPPH值的平均值是叶的1.52倍,是果的61.57倍。

2.2.2 ABTS值的比较分析 如表4所示,杂交后代各株系间的ABTS值存在明显差异,变异大小为叶>果>花,变异系数分别为26.98%、21.82%、13.93%。叶中的ABTS 值为150.65~478.80 U·g-1,平均值为254.48 U·g-1,其中最低的是ND148,最高的是ND107;花中的ABTS值为209.74~429.41 U·g-1,平均值为314.59 U·g-1,其中最低的是ND085,最高的是ND165;果中的ABTS值为2.60~6.59 U·g-1,平均值为4.89 U·g-1,其中最低的是ND024,最高的是ND128。

表4 枇杷杂交后代及其亲本叶、花、果中的ABTS 值
Table 4 ABTS value in the hybrid offspring of loquat and its parents in leaves,flowers and fruits

种质编号Germplasm No.宁海白Ninghaibai大房Oobusa ND004 ND007 ND024 ND026 ND028 ND029 ND031 ND037 ND045 ND069 ND080 ND082 ND085 ND106 ND107 ND119 ND121 ND122 ND123 ND127 ND128 ND130 ND134 ND135 ND136 ND148 ND164 ND165 ND166 F1代平均值F1 generation average变异系数CV/%ABTS值ABTS value/(U·g-1)叶Leaf 205.80±28.28 hijkl 394.87±25.71 b 213.37±13.49 ghijk 184.59±50.43 kl 198.22±6.45 jkl 222.46±29.39 fghijk 212.46±11.51 ghijk 217.31±36.55 ghijk 268.82±65.90 cdefgh 214.58±65.50 ghijk 237.31±18.41 fghijk 303.06±21.64 cde 239.43±15.74 fghijk 267.91±17.40 cdefgh 281.85±35.14 cdef 264.88±52.03 defghi 478.80±20.93 a 191.56±20.17 jkl 306.39±32.74 cde 203.37±24.93 ijkl 318.21±41.99 cd 224.28±38.65 fghijk 409.11±23.45 b 274.58±26.82 cdefg 223.67±29.66 fghijk 329.42±22.62 c 217.61±38.45 ghijk 150.65±16.27 l 251.25±19.66 efghij 282.76±4.30 cdef 191.86±12.41 jkl 254.48 26.98花Flower 306.70±9.09 fgh 293.06±2.73 ghi 293.67±5.33 ghi 356.99±9.72 bcd 302.76±24.90 fgh 317.30±19.29 defgh 243.37±9.80 jk 326.39±49.16 cdefg 277.91±35.70 hij 303.36±50.01 fgh 306.09±6.38 fgh 256.40±34.88 ij 306.09±6.58 fgh 359.12±18.37 bcd 209.74±48.99 k 285.18±6.70 ghij 292.46±4.30 ghi 317.60±13.20 defgh 340.94±21.07 bcdef 293.97±20.59 ghi 329.12±19.27 bcdefg 314.88±21.30 defgh 285.79±8.08 ghij 367.90±33.30 bc 313.97±24.10 defgh 288.52±3.96 ghi 370.63±17.06 bc 308.82±12.10 efgh 352.15±28.38 bcde 429.41±7.77 a 372.45±26.13 b 314.59 13.93果Fruit 3.51±0.10 kl 5.35±0.44 cdefg 4.76±0.48 efghi 4.92±0.44 efgh 2.60±0.29 m 5.20±0.25 cdefg 5.15±0.23 cdefg 3.67±5.19 a 5.45±0.22 bcdefg 6.33±0.15 ab 5.47±0.49 bcdef 5.57±0.64 bcde 3.39±0.28 klm 3.18±0.18 lm 3.94±0.24 ijkl 6.57±0.19 a 5.08±0.27 defg 4.61±0.09 fghi 5.90±0.41 abcd 4.76±0.55 efghi 4.61±0.10 fghi 4.64±0.29 efghi 6.59±0.88 a 4.13±0.34 hijk 5.07±1.00 defg 3.73±0.36 jkl 6.33±0.18 ab 5.99±0.25 abcd 4.53±1.30 ghij 3.50±0.20 kl 6.06±0.56 abc 4.89 21.82

宁海白和大房杂交后代及其亲本中的ABTS值在不同器官间存在明显差异,其中大房、ND069、ND085、ND107、ND128、ND135 的ABTS值表现为叶>花>果,其他各株系不同器官的ABTS值均表现为花>叶>果,花中ABTS值的平均值是叶的1.24倍,是果的64.33倍。

2.2.3 FRAP 值的比较分析 如表5 所示,杂交后代各株系间的FRAP 值变异大小为叶>果>花,变异系数分别为25.32%、20.65%、11.91%。叶中的FRAP 值为190.68~828.24 U·g-1,平均值为475.40 U·g-1,其中最低的是ND148,最高的是大房;花中的FRAP 值为460.98~769.48 U·g-1,平均值为586.31 U·g-1,其中最低的是ND024,最高的是ND164;果中的FRAP 值为4.63~13.47 U·g-1,平均值为9.11 U·g-1,其中最低的是ND165,最高的是大房。

表5 枇杷杂交后代及其亲本叶、花、果中的FRAP 值
Table 5 FRAP value in the hybrid offspring of loquat and its parent leaves,flowers and fruits

种质编号Germplasm No.宁海白Ninghaibai大房Oobusa ND004 ND007 ND024 ND026 ND028 ND029 ND031 ND037 ND045 ND069 ND080 ND082 ND085 ND106 ND107 ND119 ND121 ND122 ND123 ND127 ND128 ND130 ND134 ND135 ND136 ND148 ND164 ND165 ND166 F1代平均值F1 generation average变异系数CV/%FRAP值FRAP value/(U·g-1)叶Leaf 560.88±45.71 cd 828.24±4.16 a 421.81±13.88 hij 362.07±20.84 jk 429.64±39.89 ghij 481.55±44.46 defgh 485.47±10.32 defgh 445.31±56.08 fghij 514.85±44.88 defg 328.77±70.21 k 446.29±13.46 fghij 463.92±67.32 efghi 219.08±73.30 l 605.93±30.58 c 460.98±41.45 fghi 496.24±33.11 defgh 814.53±104.88 a 379.70±14.79 ijk 530.52±44.20 cdef 438.46±16.18 ghij 478.61±75.02 defgh 444.33±39.89 fghij 689.17±13.88 b 552.06±36.70 cde 481.55±51.65 defgh 566.75±8.81 cd 556.96±47.22 cd 190.68±10.59 l 494.28±25.67 defgh 514.85±35.05 defg 492.32±41.69 defgh 475.40 25.32花Flower 664.69±66.11 bcd 638.25±4.49 cdef 555.98±20.64 fghij 565.78±38.79 fghij 460.98±26.93 k 500.16±61.93 jk 464.90±32.76 k 576.55±65.46 efghij 578.51±18.35 efghij 573.61±47.50 fghij 617.68±54.68 cdefgh 536.39±40.75 hijk 567.73±31.14 fghij 629.43±18.89 cdefg 546.19±19.27 ghij 623.56±59.52 cdefg 585.36±11.87 defghij 621.60±55.54 cdefgh 560.88±44.46 fghij 584.38±22.95 defghij 689.17±17.71 bc 527.58±31.14 ijk 565.78±15.08 fghij 596.14±56.05 defghi 500.16±84.97 jk 580.47±51.42 defghij 658.81±48.49 bcde 728.35±28.94 ab 769.48±47.01 a 659.79±35.30 bcde 577.53±50.58 efghij 586.31 11.91果Fruit 7.70±0.23 hijkl 13.47±0.28 a 10.05±1.44 bcdefghi 9.59±1.67 cdefghij 8.73±0.86 defghijkl 9.18±0.78 cdefghijkl 10.35±0.50 bcdefgh 10.49±0.71 bcdefg 11.32±1.04 abcd 11.12±0.39 abcde 11.45±0.76 abc 8.32±0.36 fghijkl 7.48±0.40 ijklm 7.20±0.48 jklm 8.33±0.25 fghijkl 12.36±0.53 ab 8.30±0.49 fghijkl 5.15±0.63 mn 10.26±0.31 bcdefgh 11.35±0.80 abcd 10.82±6.03 bcdef 8.63±0.22 efghijkl 9.38±0.03 cdefghijk 6.92±0.18 klmn 8.24±0.46 fghijkl 6.71±0.29 lmn 9.75±0.26 bcdefghij 10.77±1.41 bcdef 7.97±1.61 ghijkl 4.63±0.18 n 9.25±0.34 cdefghijkl 9.11 20.65

宁海白和大房杂交后代及其亲本中的FRAP值在不同器官间存在明显差异,其中大房、ND028、ND107、ND128的FRAP值表现为叶>花>果,其他各株系不同器官的FRAP值均表现为花>叶>果,其中花中FRAP值的平均值是叶的1.23倍,是果的64.36倍。

2.2.4 综合抗氧化活性的比较分析 如表6 所示,采用APC 指数对宁海白和大房及其杂交后代各株系叶、花、果的抗氧化活性进行综合评价,结果表明,杂交后代各株系间的综合抗氧化活性变异大小为叶>果>花,变异系数分别为23.85%、17.42%、10.43%,综合抗氧化活性在杂交后代叶、花、果中的变异幅度较大,性状分离广泛。叶中的综合抗氧化活性为30.79~99.45,平均值为55.18,其中最低的是ND148,最高的是ND107;花中的综合抗氧化活性为58.22~91.54,平均值为75.87,其中最低的是ND069,最高的是ND164;果中的综合抗氧化活性为47.12~97.12,平均值为70.98,其中最低的是ND165,最高的是ND106。

表6 枇杷杂交后代及其亲本叶、花、果中的综合抗氧化活性
Table 6 Comprehensive antioxidant activity in the hybrid offspring of loquat and its parent leaves,flowers and fruits

种质编号Germplasm No.宁海白Ninghaibai大房Oobusa ND004 ND007 ND024 ND026 ND028 ND029 ND031 ND037 ND045 ND069 ND080 ND082 ND085 ND106 ND107 ND119 ND121 ND122 ND123 ND127 ND128 ND130 ND134 ND135 ND136 ND148 ND164 ND165 ND166 F1代平均值F1 generation average变异系数CV/%APC指数APC index叶Leaf 56.52 88.89 50.26 39.97 46.89 52.93 50.21 48.39 59.27 44.95 52.01 58.86 40.71 68.01 53.23 52.36 99.45 44.54 63.95 47.27 60.55 52.13 83.13 59.68 52.39 69.20 54.10 30.79 56.02 60.07 48.84 55.18花Flower 80.16 77.96 70.43 80.90 67.33 71.62 63.59 80.33 75.46 77.42 71.61 58.22 66.94 85.82 67.08 80.67 73.35 78.25 84.10 74.00 84.54 68.00 69.32 76.78 74.87 72.71 81.79 85.28 91.54 88.90 79.45 75.87果Fruit 51.36 89.79 73.10 72.97 54.06 72.53 76.98 69.64 85.37 87.85 81.55 72.00 54.73 52.01 62.11 97.12 74.34 56.08 84.16 77.63 66.31 68.13 78.70 61.24 68.08 56.41 84.25 84.73 60.73 47.12 78.62 70.98 23.85 10.43 17.42

通过APC指数对杂交后代叶、花、果的综合抗氧化活性进行分析,成功筛选出叶抗氧化活性前3的株系为ND107、大房、ND128;花抗氧化活性前3的株系为ND164、ND165、ND082;果抗氧化活性前3的株系为ND106、大房、ND037。

2.3 宁海白与大房杂交后代及亲本不同器官中总酚、类黄酮含量与抗氧化活性的相关性分析

如表7 所示,相关性分析结果表明,叶中总酚含量与类黄酮含量、DPPH值、ABTS值、FRAP值、APC 指数之间均呈极显著正相关,相关系数分别为0.946、0.938、0.874、0.900、0.957;叶中类黄酮含量与总酚含量、DPPH 值、ABTS 值、FRAP 值、APC 指数之间呈极显著正相关,相关系数分别为0.946、0.898、0.844、0.912、0.938。花中总酚含量与类黄酮含量、DPPH 值、FRAP 值、APC 指数之间呈极显著正相关,相关系数分别为0.466、0.519、0.796、0.773,与ABTS值呈显著相关,相关系数为0.449;花中类黄酮含量与总酚含量、APC 指数之间呈极显著正相关,相关系数为0.466、0.470,与DPPH 值、FRAP 值呈显著相关,相关系数分别为0.454、0.366,与ABTS 值相关性不显著。果中总酚含量与类黄酮含量、DPPH值、ABTS值、FRAP值、APC指数之间均呈极显著正相关,相关系数分别为0.805、0.767、0.805、0.865、0.928;果中类黄酮含量与总酚含量、DPPH 值、ABTS 值、FRAP 值、APC 指数之间呈极显著正相关,相关系数分别为0.805、0.784、0.666、0.744、0.829。相关性分析结果表明,总酚含量与类黄酮含量对枇杷叶、花、果的抗氧化活性的强弱起着极其重要的作用。叶、花、果中APC 指数与DPPH 值、ABTS 值、FRAP值等性状之间均呈极显著正相关,能较好地反映综合抗氧化活性。另外,总酚含量、类黄酮含量以及抗氧化活性在枇杷不同器官间无明显相关性。

表7 枇杷不同器官间总酚含量、类黄酮含量、抗氧化活性的相关性分析
Table 7 Correlation analysis of total phenolics content,flavonoids content and antioxidant activities in different organs of loquat

注:*表示显著相关(p<0.05),**表示极显著相关(p<0.01)。X1. 总酚含量;X2. 类黄酮含量;X3. DPPH 值;X4. ABTS 值;X5. FRAP 值;X6. APC 指数。
Note: * means significant correlation (p<0.05), ** means extremely significant correlation (p<0.01). X1. Total phenolic content; X2. Flavonoids content; X3. DPPH value; X4. ABTS value; X5. FRAP value; X6. APC index.

X60.092 0.129-0.032 0.082 0.087 0.052 0.119 0.282 0.172-0.256-0.019-0.028 0.928**0.829**0.903**0.878**0.852**1 X5-0.031 0.028-0.080 0.012 0.050-0.003 0.121 0.334 0.222-0.345-0.012-0.038 0.865**0.744**0.686**0.566**10.852**0.003 X40.165 0.106 0.077 0.159 0.067 0.131 0.180 0.077-0.122 0.073 0.016 0.805**0.666**0.718**10.566**0.878**X30.103 0.151 0.098-0.009 0.105 0.072 0.051 0.233 0.160-0.216-0.132-0.061 0.767**0.784**10.718**0.686**0.903**0.268 X20.184 0.063 0.172 0.265 0.182 0.052 0.145 0.151-0.271-0.030-0.050 0.805**10.784**0.666**0.744**0.829**Fruit X10.056果0.075-0.061 0.039 0.061 0.017 0.190 0.333 0.092-0.156 0.060 0.004 10.805**0.767**0.805**0.865**0.928**X6-0.072-0.100-0.010-0.095 0.049-0.018 0.773**0.470**0.765**0.709**0.765**10.004-0.050-0.061 0.016-0.038-0.028 X5-0.019-0.031 0.063 0.048 0.031 0.049 0.796**0.366*0.379*0.412*10.765**0.060-0.030-0.132 0.073-0.012-0.019 X4-0.084-0.108-0.033-0.173 0.002-0.071 0.449*0.213 0.230 10.412*0.709**-0.156-0.271-0.216-0.122-0.345-0.256 X3-0.055-0.080-0.039-0.077 0.069-0.014 0.519**0.454*10.230 0.379*0.765**0.092 0.151 0.160 0.077 0.222 0.172 X20.026 0.019 0.032 0.034 0.101 0.061 0.466**10.454*0.213 0.366*0.470**0.333 0.145 0.233 0.180 0.334 0.282 Flower花X1-0.149-0.218-0.124-0.067-0.065-0.089 10.466**0.519**0.449*0.796**0.773**0.190 0.052 0.051 0.131 0.121 0.119 X60.957**0.938**0.958**0.939**0.935**1-0.089 0.061-0.014-0.071 0.049-0.018 0.017 0.182 0.072 0.067-0.003 0.052 X50.900**0.912**0.847**0.787**10.935**-0.065 0.101 0.069 0.002 0.031 0.049 0.061 0.265 0.105 0.077 0.050 0.087 X40.874**0.844**0.876**10.787**0.939**-0.067 0.034-0.077-0.173 0.048-0.095 0.039 0.172 0.098 0.106 0.012 0.082 X30.938**0.898**10.876**0.847**0.958**-0.124 0.032-0.039-0.033 0.063-0.010-0.061 0.063-0.009 0.003-0.080-0.032 X20.946**10.898**0.844**0.912**0.938**-0.218 0.019-0.08-0.108-0.031-0.100 0.075 0.268 0.151 0.159 0.028 0.129 Leaf叶X110.946**0.938**0.874**0.900**0.957**-0.149 0.026-0.055-0.084-0.019-0.072 0.056 0.184 0.103 0.165-0.031 0.092性Character X1X2X3X4X5X6X1X2X3X4X5X6X1X2X3X4X5X6状叶Leaf花Flower果Fruit

2.4 宁海白与大房的杂交F1代及亲本不同器官中抗氧化活性的聚类分析

如图1 所示,聚类分析结果表明,当遗传距离取192.5时,可将枇杷杂交后代及亲本的31个株系分为5类。第Ⅰ类包含了15 个株系,最具代表性的是ND004;第Ⅱ类包含了11 个株系,最具代表性的是ND130。在31 个株系中,第Ⅰ类、第Ⅱ类叶、花、果的抗氧化活性表现为中等,并且第Ⅰ类的叶、花抗氧化活性弱于第Ⅱ类,而果抗氧化活性强于第Ⅱ类;第Ⅲ类包含了花、果抗氧化活性较弱的1 个株系ND080;第Ⅳ类包含了叶抗氧化活性较弱而花、果抗氧化活性较强的1 个株系ND148;第Ⅴ类包含了3 个叶抗氧化活性较强的株系即ND107、大房和ND128;此外,除第Ⅱ类、第Ⅴ类的14 个株系外,杂交后代其余15个株系没有与亲本聚在一起,说明其与亲本的遗传关系较远(表8)。

图1 枇杷杂交后代及其亲本抗氧化活性聚类分析
Fig.1 Cluster analysis of hybrid offspring of loquat and their parents with antioxidant activity

表8 枇杷杂交后代及其亲本5 个类群抗氧化活性的平均值
Table 8 The average value of antioxidant activity of five taxa of loquat hybrids and their parents

类群Population叶Leaf DPPH 125.52 148.89 115.72 96.00 223.81 FRAPⅠⅡⅢⅣⅤABTS 221.33 271.60 239.43 150.65 427.59 437.48 533.81 219.08 190.68 777.31花Flower DPPH 203.71 229.79 151.09 241.86 204.50 ABTS 301.90 337.05 306.09 308.82 290.44 FRAP 547.30 637.36 567.73 728.35 596.46果Fruit DPPH 3.44 3.28 2.77 4.02 3.85 ABTS 4.85 4.68 3.39 5.99 5.67 FRAP 9.35 8.69 7.48 10.77 10.38

3 讨论

枇杷的遗传背景较为复杂,杂交后代性状的变化容易受到多种基因以及环境等因素的共同影响,由于有性杂交时基因的非加性效应解体,枇杷杂交后代往往会出现较为广泛的性状分离现象[19]。变异系数能够较好地反映个体间性状的差异程度,常用来描述杂交后代多样性水平,变异系数大于10%则表示个体间差异较大[20]。笔者在本研究中以宁海白和大房枇杷作为亲本进行杂交育种,杂交后代各株系间的总酚含量、类黄酮含量、DPPH值、ABTS值、FRAP值、APC指数存在较为明显的差异,变异系数为9.51%(花总酚含量)~49.48%(叶类黄酮含量)。研究人员发现,葡萄[21]、枣[22]、苹果[23]、龙眼[24]、欧李[25]等果树果实的总酚、类黄酮含量在杂交后代中同样出现了较为广泛的性状分离。此外,总酚、类黄酮含量和抗氧化活性等性状在枇杷不同器官中变异系数大小均表现为叶>果>花,叶、果中各性状的变异系数较大,选择优良遗传型的潜力也较大,可以为改善枇杷杂交后代叶、果等器官的抗氧化活性提供丰富的材料,而花的性状变异系数相较叶、果更小,可能与父母本花中各性状含量较为接近有关。在本研究中,大房叶、果中的总酚、类黄酮含量以及抗氧化活性均远高于宁海白,但在花中未见显著差异。林耀盛等[26]认为同种果树不同品种间的差异可能是由基因型的差异导致的,在梨[27]、葡萄[28]、杏[29]等果树中,均有报道发现不同品种间的总酚、类黄酮含量以及抗氧化活性存在较大的差异,因此在采用杂交手段选育新品种时,亲本的选择尤为关键。

酚类物质作为次生代谢的重要产物广泛分布于植物器官中,在植物抵抗生物胁迫及非生物胁迫中发挥重要作用[30]。研究表明,枇杷不同器官间的酚类物质含量存在较大差异[31]。笔者在本研究中对枇杷叶、花、果中的总酚、类黄酮含量以及抗氧化活性进行分析,发现杂交后代的总酚含量、类黄酮含量、DPPH值、ABTS 值、FRAP 值的平均值均表现为花>叶>果。王鹏等[13]、吴媛琳等[14]研究同样发现枇杷花的总酚含量、类黄酮含量、DPPH值以及FRAP值大于叶。邱珊莲等[28]研究发现葡萄不同器官中总酚含量、类黄酮含量、DPPH值、ABTS值均表现为叶>根>茎>果。总酚、类黄酮含量以及抗氧化活性在不同器官间存在显著差异的原因可能是不同器官所含有的酚类物质单体的种类与含量不同[11,32],也可能是次生代谢区室化作用的结果[30]

目前枇杷抗氧化活性的测定方法主要有DPPH法、ABTS法以及FRAP法,由于三种方法的反应机制不同,可能会导致不同方法测得的抗氧化活性的排序不同[33],为了全面反映植物的抗氧化活性,往往需要采取多种方法进行测定,并且利用APC指数对抗氧化活性进行综合评价。黄泽浩等[34]对9种柑橘的三种体外抗氧化活性进行测定,并利用APC 指数筛选出优质种质巴伦西亚甜橙。卢娟芳等[8]利用APC 指数对不同桃品种的抗氧化活性进行排序,发现早露蟠桃的综合抗氧化活性最强。Zhang等[35]利用APC指数,在7个枇杷品种中筛选出DHP(Dahongpao)、LYQ(Luoyangqing)等抗氧化活性较强的品种。笔者在本研究中通过APC 指数对枇杷不同器官的抗氧化活性进行综合评价并筛选出叶抗氧化活性最强的3个植株为ND107、大房和ND128;花抗氧化活性最强的3 个植株为ND164、ND165 和ND082;果抗氧化活性最强的3 个植株为ND106、大房和ND037。

有学者认为清除自由基是一个复杂的过程,酚类、维生素类、生物碱类、皂苷类等物质可能共同参与清除自由基反应[36],并与植物的抗氧化活性密切相关。笔者在本研究中对宁海白和大房枇杷杂交后代叶、花、果中的总酚含量、类黄酮含量、抗氧化活性进行相关性分析发现,叶、果中的总酚含量、类黄酮含量均与抗氧化活性呈极显著正相关,与前人的研究结果类似[6,37]。花总酚含量与DPPH 值、FRAP 值、APC 指数呈极显著正相关,与ABTS 值呈显著相关;花类黄酮与APC指数呈极显著相关,与DPPH值、FRAP值呈显著相关,与ABTS值相关性未达到显著水平,这与Zhou 等[5]的研究结果存在差异,这可能是所采用的材料不同所导致的。APC 指数与抗氧化活性的相关性结果表明,APC指数与抗氧化活性呈极显著正相关,能较好地对枇杷杂交后代的综合抗氧化能力进行评价。此外,枇杷叶、花、果等器官间的相关性分析结果表明,枇杷不同器官间的总酚、类黄酮含量以及抗氧化活性之间无明显相关,可能是不同器官抗氧化成分的种类及含量差异较大导致的[2]。综上所述,在宁海白和大房及其杂交后代中,总酚、类黄酮是叶、花、果中的重要抗氧化成分,APC指数能有效评价抗氧化能力。

聚类分析可以将数据按本身的内在规律,把相似特征的性状归为一类以减小主观判断带来的误差,通过各类别之间的数据差异进行综合评价,在抗氧化成分与活性的综合评价中被广泛使用。李盼盼等[38]通过聚类分析对不同产地苦瓜干的抗氧化成分与活性进行了有效区分。蒋侬辉等[39]通过聚类分析在35个荔枝品种中筛选出了7个抗氧化活性强的品种。笔者在本研究中通过聚类分析将宁海白和大房及其杂交后代共31个植株聚成5类,聚类分析的结果与APC指数得分排名的情况基本一致,说明利用聚类分析与APC 指数对枇杷抗氧化活性进行综合评价是可行可信的。

4 结论

枇杷F1杂交群体各器官的总酚、类黄酮含量以及抗氧化活性存在丰富的多样性。杂交后代叶、花、果等器官中总酚含量、类黄酮含量、DPPH值、ABTS值、FRAP值、APC指数等性状,除花总酚含量外,其余各性状均出现了较为广泛的性状分离,具有丰富的多样性。总酚含量、类黄酮含量、DPPH值、ABTS值、FRAP 值等性状在杂交后代不同器官间同样存在较大差异,其含量表现为花>叶>果。相关性分析结果表明,在枇杷叶、花、果中,总酚和类黄酮是重要抗氧化活性成分,总酚、类黄酮含量以及抗氧化活性在不同器官间无明显相关性。研究结果可为高抗氧化活性枇杷新品种的选育提供理论依据,也可为枇杷抗氧化物质的开发利用提供参考。

参考文献 References:

[1] LIU Y L,ZHANG W N,XU C J,LI X. Biological activities of extracts from loquat (Eriobotrya japonica Lindl.):A review[J].International Journal of Molecular Sciences,2016,17(12):1983.

[2] 黄春辉,廖光联,谢敏,陶俊杰,曲雪艳,陈璐,徐小彪.不同猕猴桃品种果实发育过程中总酚和类黄酮含量及抗氧化活性的动态变化[J].果树学报,2019,36(2):174-184.HUANG Chunhui,LIAO Guanglian,XIE Min,TAO Junjie,QU Xueyan,CHEN Lu,XU Xiaobiao. Dynamic changes in total phenols,flavonoids and antioxidant capacity during fruit development of different kiwifruit cultivars[J]. Journal of Fruit Science,2019,36(2):174-184.

[3] MA X W,WU H X,LIU L Q,YAO Q S,WANG S B,ZHAN R L,XING S S,ZHOU Y G.Polyphenolic compounds and antioxidant properties in mango fruits[J]. Scientia Horticulturae,2011,129(1):102-107.

[4] 卢登洋,王鑫,唐章虎,吴翠云,蒲云峰,闫敏,鲍荆凯,姜喜.梨果实发育过程中酚类物质组成及抗氧化活性比较[J].中国农业科技导报,2023,25(9):97-104.LU Dengyang,WANG Xin,TANG Zhanghu,WU Cuiyun,PU Yunfeng,YAN Min,BAO Jingkai,JIANG Xi. Phenolic composition and antioxidant activity of pear species during fruit development comparison[J].Journal of Agricultural Science and Technology,2023,25(9):97-104.

[5] ZHOU C H,SUN C D,CHEN K S,LI X.Flavonoids,phenolics,and antioxidant capacity in the flower of Eriobotrya japonica Lindl.[J]. International Journal of Molecular Sciences,2011,12(5):2935-2945.

[6] XU H X,LI X Y,CHEN J W. Comparison of phenolic compound contents and antioxidant capacities of loquat (Eriobotrya japonica Lindl.) fruits[J]. Food Science and Biotechnology,2014,23(6):2013-2020.

[7] 马小雪,章秋平,刘威生,刘宁,张玉萍,徐铭,刘硕,张玉君.李品种资源果实抗氧化活性分析[J].果树学报,2019,36(3):277-285.MA Xiaoxue,ZHANG Qiuping,LIU Weisheng,LIU Ning,ZHANG Yuping,XU Ming,LIU Shuo,ZHANG Yujun.Antioxidant capacity in fruits of cultivar resources of genus Prunus[J].Journal of Fruit Science,2019,36(3):277-285.

[8] 卢娟芳,刘盛雨,芦旺,席万鹏.不同类型桃果肉酚类物质及抗氧化活性分析[J].中国农业科学,2017,50(16):3205-3214.LU Juanfang,LIU Shengyu,LU Wang,XI Wanpeng. Phenolic profiles and antioxidant activity of fruit pulp from different types of peaches[J]. Scientia Agricultura Sinica,2017,50(16):3205-3214.

[9] XU H X,CHEN J W.Commercial quality,major bioactive compound content and antioxidant capacity of 12 cultivars of loquat(Eriobotrya japonica Lindl.) fruits[J]. Journal of the Science of Food and Agriculture,2011,91(6):1057-1063.

[10] HONG Y P,LIN S Q,JIANG Y M,ASHRAF M. Variation in contents of total phenolics and flavonoids and antioxidant activities in the leaves of 11 Eriobotrya species[J]. Plant Foods for Human Nutrition,2008,63(4):200-204.

[11] 王慧心.椪柑植株不同组织的抗氧化活性评价及转录组和次生代谢组分析[D].杭州:浙江大学,2023.WANG Huixin. Evaluation of antioxidant activity in different tissues of ponkan plants and transcriptomic and secondary metabolomic analysis[D].Hangzhou:Zhejiang University,2023.

[12] 冉露霞,朱博,王俊杰,刘鹏,杨建军.百香果不同组织抗氧化活性及矿质元素差异分析[J]. 江西农业大学学报,2023,45(6):1385-1396.RAN Luxia,ZHU Bo,WANG Junjie,LIU Peng,YANG Jianjun.Analysis of antioxidant activity and mineral elements in different tissues of passion fruit[J].Acta Agriculturae Universitatis Jiangxiensis,2023,45(6):1385-1396.

[13] 王鹏,刘明秀,李晓林,党江波,陈薇薇,梁国鲁.普通枇杷与野生枇杷总黄酮、总酚及抗氧化活性分析[J].西南大学学报(自然科学版),2019,41(12):33-39.WANG Peng,LIU Mingxiu,LI Xiaolin,DANG Jiangbo,CHEN Weiwei,LIANG Guolu. Analysis of total flavonoids,total phenolics and antioxidant activities of common loquat and wild loquat (Eriobotrya japonica) genotypes[J]. Journal of Southwest University(Natural Science Edition),2019,41(12):33-39.

[14] 吴媛琳,赵听,张凯煜,张社奇,刘建军,康永祥.枇杷不同部位主要有效成分含量及抗氧化活性比较[J].西北林学院学报,2015,30(1):196-201.WU Yuanlin,ZHAO Ting,ZHANG Kaiyu,ZHANG Sheqi,LIU Jianjun,KANG Yongxiang.Main active ingredient contents and the antioxidant activity of different parts of Eriobotrya japonica[J]. Journal of Northwest Forestry University,2015,30(1):196-201.

[15] 付鸿博,王鹏飞,徐豆,穆霄鹏,张建成,付宝春,杜俊杰.农大4 号与DS-1 欧李正、反交F1 代果实品质的遗传变异分析[J].核农学报,2021,35(10):2223-2233.FU Hongbo,WANG Pengfei,XU Dou,MU Xiaopeng,ZHANG Jiancheng,FU Baochun,DU Junjie.Heredity and variation analysis of fruit quality in the F1 generation from reciprocal crosses between Nongda 4 and DS-1 Chinese dwarf cherry(Cerasus humilis)[J]. Journal of Nuclear Agricultural Sciences,2021,35(10):2223-2233.

[16] 肖旭坤,王翰华,阮洪生.枇杷叶化学成分和药理活性研究进展[J].中医药导报,2019,25(21):60-66.XIAO Xukun,WANG Hanhua,RUAN Hongsheng. Research progress on chemical constituents and pharmacological activities of Pipaye(Eriobotryae folium)[J].Guiding Journal of Traditional Chinese Medicine and Pharmacy,2019,25(21):60-66.

[17] 王翰华,阮洪生,陈云.枇杷花化学成分及其药理作用研究进展[J].中成药,2019,41(12):2977-2981.WANG Hanhua,RUAN Hongsheng,CHEN Yun. Research progress on chemical composition and pharmacological effects of loquat flowers[J].Chinese Traditional Patent Medicine,2019,41(12):2977-2981.

[18] SEERAM N P,AVIRAM M,ZHANG Y J,HENNING S M,FENG L,DREHER M,HEBER D. Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States[J]. Journal of Agricultural and Food Chemistry,2008,56(4):1415-1422.

[19] 赵崇斌,郭乙含,李舒庆,徐红霞,黄天启,林顺权,陈俊伟,杨向晖.宁海白×大房枇杷F1 杂交群体果实性状的相关性及遗传分析[J].果树学报,2021,38(7):1055-1065.ZHAO Chongbin,GUO Yihan,LI Shuqing,XU Hongxia,HUANG Tianqi,LIN Shunquan,CHEN Junwei,YANG Xianghui. Correlation and genetic analysis of fruit traits in F1 hybrid population of loquat generated from Ninghaibai × Dafang[J].Journal of Fruit Science,2021,38(7):1055-1065.

[20] 张龙进,李桂双,白成科,文苗苗,张志勤.山茱萸种质资源数量性状评价及相关性分析[J]. 植物遗传资源学报,2012,13(4):655-659.ZHANG Longjin,LI Guishuang,BAI Chengke,WEN Miaomiao,ZHANG Zhiqin. Evaluation and correlation analysis on quantitative traits of Cornus officinalis germplasm resources[J].Journal of Plant Genetic Resources,2012,13(4):655-659.

[21] 刘政海,董志刚,李晓梅,谭敏,杨镕兆,杨兆亮,唐晓萍.‘威代尔’与‘霞多丽’葡萄杂交F1 代果实性状遗传倾向分析[J].果树学报,2020,37(8):1122-1131.LIU Zhenghai,DONG Zhigang,LI Xiaomei,TAN Min,YANG Rongzhao,YANG Zhaoliang,TANG Xiaoping. Inheritance trend of fruit traits in F1 progenies of‘Vidal’and‘Chardonnay’of grape[J].Journal of Fruit Science,2020,37(8):1122-1131.

[22] 夏怡蕾,仇倩倩,杨植,鲍荆凯,闫芬芬,王玖瑞,吴翠云,刘孟军. 枣果实总黄酮和总酚含量性状的QTL 定位分析[J/OL].分子植物育种,2022:1-16(2022-05-06).https://kns.cnki.net/kcms/detail/46.1068.S.20220505.1649.024.html.XIA Yilei,QIU Qianqian,YANG Zhi,BAO Jingkai,YAN Fenfen,WANG Jiurui,WU Cuiyun,LIU Mengjun.The QTL mapping analysis of fruit total flavonoids and phenols in jujube[J/OL].Molecular Plant Breeding,2022:1-16(2022-05-06). https://kns.cnki.net/kcms/detail/46.1068.S.20220505.1649.024.html.

[23] 陈学森,张晶,刘大亮,冀晓昊,张宗营,张芮,毛志泉,张艳敏,王立霞,李敏.新疆红肉苹果杂种一代的遗传变异及功能型苹果优株评价[J].中国农业科学,2014,47(11):2193-2204.CHEN Xuesen,ZHANG Jing,LIU Daliang,JI Xiaohao,ZHANG Zongying,ZHANG Rui,MAO Zhiquan,ZHANG Yanmin,WANG Lixia,LI Min. Genetic variation of F1 population between Malus sieversii f. neidzwetzkyana and apple varieties and evaluation on fruit characters of functional apple excellent strains[J].Scientia Agricultura Sinica,2014,47(11):2193-2204.

[24] 黄爱萍,郑少泉.龙眼杂交后代果肉黄酮含量的遗传倾向研究与优株筛选[J].热带作物学报,2011,32(9):1595-1599.HUANG Aiping,ZHENG Shaoquan.Hereditary tendency of aril flavonoid in longan hybrid progenies and superior selection[J].Chinese Journal of Tropical Crops,2011,32(9):1595-1599.

[25] 王鹏飞,付鸿博,穆霄鹏,张建成,杜俊杰.‘农大6 号’与‘农大7 号’欧李正反交F1 代果实品质的遗传变异分析[J].中国果树,2021(1):50-55.WANG Pengfei,FU Hongbo,MU Xiaopeng,ZHANG Jiancheng,DU Junjie. Genetic analysis of fruit quality in the F1 generation from reciprocal crosses between‘Nongda 6’and‘Nongda 7’Cerasus humilis[J].China Fruits,2021(1):50-55.

[26] 林耀盛,张名位,张瑞芬,郭栋梁,潘学文,魏振承,张雁,刘磊,唐小俊,邓媛元,池建伟.不同品种龙眼果肉酚类物质的抗氧化活性比较[J].食品科学技术学报,2016,34(3):20-30.LIN Yaosheng,ZHANG Mingwei,ZHANG Ruifen,GUO Dongliang,PAN Xuewen,WEI Zhencheng,ZHANG Yan,LIU Lei,TANG Xiaojun,DENG Yuanyuan,CHI Jianwei. Comparison of phenolic contents and antioxidant activity of fruit pulp from different longan varieties[J]. Journal of Food Science and Technology,2016,34(3):20-30.

[27] 刘畅,马萍,吴玉霞,何天明.5 个梨品种果实营养成分及抗氧化活性比较研究[J].中国果树,2021(7):17-21.LIU Chang,MA Ping,WU Yuxia,HE Tianming. Study on the nutritional composition and antioxidant properties of five pear varieties[J].China Fruits,2021(7):17-21.

[28] 邱珊莲,林宝妹,郑开斌,张少华,林霜霜,张树河,郑菲艳,李珊珊.不同品种树葡萄叶片醇提物抗氧化及抑制α-葡萄糖苷酶活性研究[J].果树学报,2017,34(11):1450-1457.QIU Shanlian,LIN Baomei,ZHENG Kaibin,ZHANG Shaohua,LIN Shuangshuang,ZHANG Shuhe,ZHENG Feiyan,LI Shanshan.Antioxidative activity and α-glucosidase inhibitory activity of ethanol extracts of leaves of different cultivars of jaboticaba[J].Journal of Fruit Science,2017,34(11):1450-1457.

[29] 夏乐晗,陈玉玲,冯义彬,焦中高,刘慧,王其海.不同品种杏果实发育过程中类黄酮、总酚和三萜酸含量及抗氧化性研究[J].果树学报,2016,33(4):425-435.XIA Lehan,CHEN Yuling,FENG Yibin,JIAO Zhonggao,LIU Hui,WANG Qihai.Changes in flavonoids,total phenolics,triterpenoidic acids and antioxidant capacity during fruit development of different cultivars of apricot[J]. Journal of Fruit Science,2016,33(4):425-435.

[30] 关智晶,孙超.植物次生代谢的区室化研究进展[J].生物技术通报,2024,40(1):1-11.GUAN Zhijing,SUN Chao. Research progress in the compartmentalization of plant specialized metabolism[J]. Biotechnology Bulletin,2024,40(1):1-11.

[31] 张文娜,李鲜,孙崇德,陈昆松.枇杷酚类物质及其生物活性研究进展[J].食品与药品,2015,17(2):123-128.ZHANG Wenna,LI Xian,SUN Chongde,CHEN Kunsong.Phenolic compounds in loquat and their bioactivities[J]. Food and Drug,2015,17(2):123-128.

[32] 严娟,沈志军,蔡志翔,俞明亮.桃果实中酚类物质研究进展[J].果树学报,2014,31(3):477-485.YAN Juan,SHEN Zhijun,CAI Zhixiang,YU Mingliang. Advances of study on phenolic compounds in peach fruit[J]. Journal of Fruit Science,2014,31(3):477-485.

[33] ZHANG H,YANG Y F,ZHOU Z Q. Phenolic and flavonoid contents of mandarin (Citrus reticulata Blanco) fruit tissues and their antioxidant capacity as evaluated by DPPH and ABTS methods[J].Journal of Integrative Agriculture,2018,17(1):256-263.

[34] 黄泽浩,金铮华,毕晓艺,李云杰,李嘉昊,吴潼,吴清霞,席丽娟,廖玲.9 种柑橘果实品质及抗氧化能力差异分析[J].四川农业大学学报,2023,41(3):409-415.HUANG Zehao,JIN Zhenghua,BI Xiaoyi,LI Yunjie,LI Jiahao,WU Tong,WU Qingxia,XI Lijuan,LIAO Ling.Analysis of differences in fruit quality and antioxidant capacity of nine citrus varieties[J].Journal of Sichuan Agricultural University,2023,41(3):409-415.

[35] ZHANG W N,ZHAO X Y,SUN C D,LI X,CHEN K S.Phenolic composition from different loquat (Eriobotrya japonica Lindl.)cultivars grown in China and their antioxidant properties[J].Molecules,2015,20(1):542-555.

[36] 韩阳阳,王天晓,朱海芳,王玮,王建华.苦菜不同部位提取物的抗氧化活性[J].食品科学,2010,31(19):45-48.HAN Yangyang,WANG Tianxiao,ZHU Haifang,WANG Wei,WANG Jianhua. Antioxidant activity assessment of extracts from different parts of Sonchus oleraceus L.[J]. Food Science,2010,31(19):45-48.

[37] 霍宇航,李檐堂,赵小娜,鲁周民.基于叶序变化的枇杷叶抗氧化性研究[J].西北林学院学报,2019,34(6):120-125.HUO Yuhang,LI Yantang,ZHAO Xiaona,LU Zhoumin. Antioxidant activity of loquat leaf based on leaf arrangement change[J]. Journal of Northwest Forestry University,2019,34(6):120-125.

[38] 李盼盼,纪宝玉,裴莉昕,何江龙,李秀清,娄玉霞,董诚明,陈随清.不同产地苦瓜干抗氧化活性成分比较分析[J].中国瓜菜,2024,37(5):64-70.LI Panpan,JI Baoyu,PEI Lixin,HE Jianglong,LI Xiuqing,LOU Yuxia,DONG Chengming,CHEN Suiqing. Comparative analysis of antioxidant active components in dried bitter gourd from different habitats[J]. China Cucurbits and Vegetables,2024,37(5):64-70.

[39] 蒋侬辉,刘伟,金峰,凡超,黄泽鹏,向旭.35 个荔枝品种抗氧化活性评价[J].果树学报,2020,37(4):553-564.JIANG Nonghui,LIU Wei,JIN Feng,FAN Chao,HUANG Zepeng,XIANG Xu. Evaluation of antioxidant activity in pulp of 35 litchi varieties[J]. Journal of Fruit Science,2020,37(4):553-564.

Analysis and evaluation of antioxidant activity of leaves, flowers and fruits of loquat F1 generation of Ninghaibai and Oobusa

ZHU Qixuan1,2, LI Xiaoying1, GE Hang1,WU Junkai2,3,WANG Zhixuan1,2, CHEN Junwei1, XU Hongxia1*

(1Institute of Horticulture,Zhejiang Academy of Agricultural Sciences,Hangzhou 310021,Zhejiang,China;2College of Horticulture Science & Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600, Hebei, China;3Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization,Qinhuangdao 066600,Hebei,China)

Abstract: 【Objective】Loquat is native to China, and has a long history of cultivation and medicinal use.Loquat phenolic substances,as natural antioxidants,have a variety of biological activities.At present,most studies on loquat phenolic substances and antioxidant activity only focus on single organ such as leaf,flower,and fruit,and lack comparative analysis among the different organs.In addition,the evaluation of the antioxidant activity of loquat mainly involves ranking and evaluating the antioxidant activities measured by different methods,and there are few studies on comprehensive evaluation.In order to provide a theoretical basis for the breeding of new loquat varieties with high total phenolic, flavonoids content and high antioxidant activity, as well as to supply reference for the effectively developing and utilizing of loquat functional ingredients,this study aimed to explore the diversity of total phenolic,flavonoids contents and antioxidant activity in different organs of the loquat F1 hybrid population, and to comprehensively evaluate the antioxidant activity.【Methods】The total phenolic, flavonoids content and antioxidant activity of the different organs of Ninghaibai and Oobusa and their 29 F1 offsprings were determined.The total phenolics content was determined by Folin-ciocalteu method,the flavonoids content was determined by sodium nitrite-aluminum chloride method.DPPH(1,1-Diphenyl-2-picrylhydrazyl) radical scavenging capacity (DPPH value),ABTS (2, 2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid) cation radical scavenging capacity (ABTS value), Ferric reducing antioxidant power(FRAP value)in vitro were determined by DPPH method,ABTS method and FRAP method,respectively.Diversity analysis and correlation analysis were conducted on the total phenolics,flavonoids and antioxidant activity of different organs of the hybrid offspring. In addition, a comprehensive evaluation and cluster analysis were conducted on the antioxidant activity of the hybrid progeny.【Results】There was a rich diversity in the total phenolics and flavonoids contents, as well as antioxidant activity in the different organs of the loquat F1 generations of Ninghaibai and Oobusa.In the leaves,flowers and fruits,the coefficients of variation of total phenolics content were 23.84%,9.51%and 16.50%,the coefficients of variation of flavonoid content were 49.48%, 13.38% and 44.67%, the coefficients of variation of DPPH value were 23.93%, 15.77% and 17.28%, the coefficients of variation of ABTS value were 26.98%, 13.93% and 21.82%, the coefficients of variation of FRAP value were 25.32%, 11.91% and 20.65%, the coefficients of variation of Antioxidant potency composite (APC) index were 23.85%,10.43% and 17.42%, respectively. The order of the coefficients of variation in the different organs of the hybrid offsprings was leaves>fruits>flowers. Except for the total phenolic content of the flowers,the other traits were widely segregated and had high genetic potential. In addition, there are significant differences in the content of total phenolic,flavonoids content and high antioxidant activity in the different organs of the hybrid offsprings, and the order was flowers>leaves>fruits.The antioxidant activity of the different organs was comprehensively evaluated using the APC index, the top three plants with high antioxidant activities in the leaves were ND107, Oobusa and ND128. The top three plants with high antioxidant activities in the flowers were ND164, ND165 and ND082, while the top three plants with high antioxidant activities in the fruits were ND106, Oobusa and ND037. Correlation analysis showed that the total phenolics and flavonoids contents in the leaves and fruits were significantly correlated with the antioxidant activity, while the contents of total phenolics and flavonoids in the flowers were correlated with the antioxidant activity. Moreover, there was a significant positive correlation between the APC index and in vitro antioxidant activities such as DPPH value,ABTS value and FRAP value,but there was no significant correlation between the total phenolics,flavonoids and antioxidant activity in the different organs.The 29 strains of hybrid offspring and their parents were divided into 5 categories by cluster analysis.The first and second groups contained 26 lines,with moderate antioxidant activity. The third group only contained ND080, with weak antioxidant activity in the flowers and fruits.The fourth group only contained ND148,with weak antioxidant activity in the leaves but strong antioxidant activity in the flowers and fruits.And the fifth group contained ND107, Oobusa and ND128, with the strongest antioxidant activity in the leaves.【Conclusion】The diversity of the total phenolic and flavonoids contents and antioxidant activity of the different organs were rich in the F1 generation of loquat Ninghaibai and Oobusa.Except for the total phenolics in the flowers,the total phenolics content,flavonoids content,DPPH value,ABTS value,FRAP value and APC index showed a wide range of segregation and had good genetic potential. The genetic variation of the leaf traits in the F1 generation was more abundant than that in the flowers and fruits.There were obvious differences in the total phenolics content, flavonoids content, DPPH value,ABTS value and FRAP value among the different organs of the hybrid offsprings, and the contents in the flowers and leaves were much higher than those in the fruits. The correlation analysis verified that the total phenolics and flavonoids were important antioxidant components in loquat. There was no significant correlation between the total phenols, flavonoids,antioxidant activity in the different organs.The APC index and cluster analysis could be used to screen the hybrid offsprings with strong comprehensive antioxidant activity.The research results could provide a theoretical basis for the scientific configuration of crossing combinations and improve the breeding efficiency, which could also supply a reference for the effective development and utilization of the functional components of loquat.

Key words: Loquat;Total phenolics;Flavonoids;Antioxidant activity;Correlation

中图分类号:S667.3

文献标志码:A

文章编号:1009-9980(2024)09-1716-15

DOI: 10.13925/j.cnki.gsxb.20240294

收稿日期:2024-06-11

接受日期:2024-07-11

基金项目:浙江省“十四五”果品新品种选育专项(2021C02066-3);浙江省三农九方项目(2022SNJF028)

作者简介:朱启轩,男,硕士,主要从事枇杷育种与栽培研究。Tel:0571-86417302,E-mail:zhu_qixuan@163.com

*通信作者 Author for correspondence.Tel:0571-63644349,E-mail:xuhongxia@zaas.ac.cn