柑橘是中国第一大类水果,栽培面积及产量均居世界首位[1]。同时,中国柑橘种质资源丰富,生产栽培中主要种类有宽皮柑橘、甜橙、柚、柠檬、金柑、杂柑等[2]。柑橘果实含有丰富的有机酸、糖类、氨基酸、维生素、膳食纤维、矿物质等,同时还富含具有抗炎[3]、抗氧化[4]、抗肿瘤[5-6]等重要作用的酚酸类、类黄酮、类胡萝卜素等多种生物活性物质。通常情况下,柑橘果皮较果肉积累更多对人体健康有益的成分。
矿质元素对果树生长发育、产量形成具有重要作用[7],也是人体健康必不可少的营养元素,而水果是人体补充矿质营养的重要来源,其中柑橘果实中含有丰富的人体所需矿物元素,可作为营养品质评价的重要指标之一[8]。目前,对柑橘矿质元素的研究大多集中在几个品种间的含量比较[9-10]、生长发育或贮藏期矿质元素含量的动态变化[11]、产品鉴别[12]、产地溯源[13]等方面,但对新育及新引进柑橘品种矿质元素在不同部位的积累特征及综合评价方面的报道较少。潘少香等[14]利用主成分(PCA)和聚类分析法对不同产地间3个柑橘品种矿质元素含量的差异进行分析,得出K、Mg、Zn、Cu、Mn、Fe 为特征差异元素,涉及的品种数量相对较少。宋彪等[15]研究了5个代表性蜜柚品种矿质元素的空间分布特征,但未对品种间矿质元素含量进行综合评价。
柑橘果实中的酚类物质可清除自由基或抑制自由基的产生,降低机体中自由基与重要功能生物大分子发生反应造成的损伤、病变,达到抗氧化效果[16]。果蔬抗氧化性能与其所含的酚类物质组分、含量相关[17-18]。此外,酚类物质组成和含量也是评价柑橘品质的重要指标,可作为特征成分广泛应用于柑橘营养标签、品种识别等领域[19-20]。由于水果果肉中酚类物质含量通常低于其他部位,目前的研究大多集中在果皮、籽等酚类物质含量较高部位的提取分析方面[21-22]。但从对人体健康有益的角度考虑,可食果肉才是人体的重要食物来源。此外,矿质元素与活性成分间的关系尚不明确,限制了柑橘资源的评价与利用。因此有必要开展不同品种柑橘果实酚类物质含量、矿质元素含量、抗氧化能力及其相关性方面的研究。
随着消费者对保健食品的日渐关注,需要大量与营养、抗氧化活性相关的数据来筛选柑橘优良种质。笔者在本研究中以13个柑橘品种为试材,开展对果实中8种矿质元素、总黄酮、总酚含量及抗氧化活性检测,并进行相关性、PCA 及热图聚类等多元统计分析,旨在综合评价各指标含量的差异,进一步研究矿质元素与活性物质间的关系,为深入挖掘、培育柑橘优良品种及开发功能食品提供数据支撑和参考。
样品采自浙江省柑橘研究所种质资源圃,栽培管理水平一致。在果实成熟期,每个品种选3 株生长良好、树势一致的果树,从树冠中部外围4 个方向随机采摘大小均匀、无病虫害的柑橘果实共36 个,设3次重复。试验的13个柑橘品种为宫川、本地早、椪柑、茶枝柑、瓯柑等,详见表1。果实采后立即运回实验室,清水洗净,用纱布擦干,去籽,果皮和果肉置于40 ℃烘箱中烘干,粉碎过60 目(0.25 mm)筛,贮于-80 ℃低温冰箱备用。
表1 样品信息
Table 1 Information of samples
编号Number PZ01 PZ02 PZ03 PZ04 PZ05 PZ06 PZ07 PZ08 PZ09 PZ10 PZ11 PZ12 PZ13品种Variety宫川Miyagawa wase本地早Bendizao椪柑Ponkan茶枝柑Chazhigan瓯柑Ougan青瓯柑Green Ougan鸡尾葡萄柚Cocktail grapefruit玉环柚Yuhuanyou红美人Hongmeiren媛小春Himekoharu高橙Gaocheng塔罗科血橙Tarocco blood orange酸橙Sour orange类别Classification宽皮柑橘Mandarin宽皮柑橘Mandarin宽皮柑橘Mandarin宽皮柑橘Mandarin宽皮柑橘Mandarin宽皮柑橘Mandarin葡萄柚Grapefruit柚Pummelo杂柑Citrus hybrid杂柑Citrus hybrid杂柑Citrus hybrid橙Orange橙Orange
1.2.1 果皮和果肉矿质元素含量测定 称取果肉1.0 g,果皮0.5 g(精确至0.000 1 g)于坩埚中,在电炉炭化至无烟,置于马弗炉中550 ℃灰化7 h,冷却后加0.50 mL 盐酸(1∶1)溶液溶解,并用去离子水定容至25.00 mL 容量瓶。采用火焰原子吸收光谱法测定钾、钙、镁、钠、铁、锰、锌含量[23-28],采用分光光度法测定磷含量[29]。
1.2.2 果肉活性物质测定 活性物质:参考张伟清等[30]的方法制备果肉提取液,称取果肉0.5 g(精确至0.000 1 g),加入10 mL 70%乙醇,于70 ℃,250 W条件下超声提取30 min,4 ℃10 000 r·min-1离心10 min,收集上清液。3次重复,合并上清液后,用70%乙醇定容30 mL,过滤备用。采用三氯化铝法测定总黄酮含量,以每克干样中芦丁当量表示;采用Folin-Ciocalteu法测定总酚含量,以每克干样中没食子酸当量表示。
抗氧化活性:参考boxbio 试剂盒提供的方法测定果肉提取物DPPH·清除能力、ABTS+清除能力及铁离子还原能力(FRAP 法),其中DPPH 法和ABTS法结果以每克干样品中Trolox 当量表示,FRAP 法结果以每克干样品中FeSO4当量表示。抗氧化综合评价值的计算参考李楠等[31]的方法:Yi=∑(Xij-Xjmin)/(Xjmax-Xjmin),其中Xij为第i 种柑橘,第j 个抗氧化值;Xjmax和Xjmin分别为第i种柑橘,第j个抗氧化值的最大值和最小值。
采用Microsoft Excel 2010 统计试验数据,采用SPSS 22 进行主成分分析和相关性分析,采用Ori‐gin 2024进行聚类分析及作图。
由表2和表3可知,不同柑橘品种果肉和果皮中8种矿质元素含量存在不同程度的变异性,果肉中除P、K、Mg 外,果皮中除P 外,其他矿质元素变异系数均高于20%。K、Mg、Fe、Mn、Zn 在果皮中的变异系数均高于果肉,其余元素相反。果肉和果皮中变异系数最大的均为Mn,分别为41.26%和46.23%;变异系数最小的分别为Mg和P,对应为11.10%和15.62%。
表2 不同柑橘品种果肉矿质营养元素含量
Table 2 The content of mineral elements in pulp of different citrus varieties (mg ·kg-1)
注:同列不同小写字母表示差异显著(p<0.05)。下同。
Note:Different small letters in the same column indicate significant difference at 0.05 level. The same below.
?
表3 不同柑橘品种果皮矿质元素含量
Table 3 The content of mineral elements in peel of different citrus varieties (mg ·kg-1)
?
各柑橘品种果肉中8 种矿质元素总含量(w,后同)为10 918.22~17 042.22 mg·kg-1,最高含量约为最低的1.6 倍,由高到低排序为:酸橙>瓯柑>青瓯柑>本地早>媛小春>玉环柚>塔罗科血橙>椪柑>鸡尾葡萄柚>高橙>红美人>茶枝柑>宫川,含量高的前4个品种间无显著差异(p>0.05)。宫川中的矿质元素总含量最低,显著低于其他12个品种(p<0.05)。各柑橘品种果皮8种矿质元素总含量为12 612.91~19 777.92 mg·kg-1,由高到低排序为酸橙>玉环柚>媛小春>宫川>红美人>高橙>茶枝柑>鸡尾葡萄柚>瓯柑>青瓯柑>本地早>塔罗科血橙>椪柑,玉环柚与酸橙、媛小春间均无显著差异(p>0.05),本地早、青瓯柑、瓯柑和鸡尾葡萄柚间均无显著差异(p>0.05)。果皮矿质元素总含量最低的为椪柑,显著低于其他品种(p<0.05)。
果肉中8 种矿质元素含量均值从高到低排序为:K>Ca>P>Mg>Na>Fe>Mn>Zn,果皮中排序为K>Ca>P>Mg>Na>Mn>Fe>Zn,其中排序前5 的常量元素均为K、Ca、P、Mg、Na,分别占矿质元素总含量的73.79%、10.42%、9.69%、3.87%、2.09%和54.37%、34.79%、4.76%、3.40%、2.43%,柑橘果实表现为高K 低Na 的特性。从同一矿质元素在不同部位的分布来看,Ca、Mn 在果皮中的含量高于果肉,而P 相反;除玉环柚外,Fe 在果皮中的含量高于果肉,两部位Fe 含量差异最大的是宫川,其果皮中Fe 含量是果肉的3.6 倍;除宫川和茶枝柑外,K在果肉中的含量高于果皮,其中两部位K 含量差异最大的是本地早,差异最小的是酸橙。
8 种矿质元素在不同柑橘品种果肉中的排序不一致,13 个品种均以K 含量为最高,宫川、椪柑、茶枝柑、瓯柑、红美人和媛小春中次高为P,其余7个品种次高为Ca。玉环柚果肉P、Fe 和Zn 含量均最高,而Mn 含量最低。P、Fe 和Zn 含量最低的分别是高橙、宫川和红美人。酸橙的Mg 和Mn 含量均为最高,但Na 含量最低。瓯柑中的K 含量最高,Ca 含量以青瓯柑最高,是宫川(最低)的3.1 倍。各品种Na含量均值为312.93 mg·kg-1,以红美人最高。本地早和青瓯柑果皮矿质元素以Ca 含量为最高,次高为K,其他品种均相反。宫川、红美人和塔罗科血橙的果皮Na 含量高于Mg,其他品种均相反。除玉环柚外(Fe>Mn>Zn),其他品种微量元素的排序均为Mn>Fe>Zn。P 含量最高的为瓯柑,最低为本地早。酸橙果皮的K 含量最高,显著高于其他品种(p<0.05),约为本地早(最低)的3.3 倍。Ca、Mg 含量最高的分别为本地早和高橙,最低的分别为椪柑和塔罗科血橙。宫川果皮的Na 和Fe 含量均最高,Mn和Zn含量最高的分别为媛小春和红美人。
2.2.1 果肉活性物质含量 由表4 可知,不同品种总黄酮含量在7.61~27.96 mg·g-1之间,由高到低排序为酸橙>茶枝柑>高橙>塔罗科血橙>玉环柚>青瓯柑>宫川>瓯柑>媛小春>鸡尾葡萄柚>本地早>椪柑>红美人。酸橙的总黄酮含量最高,是其他品种的1.5~3.7 倍,且显著高于其他品种(p<0.05),茶枝柑次高,红美人最低。总酚含量均值为13.21 mg·g-1,变异系数为29.25%,由高到低排序为酸橙>茶枝柑>塔罗科血橙>高橙>宫川>媛小春>青瓯柑>瓯柑>玉环柚>椪柑>本地早>鸡尾葡萄柚>红美人。总酚含量最高的为酸橙,与次高茶枝柑间无显著差异(p>0.05),而显著高于其他11个品种(p<0.05),最低的为红美人。
表4 不同柑橘品种果肉总黄酮、总酚含量
Table 4 The contents of total flavonoids and phenolics in pulp of different citrus varieties(mg·g-1)
品种Variety PZ01 PZ02 PZ03 PZ04 PZ05 PZ06 PZ07 PZ08 PZ09 PZ10 PZ11 PZ12 PZ13均值Average变异系数CV/%w(总黄酮)Total flavonoids content 10.86±0.29 ef 8.87±0.04 ghi 8.09±0.17 hi 18.43±3.53 b 10.52±0.20 efg 11.22±0.32 e 9.30±0.02 fghi 12.00±0.59 de 7.61±0.03 i 9.40±0.28 fgh 15.76±0.37 c 13.41±0.35 d 27.96±1.07 a 12.57±5.48 43.57 w(总酚)Total phenolics content 14.85±2.20 b 10.28±0.26 cd 10.71±0.32 cd 18.95±2.55 a 11.38±0.34 cd 11.40±0.47 cd 10.26±0.14 cd 10.74±0.43 cd 9.11±0.17 d 12.07±0.33 c 14.97±0.50 b 15.53±0.24 b 21.45±4.62 a 13.21±3.86 29.25
2.2.2 果肉抗氧化活性 各柑橘品种果肉提取物的抗氧化活性存在差异,结果见表5。DPPH·清除能力变化范围在5.54~11.64 μmol·g-1之间,其中清除能力最强的是鸡尾葡萄柚为11.64 μmol·g-1,显著高于其他品种(p<0.05),其次是酸橙(10.47 μmol·g-1),最弱的是瓯柑(5.54 μmol·g-1)。ABTS+清除能力排名前3 的依次为高橙、玉环柚和酸橙,分别为36.42、35.10 和33.98 μmol·g-1,三者间无显著差异(p>0.05),但显著高于其他10 个品种(p<0.05)。Fe3+还原能力均值为64.54 μmol·g-1,最强的为酸橙,约为玉环柚(最弱)的2.7 倍。采用抗氧化综合评价法得出抗氧化能力排名前三的柑橘品种依次为酸橙、高橙和塔罗科血橙。
表5 不同柑橘品种果肉抗氧化能力
Table 5 Antioxidant capacities in pulp of different citrus varieties
品种Variety PZ01 PZ02 PZ03 PZ04 PZ05 PZ06 PZ07 PZ08 PZ09 PZ10 PZ11 PZ12 PZ13均值Average变异系数CV/%DPPH·清除能力DPPH free radical scavenging ability/(μmol·g-1)7.00±0.23 d 5.72±0.27 fg 7.38±0.65 d 9.63±1.61 bc 5.54±0.31 g 6.80±0.82 def 11.64±0.88 a 10.28±0.28 b 5.87±0.47 efg 6.98±0.49 de 8.58±0.37 c 9.01±0.61 c 10.47±0.36 b 8.07±2.03 25.13 ABTS+清除能力ABTS+free radical scavenging ability/(μmol·g-1)15.71±0.60 de 12.96±0.28 e 14.92±0.30 de 22.89±2.91 c 14.62±0.21 de 16.89±1.04 d 26.83±0.73 b 35.10±1.04 a 13.80±0.41 de 16.33±0.29 d 36.42±0.31 a 23.95±0.83 bc 33.98±6.26 a 21.88±8.60 39.31 Fe3+还原能力Iron reduction ability/(μmol·g-1)50.41±1.71 e 52.11±0.58 e 51.04±2.93 e 86.87±9.59 b 63.17±2.68 d 72.76±1.05 c 46.84±2.55 e 37.16±1.12 f 38.83±1.17 f 60.09±5.42 d 86.29±3.99 b 91.54±2.96 b 101.86±0.89 a 64.54±20.95 32.47抗氧化综合评价值Comprehensive antioxidant capacity 0.56 0.26 0.60 1.86 0.47 0.92 1.74 1.72 0.11 0.73 2.26 1.88 2.70排名Ranking 10 12 9 4 1 1 7 5 6 13 8 2 3 1
2.3.1 果肉矿质元素与活性物质含量间的相关性 柑橘果肉矿质元素与活性物质含量间具有一定的相关性,结果见图1。P、K、Ca、Mg、Fe 含量两两间呈极显著正相关(p<0.01);Na 含量与Ca 含量呈极显著负相关(p<0.01),与K 含量呈显著负相关(p<0.05);Mn 含量与Fe 含量呈显著负相关(p<0.05),与其他矿质元素含量均无显著相关(p>0.05)。Zn含量与Mg 含量呈显著正相关(p<0.05),与其他矿质元素含量均无显著相关(p>0.05);总黄酮含量与总酚含量呈极显著正相关(p<0.01),与Ca 含量呈显著正相关(p<0.05),而与P、Na 含量呈极显著负相关(p<0.01);总酚含量与P 含量呈极显著负相关(p<0.01),与Na、Fe含量呈显著负相关(p<0.05)。
图1 柑橘果肉矿质元素、总酚及总黄酮含量之间相关性分析
Fig.1 Correlation analysis between mineral elements,total phenolics,and total flavonoids content in citrus pulp
2.3.2 抗氧化能力与活性物质含量间的相关性 柑橘果肉抗氧化能力与活性物质间存在相关性,由表6 可知,3 种抗氧化活性(DPPH·清除能力、ABTS+清除能力和Fe3+还原能力)均与总黄酮、总酚含量呈极显著正相关(p<0.01),其中Fe3+还原能力与总黄酮、总酚含量的相关系数分别为0.798 和0.795,表明酚类物质含量与抗氧化活性强弱基本一致,其中对Fe3+还原能力的影响更大。结果还发现,总黄酮与总酚含量间具有极强的相关性,相关系数为0.862。
表6 柑橘果肉抗氧化能力与总黄酮、总酚相关性分析
Table 6 Correlation analysis between antioxidant capacities and content of total flavonoids and phenolics in citrus pulp
注:*表示在p<0.05水平显著相关,**表示在p<0.01 水平极显著相关。
Note:*represent significant correlation at p<0.05.**represent extremely significant correlation at p<0.01.
指标Index总黄酮含量Total flavonoids content总酚含量Totalphenolics content DPPH·清除能力DPPH free radical scavenging ability ABTS+清除能力ABTS+free radical scavenging ability Fe3+还原能力Iron reduction ability总黄酮含量Total flavonoids content 1 0.862**总酚含量Total phenolics content DPPH·清除能力DPPH free radical scavenging ability ABTS+清除能力ABTS+free radical scavenging ability Fe3+还原能力Iron reduction ability 1 0.530**0.422**1 0.634**0.798**0.464**0.795**0.783**0.289 1 0.397*1
对柑橘果肉中8 种矿质元素、总黄酮、总酚含量进行PCA 分析(表7),3 个特征值大于1 的主成分累积方差贡献率为77.939%。第一主成分载荷值较大的为K、Ca、Mg 含量,贡献率为39.624%,主要反映常量矿质元素的含量差异;第二主成分载荷值以总酚含量为最高,次高为总黄酮,方差贡献率为27.831%,主要体现功能性成分含量差异;第三主成分方差贡献率为10.484%。以3 个主成分相应的相对方差贡献率为权重建立综合评价模型:F=0.508F1+0.357F2+0.135F3,得到各品种综合得分及排名,得分高低反映果实综合营养品质的高低。由表8 可知,综合得分排名前三的柑橘品种分别为酸橙、青瓯柑和媛小春,表明这些柑橘品种对矿质元素及活性物质的吸收及累积能力较强。
表7 主成分载荷矩阵、特征值及贡献率
Table 7 Factor loading,coefficient eigenvalues and variance contribution rate of principal component
指标Index P含量P content K含量K content Ca含量Ca content Mg含量Mg content Na含量Na content Fe含量Fe content Mn含量Mn content Zn含量Zn content总黄酮含量Total flavonoids content总酚含量Total phenolics content特征值Eigenvalue方差贡献率Variance contribution rate/%累积方差贡献率Cumulative variance contribution rate/%主成分1 PC1 0.721 0.846 0.799 0.755-0.578 0.732-0.102 0.727主成分2 PC2-0.509-0.029 0.138 0.119-0.520-0.419 0.636-0.158主成分3 PC3 0.021 0.290-0.010 0.572 0.488 0.010 0.424-0.456 0.316 0.886-0.090 0.108 3.962 0.910 2.783-0.057 1.048 39.624 27.831 10.484 39.624 67.455 77.939
表8 不同柑橘品种主成分得分及排名
Table 8 Principal component score and ranking of different citrus varieties
F1 F2 F3 F 品种Variety PZ01 PZ02 PZ03 PZ04 PZ05 PZ06 PZ07 PZ08 PZ09 PZ10 PZ11 PZ12 PZ13-2.023 0.526-0.283-0.503 0.543 0.839-0.821 1.331-1.193 0.542-0.677 0.412 1.307 0.515-0.751-0.297 1.024-0.591-0.512-0.243-1.055-1.083-0.474 0.823 0.123 2.521-0.504 0.237 0.421-0.313 0.755 1.247-0.210-2.611 0.755 0.928-0.699-0.512 0.504-0.912 0.031-0.193 0.068 0.167 0.411-0.532-0.053-0.891 0.231-0.144 0.184 1.632排名Ranking 13 7 10 6 5 2 1 1 8 12 3 9 4 1
基于8 种矿质元素、总酚及总黄酮含量对不同柑橘品种进行热图聚类分析(图2),将13 个柑橘品种分成4 类,第1 类为酸橙,综合得分最高,Mg、Mn、总黄酮和总酚含量均较高。第2 类为玉环柚,综合得分排名第8,果实中P、Fe 和Zn 含量较高,其他矿质元素、活性物质含量相对较低。第4类为宫川,综合得分最低,矿质元素及活性物质含量较低。其余10 个品种聚为第3 类,说明宽皮柑橘类、杂柑类、橙类、葡萄柚类间存在较大关联,其中青瓯柑、媛小春和塔罗科血橙综合得分排名依次为2、3 和4。由此说明,第1 类酸橙及第3 类中的青瓯柑、媛小春和塔罗科血橙的矿质元素和活性物质含量丰富。
图2 不同柑橘品种聚类分析热图
Fig.2 Cluster analysis heat map of different citrus varieties
矿质元素是评价柑橘果实品质的重要指标,对人体健康具有重要作用。各柑橘品种果皮和果肉矿质元素含量存在差异,这与刘哲[32]的研究结果一致。本研究中13 个柑橘品种均采自同一资源圃,气候、土壤养分、栽培管理条件一致,排除了这些因素对果实矿质养分、活性物质积累造成的影响。因此,品种特性是造成本研究矿质元素含量差异的主要原因。各柑橘品种果肉中常量元素均以K 含量为最高,Na含量为最低,这与刘哲[32]、潘少香等[14]、李云仙等[33]的结果一致,进一步证实了柑橘高K 低Na的特性。果肉矿质元素变异系数以Mn为最大(41.26%),而P、K、Mg均低于20%,可能与各品种对Mn的吸收转运及积累不同有关。笔者在本研究中还发现,Ca、Mn 含量在果皮中高于果肉,但矿质元素的分布并不总表现为果皮高于果肉,除宫川和茶枝柑外,其余11 个品种K 含量表现为果肉高于果皮,这些结果说明矿质元素在果实中的吸收和积累具有空间特异性。有研究报道,柑橘营养成分的积累与果实成熟度高度相关,而成熟过程受营养信号、内源激素等综合作用[34]。同时,柑橘类果皮和果肉成熟过程并不完全协调,而表现为相互独立的生理代谢过程和变化特征[35],这可能是造成本研究中矿质元素分布特异性的原因。
酚类物质是柑橘中的重要次生代谢物,其组分、含量受多种因素影响,其中品种差异是主要影响因素[36-37]。13 个柑橘品种酚类物质含量存在差异,总黄酮和总酚含量均以酸橙最高,茶枝柑次高,可作为补充天然活性物质的资源。同时,酚类物质的积累与矿质元素具有相关性,Ca 促进总黄酮积累,而P、Na 对总黄酮、总酚积累有一定的拮抗作用,这可能与矿质元素是酚类物质代谢过程中的物质基础和重要调控因子有关[38]。基于此,可通过生物强化措施提高柑橘果实活性物质的含量。随着生活水平的提高,果蔬抗氧化活性成为人们关注的热点。酚类物质具有还原性的酚羟基,通过作用于相关的酶,或螯合金属离子,发挥抗氧化作用[39]。基于不同原理的评价方法存在差异,笔者采用3 种体外抗氧化方法并进行综合评价,得出抗氧化综合评价值排名前三的柑橘品种依次为酸橙、高橙、塔罗科血橙,最低的为红美人。此外,结果还发现柑橘果实3 种抗氧化活性物质与酚类物质含量呈极显著正相关,这与高炜等[40]、邓梅等[41]的研究结论一致,表明酚类物质是影响果实抗氧化活性的重要因素。研究结果可丰富柑橘活性物质数据库,同时为下一步酚类物质组成、结构特征及健康效应的研究提供理论基础。
通过主成分分析得到3 个主成分,累积贡献率为77.939%。综合得分的高低反映不同品种柑橘矿质营养及活性物质含量差异,其中酸橙综合排名第一,其次分别为青瓯柑、媛小春和塔罗科血橙,对这些矿质元素、总黄酮、总酚含量丰富的品种可进一步进行亲本及亲缘关系的研究,为其作为高营养物质材料的选育和推广提供参考。宫川、红美人矿质元素和酚类物质含量相对较低,在本试验中综合排名靠后,但其口感较好,深受消费者喜爱,可考虑作为选育鲜食柑橘良种的亲本。同时,经热图聚类分析将13 个柑橘品种分为4 类,该结果与主成分分析结果基本一致,说明两者均能较好地反映不同柑橘品种间的差异性。
13 个柑橘品种果肉和果皮中8 种矿质元素总含量范围分别为10 918.22~17 042.22 mg·kg-1 和12 612.91~19 777.92 mg·kg-1。柑橘是高K 低Na 水果,其中果皮Ca、Mn含量高于果肉,而P相反。酚类物质在不同品种间存在差异,其含量与3 种抗氧化活性呈极显著正相关,其中抗氧化综合评价值排名前三的柑橘品种依次为酸橙、高橙和塔罗科血橙。通过PCA、热图聚类分析,得出排名前四的柑橘品种分别为酸橙、青瓯柑、媛小春和塔罗科血橙,其矿质元素和活性物质含量均较高。
[1] 沈兆敏. 我国柑橘生产销售现状及发展趋势[J]. 果农之友,2021(3):1-4.SHEN Zhaomin. Present situation and development trend of Cit‐rus production and sales in China[J]. Fruit Growers’Friend,2021(3):1-4.
[2] 黄振东,王鹏,徐建国,鹿连明,陈国庆,温明霞,林媚.浙东地区‘红美人’杂柑果实品质与土壤和叶片养分的关系[J].果树学报,2020,37(1):88-97.HUANG Zhendong,WANG Peng,XU Jianguo,LU Lianming,CHEN Guoqing,WEN Mingxia,LIN Mei. Relationship be‐tween fruit quality and nutrients in soil and leaves of‘Hongmei‐ren’citrus hybrid cultivated in eastern Zhejiang Province[J].Journal of Fruit Science,2020,37(1):88-97.
[3] CHEN X M,TAIT A R,KITTS D D. Flavonoid composition of orange peel and its association with antioxidant and anti-inflam‐matory activities[J].Food Chemistry,2017,218:15-21.
[4] 姚旭,郦萍,顾青.4 种甜橙皮黄酮类化合物体外抗氧化活性及降糖降脂功能研究[J].中国食品学报,2022,22(1):49-57.YAO Xu,LI Ping,GU Qing. Studies on antioxidant activity,hy‐poglycemic and lipid-lowering capacity of flavonoids in sweet orange peels in vitro[J].Journal of Chinese Institute of Food Sci‐ence and Technology,2022,22(1):49-57.
[5] DI LORENZO C,COLOMBO F,BIELLA S,STOCKLEY C,RESTANI P. Polyphenols and human health:The role of bio‐availability[J].Nutrients,2021,13(1):273.
[6] 李江南,赵希娟,焦必宁.柑橘类水果中的抗癌活性成分及其机制研究进展[J/OL].食品科学,2023:1-27.(2023-10-24).https://kns.cnki.net/kcms/detail/11.2206.ts.20231020.1730.054.html.LI Jiangnan,ZHAO Xijuan,JIAO Bining.A review on antican‐cer active components in citrus and their mechanisms[J/OL].Food Science,2023:1-27. (2023-10-24). https://kns.cnki.net/kc‐ms/detail/11.2206.ts.20231020.1730.054.html.
[7] FU X Z,XIE F,CAO L,LING L L,CHUN C P,PENG L Z.Changes in mineral nutrition during fruit growth and develop‐ment of‘Seike’and‘Newhall’navel orange as a guide for fertil‐ization[J].Revista Brasileira de Fruticultura,2019,41(5):e-111.
[8] GHARIBZAHEDI S M T,JAFARI S M.The importance of min‐erals in human nutrition:Bioavailability,food fortification,pro‐cessing effects and nanoencapsulation[J]. Trends in Food Sci‐ence&Technology,2017,62:119-132.
[9] CZECH A,ZARYCKA E,YANOVYCH D,ZASADNA Z,GRZEGORCZYK I,KŁYS S. Mineral content of the pulp and peel of various citrus fruit cultivars[J].Biological Trace Element Research,2020,193(2):555-563.
[10] 冉梦阳.柑橘果汁营养保价值评价及其膳食风险评估研究[D].重庆:西南大学,2022.RAN Mengyang. Nutritional value evaluation and dietary risk assessment of citrus juice[D]. Chongqing:Southwest Universi‐ty,2022.
[11] 陈泉,张淑康,徐燕,段振刚,周静. 3 个塔罗科血橙品种矿质营养元素的年周期变化规律[J/OL]. 西南农业学报,2024:1- 16. (2024- 03- 23). https://kns.cnki.net/kcms/detail/51.1213.S.20240322.1446.056.html.CHEN Quan,ZHANG Shukang,XU Yan,DUAN Zhengang,ZHOU Jing. Annual cycle changes of mineral nutrients in three‘Tarocco’blood orange varieties[J/OL]. Southwest China Jour‐nal of Agricultural Sciences,2024:1-16. (2024-03-23). https://kns.cnki.net/kcms/detail/51.1213.S.20240322.1446.056.html.
[12] 廖秋红.纽荷尔脐橙主产区果实品质特征与产地识别研究[D].重庆:西南大学,2014.LIAO Qiuhong.Study on fruit quality characteristics and produc‐tion area recognition of Newhall Navel orange[D]. Chongqing:Southwest University,2014.
[13] TURRA C,DE LIMA M D,DE NADAI FERNANDES E A,BACCHI M A,BARBOSA F,BARBOSA R. Multielement de‐termination in orange juice by ICP-MS associated with data min‐ing for the classification of organic samples[J]. Information Pro‐cessing in Agriculture,2017,4(3):199-205.
[14] 潘少香,孟晓萌,郑晓冬,刘雪梅,谭梦男,曹宁,李志成,闫新焕.基于ICP-MS 的不同品种柑橘中矿物元素的差异性分析[J].现代食品科技,2020,36(8):333-339.PAN Shaoxiang,MENG Xiaomeng,ZHENG Xiaodong,LIU Xuemei,TAN Mengnan,CAO Ning,LI Zhicheng,YAN Xin‐huan. Determination of trace elements in species of citrus from different growing areas by microwave digestion-ICP-MS and their difference analysis[J].Modern Food Science and Technolo‐gy,2020,36(8):333-339.
[15] 宋彪,徐凯悦,王晓华,郭九信,吴良泉,苏达.蜜柚果实不同空间部位植酸及矿质营养有效性的分布特征[J].中国农业科学,2021,54(6):1229-1242.SONG Biao,XU Kaiyue,WANG Xiaohua,GUO Jiuxin,WU Liangquan,SU Da.Spatial distribution of phytic acid and miner‐als' availability in pomelo fruit[J]. Scientia Agricultura Sinica,2021,54(6):1229-1242.
[16] 刘阳,臧文静,梁潇,王岳,李鲜,孙崇德.23 个柑橘品种果实油胞层类黄酮组分鉴定与抗氧化活性研究[J].中国食品学报,2022,22(12):234-246.LIU Yang,ZANG Wenjing,LIANG Xiao,WANG Yue,LI Xian,SUN Chongde. Identification of flavonoids from the flavedo of 23 citrus cultivars fruit and their antioxidant activity[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(12):234-246.
[17] GHAFOOR K,AL JUHAIMI F,ÖZCAN M M,USLU N,BABIKER E E,MOHAMED AHMED I A. Total phenolics,to‐tal carotenoids,individual phenolics and antioxidant activity of ginger (Zingiber officinale) rhizome as affected by drying meth‐ods[J].LWT-Food Science and Technology,2020,126:109354.
[18] 李盼盼,纪宝玉,裴莉昕,何江龙,李秀清,娄玉霞,董诚明,陈随清. 不同产地苦瓜干抗氧化活性成分比较分析[J]. 中国瓜菜,2024,37(5):64-70.LI Panpan,JI Baoyu,PEI Lixin,HE Jianglong,LI Xiuqing,LOU Yuxia,DONG Chengming,CHEN Suiqing. Comparative analysis of antioxidant active components in dried bitter gourd from different habitats[J]. China Cucurbits and Vegetables,2024,37(5):64-70.
[19] ESCRICHE I,KADAR M,JUAN-BORRÁS M,DOMENECH E. Using flavonoids,phenolic compounds and headspace vola‐tile profile for botanical authentication of lemon and orange hon‐eys[J].Food Research International,2011,44(5):1504-1513.
[20] PAN G G,KILMARTIN P A,SMITH B G,MELTON L D.Detection of orange juice adulteration by tangelo juice using multivariate analysis of polymethoxylated flavones and carot‐enoids[J]. Journal of the Science of Food and Agriculture,2002,82(4):421-427.
[21] 李娟,牛泽宇,岳湘齐,谢璇,付鑫景,陆俊.不同产地甜橙果皮提取物抗氧化活性成分及能力研究[J].食品与机械,2019,35(9):156-162.LI Juan,NIU Zeyu,YUE Xiangqi,XIE Xuan,FU Xinjing,LU Jun. Study on antioxidant components and antioxidant activities of peels extracts from sweet orange in Hunan Province[J]. Food&Machinery,2019,35(9):156-162.
[22] 曹雪丹,吕霞敏,杨华夏,陈双阳,李艺,李佳,方修贵.椪柑籽油提取工艺优化及其抗氧化活性的研究[J]. 中国粮油学报,2023,38(12):128-136.CAO Xuedan,LÜ Xiamin,YANG Huaxia,CHEN Shuangyang,LI Yi,LI Jia,FANG Xiugui. Optimization of extraction process for oil from ponkan (Citrus reticulata Blanco) seed and its anti‐oxidant activity[J]. Journal of the Chinese Cereals and Oils As‐sociation,2023,38(12):128-136.
[23] 中华人民共和国国家卫生和计划生育委员会,国家食品药品监督管理总局.食品安全国家标准食品中钾、钠的测定:GB 5009.91—2017[S].北京:中国标准出版社,2017.National Health and Family Planning Commission of the Peo‐ple’s Republic of China,China Food and Drug Administration.National food safety standard-Determination of K, Na in foods:GB 5009.91—2017[S].Beijing:Standards Press of China,2017.
[24] 中华人民共和国国家卫生和计划生育委员会,国家食品药品监督管理总局. 食品安全国家标准食品中钙的测定:GB 5009.92—2016[S].北京:中国标准出版社,2017.National Health and Family Planning Commission of the Peo‐ple’s Republic of China,China Food and Drug Administration.National food safety standard-Determination of Ca in foods:GB 5009.92—2017[S].Beijing:Standards Press of China,2017.
[25] 中华人民共和国国家卫生和计划生育委员会,国家食品药品监督管理总局. 食品安全国家标准食品中镁的测定:GB 5009.241—2017[S].北京:中国标准出版社,2017.National Health and Family Planning Commission of the Peo‐ple’s Republic of China,China Food and Drug Administration.National food safety standard-Determination of Mg in foods:GB 5009.241—2017[S]. Beijing:Standards Press of China,2017.
[26] 中华人民共和国国家卫生和计划生育委员会,国家食品药品监督管理总局. 食品安全国家标准食品中铁的测定:GB 5009.90—2016[S].北京:中国标准出版社,2017.National Health and Family Planning Commission of the People’s Republic of China,China Food and Drug Administration. Na‐tional food safety standard-Determination of Fe in foods:GB 5009.90—2016[S].Beijing:Standards Press of China,2017.
[27] 中华人民共和国国家卫生和计划生育委员会,国家食品药品监督管理总局. 食品安全国家标准食品中锰的测定:GB 5009.242—2017[S].北京:中国标准出版社,2017.National Health and Family Planning Commission of the People’s Republic of China,China Food and Drug Administration. Na‐tional food safety standard-Determination of Mn in foods:GB 5009.242—2017[S].Beijing:Standards Press of China,2017.
[28] 中华人民共和国国家卫生和计划生育委员会,国家食品药品监督管理总局. 食品安全国家标准食品中锌的测定:GB 5009.14—2017[S].北京:中国标准出版社,2017.National Health and Family Planning Commission of the Peo‐ple’s Republic of China,China Food and Drug Administration.National food safety standard-Determination of Zn in foods:GB 5009.14—2017[S].Beijing:Standards Press of China,2017.
[29] 中华人民共和国国家卫生和计划生育委员会,国家食品药品监督管理总局. 食品安全国家标准食品中磷的测定:GB 5009.87—2016[S].北京:中国标准出版社,2017.National Health and Family Planning Commission of the People’s Republic of China,China Food and Drug Administration. Na‐tional food safety standard-Determination of P in foods:GB 5009.87—2016[S].Beijing:Standards Press of China,2017.
[30] 张伟清,林媚,王天玉,孙立方,冯先橘,姚周麟,徐程楠,王玥.基于PCA 分析和聚类分析的柑橘果实品质综合评价[J].果树学报,2023,40(5):902-918.ZHANG Weiqing,LIN Mei,WANG Tianyu,SUN Lifang,FENG Xianju,YAO Zhoulin,XU Chengnan,WANG Yue. Com‐prehensive evaluation of citrus fruit quality based on principal component and cluster analysis[J]. Journal of Fruit Science,2023,40(5):902-918.
[31] 李楠,杨欣,孙元琳,周素梅.20 种花茶黄酮、总酚及抗氧化活性分析[J].食品研究与开发,2021,42(18):34-39.LI Nan,YANG Xin,SUN Yuanlin,ZHOU Sumei. Flavones,to‐tal polyphenols and in vitro antioxidant activity in twenty kinds of herbal teas[J]. Food Research and Development,2021,42(18):34-39.
[32] 刘哲.不同柑橘果实可食部矿质元素分析及膳食营养评价[D].重庆:西南大学,2018.LIU Zhe.Analysis and dietary nutrition evaluation of mineral el‐ements of different citrus fruits[D]. Chongqing:Southwest Uni‐versity,2018.
[33] 李云仙,郑志峰,刘琳,徐娟,雷然.五种柑橘类水果矿质元素的测定[J].食品工业,2016,37(7):281-284.LI Yunxian,ZHENG Zhifeng,LIU Lin,XU Juan,LEI Ran. De‐termination of mineral elements in 5 species of citrus fruit peel and pulp by ICP-OES[J]. The Food Industry,2016,37(7):281-284.
[34] LADO J,GAMBETTA G,ZACARIAS L. Key determinants of citrus fruit quality:Metabolites and main changes during matura‐tion[J].Scientia Horticulturae,2018,233:238-248.
[35] TADEO F R,CERCÓS M,COLMENERO- FLORES J M,IGLESIAS D J,NARANJO M A,RÍOS G,CARRERA E,RUIZ-RIVERO O,LLISO I,MORILLON R,OLLITRAULT P,TALON M. Molecular physiology of development and quality of citrus[J].Advances in Botanical Research,2008,47:147-223.
[36] CHEN Y,PAN H L,HAO S X,PAN D M,WANG G J,YU W Q. Evaluation of phenolic composition and antioxidant proper‐ties of different varieties of Chinese citrus[J]. Food Chemistry,2021,364:130413.
[37] 朱泰霖,王慧心,陈杰标,王岳,曹锦萍,李鲜,孙崇德.不同品种柑橘果实的类黄酮分离纯化及其抗氧化活性研究[J].浙江大学学报(农业与生命科学版),2021,47(6):704-718.ZHU Tailin,WANG Huixin,CHEN Jiebiao,WANG Yue,CAO Jinping,LI Xian,SUN Chongde. Separation and purification of flavonoids from different citrus fruits and their antioxidant activ‐ities[J]. Journal of Zhejiang University (Agriculture and Life Sciences),2021,47(6):704-718.
[38] ZHAO C Y,WANG F,LIAN Y H,XIAO H,ZHENG J K. Bio‐synthesis of citrus flavonoids and their health effects[J]. Critical Reviews in Food Science and Nutrition,2020,60(4):566-583.
[39] 张杰,党斌,杨希娟.植物多酚的生理活性、抑菌机理及其在食品保鲜中的应用研究进展[J]. 食品工业科技,2022,43(24):460-468.ZHANG Jie,DANG Bin,YANG Xijuan. Research progress on physiological activity,antibacterial mechanism of plant polyphe‐nols and its application in food preservation[J]. Science and Technology of Food Industry,2022,43(24):460-468.
[40] 高炜,刘剑波,朱明扬,朱冬香,李浪,丁胜华,单杨.4 种柠檬不同组织的酚类物质分布及其抗氧化特性[J].中国食品学报,2019,19(2):281-290.GAO Wei,LIU Jianbo,ZHU Mingyang,ZHU Dongxiang,LI Lang,DING Shenghua,SHAN Yang. Distribution of phenolics in different tissues of four kinds of lemon and their antioxidant activity[J]. Journal of Chinese Institute of Food Science and Technology,2019,19(2):281-290.
[41] 邓梅,张瑞芬,董丽红,贾栩超,沈瑶兰,张名位.沙田柚不同组织部位酚类物质组成及其抗氧化活性研究[J].食品安全质量检测学报,2021,12(15):6153-6159.DENG Mei,ZHANG Ruifen,DONG Lihong,JIA Xuchao,SHEN Yaolan,ZHANG Mingwei. Phenolic compositions and antioxidant activity of different tissue parts of Shatianyou (Cit‐rus grandis L. Osbeck)[J]. Journal of Food Safety & Quality,2021,12(15):6153-6159.
A comprehensive evaluation of mineral elements and active substances in citrus fruits