瓜类不同类型砧木响应镉胁迫的生理机制探究

李停停1,2,邢乃林2,严蕾艳2,王迎儿2,王毓洪2*

1浙江农林大学,杭州 311300;2宁波市农业科学研究院·宁波市特色园艺作物品质调控与抗性育种重点实验室,浙江宁波 315043)

摘 要:【目的】 探究不同类型砧木应对重金属镉的机制,为砧木育种及在镉污染土壤中瓜类嫁接栽培安全生产提供参考。【方法】 以野生西瓜类型砧木YZ1、中国南瓜类型砧木SZ111、印度与中国南瓜杂交类型砧木SZ7、葫芦类型砧木LZS 为材料,利用0.6 mg·L-1 CdCl2溶液进行水培处理,以不加镉培养的实生苗为对照,一段时间后取样测定地上部鲜质量、主根长、丙二醛(MDA)含量、超氧化物歧化酶(SOD)和过氧化物酶(POD)活性以及叶绿素荧光参数并进行分析。【结果】 与对照相比,YZ1、SZ111 和SZ7 地上部鲜质量的影响程度差异极显著;YZ1 的MDA 含量极显著升高;YZ1叶片和LZS 整体的SOD 活性显著降低,YZ1 根部SOD 活性显著升高;SZ111 和LZS 根部及SZ7 整体POD 活性均显著降低,YZ1 叶片POD 活性极显著升高;SZ111 和SZ7 的Y(Ⅱ)和ETR 值极显著降低,YZ1 和SZ7 的Fv/FmFv/Fo值显著降低。【结论】 SZ111和LZS这两种类型砧木抗镉能力较强,可以作为镉污染地区的瓜类砧木使用。

关键词:瓜类;砧木;镉;酶活;光合作用;生理

随着城市化的高速发展以及化工生产、开矿采矿、化肥农药和生活固体废物堆积等因素的影响,重金属流入土壤[1-2],致使中国土壤重金属污染不断加重[3]。中国农田土壤重金属污染源有铅、镉、汞、砷等元素,其中镉(Cd)为主要的污染元素之一,土壤受重金属污染导致肥力下降,影响作物的品质和产量[4],也会通过食物链对人体产生危害[5-6]。有研究表明,镉与女性乳腺癌发病存在关联性[7],因此,重金属镉污染防治已迫在眉睫。

土壤中的镉会被作物根系吸收,再通过转运途径运输到茎、叶和果实中并富集,导致农产品镉超标[8]。葫芦科的蔬菜植物,包括葫芦、西瓜、甜瓜、南瓜等,是重要的食用作物,部分品种也可作为嫁接砧木使用。西瓜在镉污染地区种植,其生长受到抑制[9],镉胁迫会影响甜瓜生长、降低产量[10]。嫁接栽培技术是通过更换根系来提高植物抗土传病害、抗有毒物质危害、抗重茬的能力[11],提高作物产量和品质等[12-13],已广泛应用于瓜类作物生产。

嫁接能缓解重金属对植物的影响,选择嫁接低镉积累的砧木,通过调控含硫化合物的合成与代谢,来减少镉向作物地上部运输和富集[14];有学者研究表明,利用不同品种砧木嫁接西瓜,其果实中重金属的含量存在差异[15-16];还有学者研究表明,南瓜类型砧木嫁接西瓜,果实的镉含量显著降低[17],目前学者们的研究主要集中在重金属对嫁接苗和实生苗的影响方面,而砧木实生苗对重金属的响应却鲜见报道,因此,研究不同类型砧木对镉的生理响应,对嫁接栽培研究及砧木育种具有重要意义。

笔者利用4 种不同类型砧木进行水培处理,对地上部鲜质量、根长、叶片和根部的丙二醛(MDA)含量、超氧化物歧化酶(SOD)活性、过氧化物酶(POD)活性以及叶绿素荧光参数进行测定和分析,研究不同类型砧木对镉胁迫的生理反应,分析镉对不同类型砧木生理特性的影响,为砧木育种及在镉污染土壤中瓜类嫁接栽培安全生产提供参考。

1 材料和方法

1.1 试验材料

选用野生西瓜类型砧木(YZ1)、中国南瓜类型砧木(SZ111)、印度南瓜与中国南瓜杂交类型砧木(SZ7)、葫芦类型砧木(LZS),种子由宁波市丰登种业科技有限公司提供。试验在宁波市高新农业技术试验园区进行。

1.2 试验方法

1.2.1 材料培养 将YZ1、SZ111、SZ7、LZS 浸种催芽,播入50 孔穴盘,待其生长到1 叶1 心期,洗苗,将幼苗移栽至水培槽内,水槽内放置气泡石连接换气泵,为根系输送氧气,营养液配制参照黄芸萍等[18],以0.6 mg·L-1的CdCl2溶液进行处理[根据土壤环境质量标准(GB 15618—2018)农用地土壤污染风险值设定]。对照(清水)和处理各3 次重复,每重复10株,处理15 d。

1.2.2 根长测定 将露白后的种子放置到种子萌发袋后放入智能人工气候箱(宁波江南仪器,型号:RXZ-1000C)进行培养,设定昼夜16 h/8 h、25 ℃/18 ℃温度,22 000 lx/0 lx光/暗,每萌发袋加入20 mL 0.6 mg·L-1的CdCl2溶液,对照以清水代替,每处理3次重复,处理7 d,测量其根部长度。

1.2.3 叶绿素荧光参数测定 先将植株移至暗处,等待20 min 后,利用Junior-PAM 调制叶绿素荧光仪检测第4枚真叶的光合作用相关参数,测得最小荧光Fo,最大荧光Fm,光合电子传递速率ETR(μmol·m-2·s-1),光系统Ⅱ(PSⅡ)最大光化学效率Fv/Fm,以及通过公式计算的Fv=Fm-Fo,PSⅡ实际光化学效率Y(Ⅱ)=(Fm’-F’)/Fm’,PSⅡ潜在光化学效率Fv/Fo=(Fm-Fo)/Fo

1.2.4 生理指标的测定 测量地上部鲜质量(g)后,对根部和叶片进行取样,使用苏州格锐思生物科技有限公司的试剂盒对叶片和根部样品提取,利用南京菲勒G-9 紫外可见分光光度计对丙二醛(MDA)含量(b,nmol·g-1)、超氧化物歧化酶(SOD)活性(U·g-1)、过氧化物酶(POD)活性(△OD470·g-1·min-1)进行测定,并通过公式计算影响程度[(处理-对照)/对照×100]。

1.3 统计分析

数据的分析、处理和作图使用SPSS 26.0 和WPS 表格,作图数据采用样品检测结果平均值,误差线采用±标准误差。其组间差异采用单因素方差分析ANOVA,采用Duncan法进行显著性检验。

2 结果与分析

2.1 镉胁迫对不同类型砧木地上部鲜质量的影响

经0.6 mg·L-1 CdCl2处理,不同砧木地上部鲜质量均低于对照(图1)。其中,YZ1、SZ111 和SZ7 地上部鲜质量分别比对照极显著降低26.75%、59.35%、45.72%,LZS 地上部鲜质量降低9.06%,与对照差异不显著,表明SZ111 受影响程度最大,LZS 最小,受影响程度依次为SZ111>SZ7>YZ1>LZS。

图1 镉胁迫对不同类型砧木地上部鲜质量的影响
Fig.1 Effects of cadmium stress on the fresh mass of aboveground plants of different types of rootstocks

2.2 镉胁迫对不同类型砧木主根长度的影响

通过测量不同类型砧木主根长度(图2)发现,4 种类型砧木的根长均低于对照。其中YZ1 显著降低50.20% ;SZ111、SZ7 和LZS 分别降低了17.71%、29.39%、4.41%,与对照差异不显著,说明YZ1 根长受影响程度最大,LZS 最小。

图2 镉胁迫对不同类型砧木根长的影响
Fig.2 Effects of cadmium stress on root length of different types of rootstocks

2.3 镉胁迫对不同类型砧木MDA含量的影响

与对照相比,经镉处理后的砧木叶片MDA 含量不同(图3-A)。其中,YZ1 叶片MDA 含量极显著升高22.68% ;SZ111 和LZS 分别升高5.68% 、22.84%,SZ7 降低5.91%,与对照差异均不显著。说明LZS受影响程度最大,SZ111最小。

图3 镉胁迫对不同类型砧木MDA 含量的影响
Fig.3 Effects of cadmium stress on MDA content in different types of rootstocks

经镉处理,各砧木根部MDA 含量均比对照高(图3-B)。其中,YZ1 根部MDA 含量极显著升高32.45% ;SZ111、SZ7 和LZS 分别升高23.22% 、10.03%、52.46%,与对照差异不显著。说明LZS 受影响程度最大,SZ7最小。

2.4 镉胁迫对不同类型砧木SOD活性的影响

与对照相比,经镉处理后的4 种砧木叶片SOD活性均降低(图4-A)。其中YZ1 降低27.54%,与对照差异极显著;SZ111 和SZ7 分别降低10.00%、19.29%,与对照差异不显著;LZS 降低34.90%,与对照差异显著。说明LZS 受影响程度最大,SZ111 最小。

图4 镉胁迫对不同类型砧木SOD 活性的影响
Fig.4 Effects of cadmium stress on SOD activity in different types of rootstocks

与对照相比,经镉处理后的4 种砧木根部SOD活性各不相同(图4-B)。其中YZ1 显著提高34.99%,SZ7 显著降低23.06%;SZ111 降低2.01%,差异不显著;LZS 极显著降低42.72%。说明受影响程度最大的是LZS,最小是SZ111。

2.5 镉胁迫对不同类型砧木POD活性的影响

经镉处理后,与对照相比,不同类型砧木叶片POD 活性差异不同(图5-A)。其中,YZ1 叶片POD活性极显著升高142.55%;SZ111 活性显著降低41.02%;SZ7 和LZS 的活性分别降低31.78%、40.48%,差异均不显著。说明YZ1 受影响程度最大,最小是SZ7。

图5 镉胁迫对不同类型砧木POD 活性的影响
Fig.5 Effects of cadmium stress on POD activity of different types of rootstocks

经镉处理后,不同类型砧木根部POD 活性差异不同(图5-B)。与对照相比,YZ1 根部POD 活性降低0.18%,差异不显著;SZ111 和LZS 分别极显著降低45.48%、23.01%;SZ7 活性显著降低28.16%。说明受影响程度最大的是SZ111,最小是YZ1。

2.6 镉胁迫对不同类型砧木光合参数的影响

镉胁迫下,4 种类型砧木对光合作用Y(Ⅱ)影响不同(图6-A)。与对照相比,SZ111 与SZ7 的Y(Ⅱ)分别极显著下降51.23%和57.83% ;YZ1 降低5.82%,LZS 升高24.62%,差异均不显著。说明受影响程度最大的是SZ7,最小的是YZ1。

图6 镉胁迫对不同类型砧木叶绿素荧光参数的影响
Fig.6 Effect of cadmium stress on chlorophyll fluorescence parameters of different types of rootstocks

镉胁迫下,与对照相比,4 种类型砧木的ETR 差异显著性不同(图6-B),其中,SZ111 与SZ7 的ETR分别极显著降低51.29%、57.81%;YZ1 降低6.00%,LZS 升高24.61%,差异均不显著。说明受影响程度最大的是SZ7,最小的是YZ1。

与对照相比,4 种砧木光合作用Fv/Fm参数差异显著性表现不同,但均表现为降低(图6-C)。YZ1和SZ7 分别显著降低11.96%、24.13%;SZ111 和LZS分别降低12.47%、1.25%,差异不显著。其中受影响程度最大的是SZ7,受影响程度最小的是LZS。

与对照相比,4 种砧木光合作用Fv/Fo参数差异显著性呈现不同水平,但均呈现降低(图6-D)。YZ1和SZ7 分别极显著降低43.29%、56.63%;SZ111 和LZS 分别降低31.23%、6.67%,差异均不显著。其中受影响程度最大的是SZ7,其次是YZ1,最小的是LZS。

3 讨 论

金属镉对植物生长有抑制作用,当土壤里的Cd2+进入植物体内并累积时,植物会出现细胞氧化应激反应,影响植物生理平衡[19],导致植物生长不良。在本研究中,YZ1、SZ111 和SZ7 这3 种砧木的地上部鲜质量极显著降低,LZS降低不显著,这与田传玉等[20]对高Cd2+浓度导致多肉植物康平寿鲜质量显著降低的研究结果一致,这可能是因为镉进入植物体内后,对叶绿素传递产生影响,抑制光合作用[21],光合产物减少,生长受到抑制,导致地上部鲜质量降低。

植物的根是最先接触到镉的部位,根长的生长因镉的胁迫而受到抑制。在本研究中,YZ1 砧木根长比对照显著降低,其他3种砧木根长降低,但与对照差异不显著,此结果与孟琦涛等[22]和李倩等[23]对南瓜和黑豆幼苗的研究结果相似,原因可能是镉胁迫导致植物生理代谢紊乱,降低细胞壁的可塑性[24],导致植物对水分和养分吸收减少,最终抑制根系生长。

膜脂过氧化可作为植物氧化损伤的标志,而MDA 含量的高低反映了植物膜脂过氧化程度、ROS含量的多少和遭受逆境伤害程度的高低[25-26]。在本研究中,与对照相比,YZ1 叶片和根部处理的MDA含量极显著升高,其他3 种砧木均未发生显著变化,吕小娜等[27]的研究表明,不同植物叶片MDA 含量不同,根部MDA 含量升高,与笔者在本研究中的结果相似,这说明4 种砧木应对镉胁迫的抗性不同,YZ1耐镉胁迫性最弱。

在镉胁迫下,植物产生大量ROS 并累积,导致体内ROS含量升高,诱导抗氧化酶活性升高[28],POD与SOD 是植物体内清除ROS 的主要抗氧化酶[29]。在本研究中,经处理后的叶片SOD 活性均比对照低,其中YZ1 极显著降低,LZS 显著降低;YZ1 的根部SOD活性显著升高,SZ7显著降低,LZS极显著降低;YZ1的叶片POD 活性极显著升高,SZ111显著降低;SZ11 和LZS 的根部POD 活性极显著降低,SZ7显著降低,而张秀娟等[30]对3 种草坪草的生理研究表明,SOD 和POD 活性总体趋势为上升,这与笔者在本研究中的结果不同,其原因可能是不同植物对镉的反应机制不同,YZ1 受镉胁迫导致体内酶活系统反应激烈,抗氧化系统可能遭到破坏,而SZ111和LZS可能由于根部是直接接触镉的部位而受影响严重,地上部可能已稳定内部镉胁迫的生理环境,有一定的抗性机制。

在重金属胁迫下,植物氧化应激会抑制光合作用,致使叶绿体膜系统损伤[31],光合速率下降,导致植株发育滞缓甚至萎蔫死亡[32-33]。植物叶绿素荧光参数反应了PSⅡ特性及光能使用效率,进而体现外界逆境对PSⅡ产生的危害[34]。Y(Ⅱ)值的变化反映了PSⅡ反应中心在部分关闭下的实际原初光能捕获效率,在本试验中,SZ111、SZ7 在镉胁迫下Y(Ⅱ)值极显著降低,说明镉胁迫导致PSⅡ反应中心关闭,从而降低光能捕获效率,这与姜永雷等[35]对镉胁迫水蕨幼苗的研究结果一致。ETR 数值反映电子传递速率的快慢,在本试验中,SZ111 和SZ7 两个砧木与对照相比极显著降低,说明其光合反应速率降低,可能是由于光化学反应效率被镉影响[36],减慢电子传递速率,促使吸收的光能散失,避免因光抑制或光呼吸对光系统产生危害,提高了这两组砧木的光保护能力,这与张栋栋等[37]的研究结果一致。Fv/Fm可作为原初光能转换效率高低的依据,可以反映植物损伤程度[38]。在本试验中,YZ1 和SZ7 的Fv/Fm值均显著降低,可能是由于PSⅡ反应中心关闭数量增多,植物光合活性降低,生长受抑制,这与刘金秀等[39]的研究结果一致。Fv/Fo值反映有活性的PSⅡ反应中心的数量和捕获转化所需光能的能力。在本试验中,YZ1 和SZ7 的Fv/Fo比对照均极显著降低,这与张培等[40]的研究结果相同,说明在镉胁迫下有活性的PSⅡ反应中心数量减少,捕获及转化所需光能的能力减弱。

4 结 论

以4 种类型砧木进行镉胁迫研究,发现不同类型砧木的地上部鲜质量、根长、MDA 含量、SOD 和POD 活性及叶绿素荧光参数响应镉胁迫的程度不同,可为相关育种及栽培研究提供参考,同时发现了SZ111和LZS这2个抗镉胁迫的砧木,可为西瓜安全生产保驾护航。

参考文献References:

[1] 乔晓芳,刘奇志,刘松忠,刘军,刘聪鹤.梨园常规施药与土壤重金属潜在污染风险评价[J].果树学报,2018,35(8):947-956.QIAO Xiaofang,LIU Qizhi,LIU Songzhong,LIU Jun,LIU Cong‐he.The evaluation of the potential risk of soil heavy metal pollu‐tion with conventional pesticide application in pear orchards[J].Journal of Fruit Science,2018,35(8):947-956.

[2] 王月.农业土壤重金属污染成因及治理[J].农业科技与装备,2022(6):20-21.WANG Yue.Cause and treatment of heavy metal pollution in ag‐ricultural soil[J].Agricultural Science & Technology and Equip‐ment,2022(6):20-21.

[3] 章海波,骆永明,李远,周倩,刘兴华.中国土壤环境质量标准中重金属指标的筛选研究[J].土壤学报,2014,51(3):429-438.ZHANG Haibo,LUO Yongming,LI Yuan,ZHOU Qian,LIU Xinghua. Screening of criteria for heavy metals for revision of the national standard for soil environmental quality of China[J].Acta Pedologica Sinica,2014,51(3):429-438.

[4] LU A X,LI B R,LI J,CHEN W,XU L. Heavy metals in paddy soil-rice systems of industrial and township areas from subtropi‐cal China:Levels,transfer and health risks[J]. Journal of Geo‐chemical Exploration,2018,194:210-217.

[5] 赵杨阳. 食品中重金属超标危害与检测[J]. 现代食品,2018(7):111-113.ZHAO Yangyang. Heavy metal excessive hazard and detection in food[J].Modern Food,2018(7):111-113.

[6] YOUSAF B,LIU G J,WANG R W,IMTIAZ M,ZIA-URREHMAN M,MUNIR M A M,NIU Z Y.Bioavailability evalua‐tion,uptake of heavy metals and potential health risks via di‐etary exposure in urban-industrial areas[J]. Environmental Sci‐ence and Pollution Research,2016,23(22):22443-22453.

[7] 孙可望,刘娣,潘风山,韦燕燕,候丹迪,杨肖娥.重金属暴露与乳腺癌发病的关系初探[J].浙江农业学报,2017,29(8):1353-1357.SUN Kewang,LIU Di,PAN Fengshan,WEI Yanyan,HOU Dan‐di,YANG Xiao’e. Study on relationship between heavy metals exposure and breast cancer[J].Acta Agriculturae Zhejiangensis,2017,29(8):1353-1357.

[8] 秦晓明. 硒对冬小麦镉吸收、转运及生理特性的影响[D]. 郑州:河南农业大学,2019.QIN Xiaoming. Effects of selenium on cadmium uptake,trans‐port and physiological characteristics of winter wheat[D].Zhengzhou:Henan Agricultural University,2019.

[9] 卢敏敏,孙胜.镉胁迫对小型西瓜幼苗生长及脂膜过氧化的影响[J].山西农业科学,2008,36(12):64-66.LU Minmin,SUN Sheng. Effect of cadmium stress on growth and membrane- lipid peroxidation of small watermelon seed‐lings[J]. Journal of Shanxi Agricultural Sciences,2008,36(12):64-66.

[10] 万凤婷.镉污染对甜瓜生理特性及甜瓜蒂有效成分含量的影响研究[D].武汉:武汉理工大学,2021.WAN Fengting. Study on the effect of cadmium pollution on the physiological characteristics of muskmelon and the contents of active components in the pedicellus muskmelo[D]. Wuhan:Wu‐han University of Technology,2021.

[11] 黄成东,李宝深,刘全清.西瓜嫁接育苗好处多[J].现代农村科技,2010(19):20.HUANG Chengdong,LI Baoshen,LIU Quanqing. Watermelon grafting seedling many benefits[J]. Modern Rural Science and Technology,2010(19):20.

[12] 孔富军.温室瓜菜嫁接栽培好处多[J].西北园艺,2009(7):55.KONG Fujun.Greenhouse melon and vegetable grafting cultiva‐tion benefits[J].Northwest Horticulture,2009(7):55.

[13] 余昌.西瓜嫁接好处多[N].河南科技报,2009-02-20(8).YU Chang. Watermelon grafting has many benefits[N]. Henan Science and Technology News,2009-02-20(8).

[14] 高天晗,孙梨宗,台培东,郭橙.嫁接诱导大豆低镉富集性状及遗传稳定性[J].生态学杂志,2021,40(1):140-147.GAO Tianhan,SUN Lizong,TAI Peidong,GUO Cheng. Genet‐ic stability of low cadmium accumulation induced by grafting in soybean[J].Chinese Journal of Ecology,2021,40(1):140-147.

[15] 王志伟,李涵,孙波,孙小武,梁志怀,谢汉忠.不同砧木对西瓜镉积累和品质的影响[J]. 果树学报,2017,34(10):1309-1315.WANG Zhiwei,LI Han,SUN Bo,SUN Xiaowu,LIANG Zhi‐huai,XIE Hanzhong. Effects of different stocks on the accumu‐lation of cadmium and fruit quality in watermelon[J]. Journal of Fruit Science,2017,34(10):1309-1315.

[16] 夏睿,夏新发,王元龙,田红梅,王爱听,王朋成.葫芦砧木优良亲本筛选试验[J].现代农业科技,2023(19):77-79.XIA Rui,XIA Xinfa,WANG Yuanlong,TIAN Hongmei,WANG Aiting,WANG Pengcheng. Excellent parent screening test of gourd rootstock[J]. Modern Agricultural Science and Technology,2023(19):77-79.

[17] 王志伟,李涵,孙波,邹甜,孙小武.不同砧木嫁接对西瓜果实Cd 含量和品质的影响[J].长江蔬菜,2018(2):66-70.WANG Zhiwei,LI Han,SUN Bo,ZOU Tian,SUN Xiaowu. Ef‐fect of different kinds of grafting rootstock on cadmium content and quality of watermelon fruit[J]. Journal of Changjiang Vege‐tables,2018(2):66-70.

[18] 黄芸萍,邢乃林,付玉婧,王迎儿,严蕾艳,应泉盛,王毓洪.不同类型砧木嫁接对西瓜果实镉含量的影响[J].上海农业学报,2020,36(4):60-64.HUANG Yunping,XING Nailin,FU Yujing,WANG Ying’er,YAN Leiyan,YING Quansheng,WANG Yuhong. Influences of cadmium content in watermelon fruit grafted by different type of rootstocks[J].Acta Agriculturae Shanghai,2020,36(4):60-64.

[19] 芦建国,彭河忠.鸢尾属植物的抗性研究进展[J].江西农业学报,2012,24(2):48-51.LU Jianguo,PENG Hezhong. Research progress in resistance of plants in iris[J].Acta Agriculturae Jiangxi,2012,24(2):48-51.

[20] 田传玉,陈建中,李露园,李红丽,张梦雅,王锋敏,朱婧婧,洽丹. 镉胁迫对多肉植物康平寿生长和增殖的影响[J]. 湖州师范学院学报,2020,42(2):33-38.TIAN Chuanyu,CHEN Jianzhong,LI Luyuan,LI Hongli,ZHANG Mengya,WANG Fengmin,ZHU Jingjing,QIA Dan.Effects of cadmium stress on growth and proliferation of Hawor‐thia emelyae[J]. Journal of Huzhou University,2020,42(2):33-38.

[21] GRAJEK H,RYDZYŃSKI D,PIOTROWICZ-CIEŚLAK A,HERMAN A,MACIEJCZYK M,WIECZOREK Z. Cadmium ion-chlorophyll interaction-Examination of spectral properties and structure of the cadmium-chlorophyll complex and their rel‐evance to photosynthesis inhibition[J].Chemosphere,2020,261:127434.

[22] 孟琦涛,徐颖超,朱吉童,曾霖根,傅曼琴,聂呈荣,钟玉娟.镉对广蜜二号南瓜幼苗生长与镉累积特性的影响[J/OL]. 中国瓜菜:1-13[2024-04-27]. https://doi.org/10.16861/j.cnki.zg‐gc.202423.0715.MENG Qitao,XU Yingchao,ZHU Jitong,ZENG Lingen,FU Mangin,NIE Chengrong,ZHONG Yujuan. Effects of cadmium on the growth and cadmium accumulation characteristics of Guangmi 2 miben pumpkin seedlings[J]. China Cucurbits and Vegetables:1-13[2024-04-27].https://doi.org/10.16861/j.cnki.zg‐gc.202423.0715.

[23] 李倩,赵英旭,刘浩,吕彦,周鑫.硫酸铜对黑豆种子萌发和幼苗生长的影响[J/OL].烟台大学学报(自然科学与工程版):1-8[2024-04-27].https://doi.org/10.13951/j.cnki.37-1213/n.230615.LI Qian,ZHAO Yingxu,LIU Hao,LÜ Yan,ZHOU Xin. Effect of copper sulfate on germination and seedling growth of black bean seeds[J/OL]. Journal of Yantai University (Natural Science and Engineering Edition):1- 8[2024- 04- 27]. https://doi.org/10.13951/j.cnki.37-1213/n.230615.

[24] HU Y F,ZHOU G Y,NA X F,YANG L J,NAN W B,LIU X,ZHANG Y Q,LI J L,BI Y R. Cadmium interferes with mainte‐nance of auxin homeostasis in Arabidopsis seedlings[J]. Journal of Plant Physiology,2013,170(11):965-975.

[25] 乔新燕,吴仁杰,曹少飞,李建国,原寒.铀对植物的胁迫效应研究进展[J].核农学报,2023,37(1):207-215.QIAO Xinyan,WU Renjie,CAO Shaofei,LI Jianguo,YUAN Han.Advances in stress effects of uranium on plants[J]. Journal of Nuclear Agricultural Sciences,2023,37(1):207-215.

[26] MONTEIRO M S,SANTOS C,SOARES A M V M,MANN R M. Assessment of biomarkers of cadmium stress in lettuce[J].Ecotoxicology and Environmental Safety,2009,72(3):811-818.

[27] 吕小娜,昝亚玲,原红娟. 不同植物对镉土壤污染的修复作用及分子机制[J/OL]. 分子植物育种,1-13[2024-02-18].https://kns- cnki- net.webvpn.zafu.edu.cn/kcms/detail/46.1068.s.20230328.1124.008.html.LÜ Xiaona,ZAN Yyanling,YUAN Hongjuan.The remediation ef‐fect and molecular mechanism of different plants on cadmium soil pollution [J/OL]. Molecular Plant Breeding,1-13[2024-02-18].https://kns- cnki- net.webvpn.zafu.edu.cn/kcms/detail/46.1068.s.20230328.1124.008.html.

[28] 孟凡茹,郭卫丽,赵戴军,陈碧华,李新峥.瓜类蔬菜砧木耐镉研究进展[J]. 河南科技学院学报(自然科学版),2020,48(5):15-21.MENG Fanru,GUO Weili,ZHAO Daijun,CHEN Bihua,LI Xinzheng. Research progress of cadmium tolerance in gourd vegetables rootstocks[J]. Journal of Henan Institute of Science and Technology(Natural Science Edition),2020,48(5):15-21.

[29] 李源恒,赵春莉,郭宏亮,陈元晖,刘翰升,王晟旭.镉胁迫对黄秋英生理及富集特性的影响[J/OL]. 山东农业科学,1-16[2024-02-18]. https://kns-cnki-net.webvpn.zafu.edu.cn/kcms/de‐tail/37.1148.S.20231103.0940.002.html.LI Yuanheng,ZHAO Chunli,GUO Hongliang,CHEN Yuanhui,LIU Hansheng,WANG Chengxu. Effects of cadmium stress on physiological and enrichment characteristics of Cosmos sulphu‐reus[J/OL]. Shandong Agricultural Sciences,1-16[2024-02-18].https://kns- cnki- net.webvpn.zafu.edu.cn/kcms/detail/37.1148.S.20231103.0940.002.html.

[30] 张秀娟,范玟,杨乐,吴楚,杨永胜.镉胁迫对3 种草坪草生理特性及叶片超微结构的影响[J].草地学报,2023,31(9):2663-2670.ZHANG Xiujuan,FAN Men,YANG Le,WU Chu,YANG Yong‐sheng. Effects of cadmium stress on physiological activities and leaf ultrastructures of three turfgrass species[J].Acta Agrestia Si‐nica,2023,31(9):2663-2670.

[31] 赵晶晶,詹万龙,周浓.非生物胁迫下植物体内活性氧和丙酮醛代谢的研究进展[J].南方农业学报,2022,53(8):2099-2113.ZHAO Jingjing,ZHAN Wanlong,ZHOU Nong. Research prog‐ress on the metabolisms of reactive oxygen species and methylg‐lyoxal in plants under abiotic stresses[J]. Journal of Southern Agriculture,2022,53(8):2099-2113.

[32] CHI Z X,HONG B W,TAN S W,WU Y C,LI H J,LU C H,LI W G.Impact assessment of heavy metal cations to the character‐istics of photosynthetic phycocyanin[J]. Journal of Hazardous Materials,2020,391:122225.

[33] CHEN L,YANG J Y,WANG D. Phytoremediation of uranium and cadmium contaminated soils by sunflower (Helianthus ann‐uus L.) enhanced with biodegradable chelating agents[J]. Jour‐nal of Cleaner Production,2020,263:121491.

[34] LIU L Y,ZHANG Y J,JIAO Q J,PENG D L.Assessing photo‐synthetic light-use efficiency using a solar-induced chlorophyll fluorescence and photochemical reflectance index[J]. Interna‐tional Journal of Remote Sensing,2013,34(12):4264-4280.

[35] 姜永雷,唐探,陈嘉裔,冯程程,黄晓霞.镉胁迫对水蕨幼苗叶绿素荧光参数和生理指标的影响[J].江苏农业科学,2015,43(9):357-360.JIANG Yonglei,TANG Tan,CHEN Jiayi,FENG Chengcheng,HUANG Xiaoxia. Effect of cadmium stress on chlorophyll fluo‐rescence parameters and physiological indicators of Ceratopter‐is thalictroides seedlings[J]. Jiangsu Agricultural Sciences,2015,43(9):357-360.

[36] KÜPPER H,PARAMESWARAN A,LEITENMAIER B,TRTÍLEK M,ŠETLÍK I. Cadmium-induced inhibition of photo‐synthesis and long-term acclimation to cadmium stress in the hy‐peraccumulator Thlaspi caerulescens[J].New Phytologist,2007,175(4):655-674.

[37] 张栋栋,李萌,甘龙,李晓玲,任东,胥焘,黄应平.重金属Cd-Cu 复合污染对苍耳生长及叶绿素荧光特性的影响[J].武汉大学学报(理学版),2019,65(1):66-76.ZHANG Dongdong,LI Meng,GAN Long,LI Xiaoling,REN Dong,XU Tao,HUANG Yingping. Effects of heavy metal Cd-Cu combined pollution on the growth and fluorescence charac‐teristics of Xanthium sibiricum Patrin ex Widder[J]. Journal of Wuhan University(Natural Science Edition),2019,65(1):66-76.

[38] FROM N,RICHARDSON K,MOUSING E A,JENSEN P E.Removing the light history signal from normalized variable fluo‐rescence (Fv/Fm) measurements on marine phytoplankton[J].Limnology and Oceanography:Methods,2014,12(11):776-783.

[39] 刘金秀,张松彦,周建.镉胁迫对刺槐幼苗生长与光合生理特性的影响[J].林业科学研究,2023,36(3):168-178.LIU Jinxiu,ZHANG Songyan,ZHOU Jian. Effects of cadmium stress on growth and photosynthetic physiological characteris‐tics of Robinia pseudoacacia seedlings[J]. Forest Research,2023,36(3):168-178.

[40] 张培,庞圣江,刘士玲,谌红辉,段润梅,曾琪瑶.遮阴对江南油杉幼苗生长和叶绿素荧光参数的影响[J]. 西北植物学报,2023,43(10):1716-1722.ZHANG Pei,PANG Shengjiang,LIU Shiling,CHEN Honghui,DUAN Runmei,ZENG Qiyao.Effects of shading on growth and chlorophyll fluorescence characteristics of Keteleeria fortunei var. cyclolepis seedlings[J]. Acta Botanica Boreali-Occidentalia Sinica,2023,43(10):1716-1722.

Exploring the physiological mechanisms of different types of cucurbits rootstocks in response to cadmium stress

LI Tingting1,2,XING Nailin2,YAN Leiyan2,WANG Ying’er2,WANG Yuhong2*
(1Zhejiang A & F University, Hangzhou 311300, Zhejiang, China;2Ningbo Academy of Agricultural Sciences/Ningbo Key Laboratory of Quality Control and Resistance Breeding of Characteristic Horticultural Crops,Ningbo 315043,Zhejiang,China)

Abstract: 【Objective】Cadmium metal has an inhibitory effect on plant growth. When Cd2+in the soil enters the plant body and accumulates, the plant will experience cellular oxidative stress response, pro‐ducing a large amount of reactive oxygen species(ROS)and accumulating,causing membrane lipid per‐oxidation, increasing cell membrane permeability, and affecting plant physiological balance. Membrane lipid peroxidation can serve as a marker of plant oxidative damage, and the level of MDA content re‐flects the degree of plant membrane lipid peroxidation, ROS content and the degree of stress damage suffered.Under cadmium stress,plants produce a large amount of ROS and accumulate it,leading to an increase in ROS content in the body and inducing an increase in antioxidant enzyme activity. POD and SOD are the main antioxidant enzymes for scavenging ROS in plants. Oxidative stress in plants can in‐hibit photosynthesis,leading to damage to the chloroplast membrane system and a decrease in photosyn‐thetic rate,and resulting in delayed plant development and even wilting and death.The chlorophyll fluo‐rescence parameters of plants reflect the characteristics of PSⅡand the efficiency of light energy utili‐zation,thereby reflecting the harm of external stress on PSⅡ.Therefore, the study on the physiological conditions, such as MDA content, SOD and POD activity, and chlorophyll fluorescence parameters of different types of rootstocks under cadmium stress, can provide reference for rootstock breeding and safe production of melon grafting cultivation in cadmium contaminated soil.【Methods】Wild watermel‐on type rootstock YZ1, Chinese pumpkin type rootstock SZ111, Indian pumpkin and Chinese pumpkin hybrid rootstock SZ7, and gourd type rootstock LZS were used as materials for hydroponic treatment with 0.6 mg·L-1 CdCl2 solution.The seedlings cultured without cadmium were used as the control.The control and treatment were designed to repeat for three times, with 10 plants in each replicate for 15 days.Before measurement,move the plants to a dark place and wait for 20 minutes.Then,use a Junior-PAM modulated chlorophyll fluorescence meter to detect the photosynthetic parameters on the fourth true leaf. The minimum fluorescence Fo, maximum fluorescence Fm, photosynthetic electron transfer rate ETR,maximum photochemical efficiency Fv/Fm of PhotosystemII(PS II),and the actual photochem‐ical efficiency Y(II)=(Fm'-F')/Fm'calculated by the formula,as well as the potential photochemical ef‐ficiency Fv/Fo of PS II = (Fm Fo)/Fo were examined.After measuring the ground fresh weight, the roots and leaves were sampled,the leaves and root samples were extracted using the kit of Suzhou Grith Bio‐technology Co., Ltd., and the MDA content, superoxide dismutase activity and the influence degree were calculated by the formula [(treatment-control) × 100 / control]. Add 20 mL of solution to the seed germination bag for cultivation, conduct experiments on plant root length, and measure the length of the main root. Data analysis, processing and plotting were carried out by using SPSS 26.0 and WPS tables. The significant differences between groups were tested by one-way ANOVA and Duncan meth‐od.【Results】Compared with the control, the degree of influence of YZ1, SZ111 and SZ7 was 26.75%, 59.35% and 45.72%, respectively, while LZS was only 9.06%, and the difference was not sig‐nificant. The MDA content of YZ1 significantly increased by 8.96 nmol·g-1, SZ111 and LZS by 0.68 and 2.39 nmol·g-1, respectively, and SZ7 decreased by 1.12 nmol·g-1. The SOD activity in YZ1 leaves significantly decreased by 309.07 U·g-1, while the root significantly increased by 974.73 U·g-1. The SOD activity in LZS leaves and SZ7 roots significantly decreased by 385.1 U·g-1 and 786.5 U·g-1, re‐spectively.The SOD activity in LZS roots significantly decreased by 1 056.03 U·g-1.The SOD activity in SZ111 leaves, roots, and SZ7 leaves was 88.53, 54.71 and 175.49 U·g-1, respectively, and there was no significant difference compared with the control. The POD activity in YZ1 leaves significantly in‐creased by 1 690.79 △OD470·min-1·g-1,while in SZ111 leaves and SZ7 roots,both decreased by 442.58 and 1 126.89 △OD470·min-1·g-1. The roots of SZ111 and LZS were significantly reduced by 1 891.83 and 872.51 △OD470·min-1·g-1, respectively.There was no significant difference between YZ1 roots and LZS leaves and the control group. The Y(Ⅱ) values of SZ111 and SZ7 were significantly reduced by 0.17 and 0.21, while YZ1 was not significantly reduced by 0.02 and LZS did not significantly increase by 0.08. The ETR values of SZ111 and SZ7 significantly decreased by 13.62 and 16.90 μmol·m-2·s-1,YZ1 did not significantly reduce 1.62 μmol·m-2·s-1, and LZS did not not significantly increase by 6.25 μmol·m-2·s-1.The Fv/Fm values of YZ1 and SZ7 were significantly reduced by 0.10 and 0.19,while SZ111 and LZS were not significantly reduced by 0.10 and 0.01.The Fv/Fo values of YZ1 and SZ7 were significantly reduced by 1.86 and 2.16, while SZ111 and LZS were not significantly reduced by 1.03 and 0.32.【Conclusion】The response of SZ111 and LZS rootstocks to cadmium stress was relatively gentle, with a relatively small impact. YZ1 was more severely affected in response to cadmium stress,and various physiological indicators may have been damaged. SZ7’s response to cadmium stress was average, so SZ111 and LZS can be recommended as cucumber rootstocks applied in cadmium polluted areas.

Key words: Cucurbits;Rootstocks;Cadmium;Enzyme activity;Photosynthesis;Physiology

中图分类号:S65

文献标志码:A

文章编号:1009-9980(2024)08-1627-09

DOI:10.13925/j.cnki.gsxb.20240077

收稿日期:2024-02-20 接受日期: 2024-06-02

基金项目:宁波市科技创新2025重大专项(20212006);国家西甜瓜产业技术体系(CARS-25)

作者简介:李停停,在读硕士研究生,主要从事瓜类砧木育种及栽培技术研究。E-mail:lim5378@hotmail.com

*通信作者 Author for correspondence.E-mail:yhwangsc@163.com