湖北省温州蜜柑果实化渣性分析与评价

王 策1,黄 锐2,石志鹏2,蒋迎春1,何利刚1,王志静1,张 豫1,宋 鑫1,吴黎明1*,宋 放1*

1湖北省农业科学院果树茶叶研究所·果树种质创新与利用湖北省重点实验室,武汉 430064;2枝江市农业技术推广中心,湖北枝江 443200)

摘 要:【目的】 探究湖北省温州蜜柑果实的化渣性差异及其主要影响因素,为温州蜜柑高品质栽培提供理论基础。【方法】 通过感官评价、质构仪检测对温州蜜柑化渣性进行综合评价,并通过相关性分析及多元线性回归分析初步解析温州蜜柑果实化渣性的主要影响因素。【结果】 果实横径、纵径、单果质量与剪切力、木质素含量呈显著正相关;化渣度得分与可滴定酸(TA)含量、剪切力、穿刺力呈显著负相关,而剪切力与穿刺力呈显著正相关;木质素含量与果皮厚度和剪切力呈显著正相关,与固酸比(SAR)呈显著负相关;果胶含量与横径、TA、纤维素含量呈显著正相关。利用多元线性回归分析构建了包括可溶性固形物(TSS)含量、穿刺力、木质素含量和果胶含量4 个指标且具有统计学意义的感官综合评价的预测模型:Y(化渣度得分)=5.875+0.108×X(TSS)-0.007×X(穿刺力)-0.007×X(木质素含量)+0.044×X(果胶含量)。模型综合口感预测得分与综合口感实际得分基本一致。【结论】 基于回归分析建立的综合得分预测模型可实现温州蜜柑果实感官品质的综合评价,质构特征指标和理化成分指标作为客观方法可以较好地弥补感官分析的主观性缺陷,可应用于湖北省温州蜜柑的化渣性评价。

关键词:温州蜜柑;品质分析;化渣性;相关性分析;多元线性回归

柑橘是全球种植面积及总产量居第一位的果树作物,而中国是世界第一大柑橘种植国,全球140 多个国家与地区均有栽培[1]。中国作为柑橘的重要原产地之一,具有4000 多年的栽培历史。中国的柑橘产量和消费量均居世界第一。目前,柑橘产业覆盖中国19 个省(自治区、直辖市),在乡村振兴中发挥着重要作用。湖北省是柑橘生产大省,种植历史可以追溯到2000 多年前,柑橘产业是湖北省农业支柱产业之一[2]。2023 柑橘种植面积达24.31 万hm2,产量达570.9万t,位居中国第三,柑橘产量占湖北水果总产量的70%[3]。种植品种以温州蜜柑、脐橙为主,并适度发展了椪柑、杂柑、柚等品系,基本实现一年四季均有鲜果供应[4]

中国柑橘以鲜食为主,化渣性是影响柑橘果实品质的重要因子[5]。温州蜜柑是中国主栽的宽皮橘类之一,种植面积广,在湖北省已经形成了相当规模的长江沿线优质宽皮柑橘产业区[4]。近年来,随着温州蜜柑栽种年限的增加,以及栽培上使用化肥不当,保花保果处理不当,病虫害防治不及时,管理不完善等一系列原因,在长期的生产栽种过程中,逐渐表现出产量下降和品质变劣,产生了诸如不化渣或者化渣性差、果实变酸、甜度下降、籽粒增多等一些不利于商品流通的性状变化,失去了该品种原有的优良特性,降低了其经济价值[6-8]。因此,对温州蜜柑的果实化渣性进行研究已经是湖北省柑橘产业发展必须要解决的问题。

柑橘果实主要食用囊瓣,囊瓣包含汁胞和囊衣,果实的化渣性好坏主要与囊衣质地有关[9-10]。质构仪可对样品的物性概念做出数据化的表达,越来越频繁地应用到食品的物性研究及检测当中,丰富了食品质地品质评价的内容[11-12]。通过质构仪测定的囊瓣剪切力和囊衣厚度能够客观反映果实的化渣程度,利用这两个指标可对果实化渣性进行量化[13-14],从而减少人为的主观性判断误差。已有研究表明柑橘果实的化渣性与果实囊衣的纤维素、果胶和木质素含量有着非常密切的关系。化渣性好的果实入口即化,化渣性差的果实入口粗糙,嚼不烂[15-16]。Dong等[17]的研究表明,柑橘果实食用时粗硬多渣可能是柑橘果肉中原果胶及纤维素含量较高引起的。曾秀丽等[18]对脐橙膳食纤维含量变化的研究表明,纤维素和木质素含量低可使脐橙果实的脆性增加和化渣性变好。雷莹[19]的研究结果表明,化渣性较好的奉节72-1脐橙果实中原果胶、纤维素和半纤维素含量在成熟期均低于奉节晚橙,水溶性果胶含量则相反。Lei等[20-21]认为南丰蜜橘的化渣性与木质素含量有关,木质素含量越高,果实化渣性越差。红肉脐橙的化渣性与果实膳纤维含量密切相关,提高水溶性膳食纤维含量,果实化渣性变好,在留树贮藏期间,纤维素酶活性与纤维素、木质素的含量呈显著负相关[22]。魏张奎[23]研究发现夏橙的果实化渣性与纤维素、半纤维素、木质素的含量有关,这些物质含量高,导致果实化渣性变差。唐红英[15]和辜青青等[24]对南丰蜜橘囊衣细胞壁成分以及相关酶活性进行了测定,认为南丰蜜橘果实化渣性与囊衣纤维素、木质素的含量密切相关。

笔者在本研究中以56 份温州蜜柑材料为研究对象,通过品质分析、感官分析、质构特征和理化成分分析等方法综合评价果实品质,并对各项指标进行相关性分析,筛选出与化渣性相关的指标,建立基于理化成分和质构特征的感官综合评价预测模型,以期通过数据检测对温州蜜柑果肉的化渣性状进行准确评价和判定,量化感官品质指标,并寻找能够直接评价温州蜜柑化渣性的数据化指标,为完善温州蜜柑化渣性鉴定评价方法和后续优质温州蜜柑新品种的选育提供科学依据。

1 材料和方法

1.1 试验材料

选取湖北省内不同果园的特早熟温州蜜柑和早中熟温州蜜柑进行采样,样品共56 份,对应编号见表1。在适合的采收期采集完熟的果实,选择树体不同部位大小适中、无明显损伤的果实各45 个,采收当天运至实验室,用于生理生化指标的测定。

表1 样品编号明细
Table 1 Codes and details of samples

果园编号Orchard No.对应果园及品种Corresponding orchards and varieties果园编号Orchard No.对应果园及品种Corresponding orchards and varieties 1 2 3 4 5 6 7 8 9宜都市绿老大合作社日南1号Yidu city Green Boss Cooperative,Satsuma mandarin Rinan No.1宜都市绿老大合作社大分4号Yidu city Green Boss Cooperative,Satsuma mandarin Dafen No.4宜都市绿老大合作社肥之署Yidu city Green Boss Cooperative,Satsuma mandarin Hinoakibono夷陵区晓曦红公司日南1号Yiling District Xiaoxihong company, Satsuma mandarin Rinan No.1夷陵区晓曦红公司大分4号Yiling District Xiaoxihong company,Satsuma mandarin Dafen No.4武汉市南湖基地日南1号Wuhan Nanhu base,Satsuma mandarin Rinan No.1 22丹江口市大分4号Danjiangkou city,Satsuma mandarin Dafen No.4 23武汉市金水基地日南1号Wuhan Jinshuizha base,Satsuma mandarin Rinan No.1 24丹江口市日南1号Danjiangkou city,Satsuma mandarin Rinan No.1 25宜都市日南1号Yidu city,Satsuma mandarin Rinan No.1 26 27 28 29 30 10丹江口市蔡家渡果园场大分4号Danjiangkou city Caijiadu orchard,Satsuma mandarin Dafen No.4宜昌市长阳县由良Changyang county,Yichang city,Satsuma mandarin Yura武汉市南湖基地由良Wuhan Nanhu base,Satsuma mandarin Yura武汉市金水闸基地由良Wuhan Jinshuizha base,Satsuma mandarin Yura 31 11 32 12 33 13 34丹江口市蔡家渡果园场龟井Danjiangkou city Caijiadu orchard,Satsuma mandarin Ka‐mei十堰市十堰试验站兴津Shiyan Test Station,Shiyan city,Satsuma mandarin Okitus wase十堰市玉皇顶村兴津Yuhuangding village,Shiyan city,Satsuma mandarin Okitus wase丹江口市蔡家渡果园场尾张Danjiangkou city Caijiadu orchard,Satsuma mandarin十堰市十堰试验站尾张Shiyan Test Station,Shiyan city,Satsuma mandarin Owari丹江口市蔡家渡果园场兴津Danjiangkou city Caijiadu orchard,Satsuma mandarin Oki‐tus wase宜都市绿老大合作社宫川Yidu city Green Boss Cooperative,Satsuma Mandarin Miyagawa Wase枝江市宫川Zhijiang city,Satsuma Mandarin Miyagawa Wase武汉市金水闸基地由良Wuhan Jinshuizha base,Satsuma mandarin Yura 14 35 15 36 16 37武汉市南湖基地龟井2501 Wuhan Nanhu base,Satsuma mandarin Kamei 2501武汉市郑店街道国庆1号Zhengdian street, Wuhan city,Satsuma mandarin Guoqing No.1武汉市郑店街道尾张Zhengdian street,Wuhan city,Satsuma mandarin Owari 17 38 18 39 19 40 20 41 21咸宁市燕厦乡大分4号Yanxia township,Xianning city,Satsuma mandarin Dafen No.4咸宁市燕厦乡由良Yanxia township,Xianning city,Satsuma mandarin Yura咸宁市长滩乡由良Changtan township,Xianning city,Satsuma mandarin Yura武汉市南湖基地日南1号Wuhan Nanhu base,Satsuma mandarin Rinan No.1黄石市阳新县大分4号Yangxin county,Huangshi city,Satsuma mandarin Dafen No.4宜都市绿老大鄂柑2号Yidu city Green Boss Cooperative,Satsuma mandarin Egan No.2武汉市南湖基地由良Wuhan Nanhu base,Satsuma mandarin Yura宜都市大分4号Yidu city,Satsuma mandarin Dafen No.4十堰市高岭村龟井2501 Shiyan city Gaoling village, Satsuma mandarin Kamei 2501丹江口市由良Danjiangkou city,Satsuma mandarin Yura武汉市金水闸基地由良Wuhan Jinshuizha base,Satsuma mandarin Yura 42武汉市金水基地龟井Wuhan Jinshuizha base,Satsuma mandarin Kamei武汉市金水基地龟井2501 Wuhan Jinshuizha base,Satsuma mandarin Kamei 2501武汉市东西湖区国庆1号Dongxihu district, Wuhan city,Satsuma mandarin Guoqing No.1武汉市东西湖区尾张Dongxihu district,Wuhan city,Satsuma mandarin Owari十堰市十堰试验站龟井Shiyan Test Station,Shiyan city,Satsuma mandarin Kamei

表1 (续) Table 1 (Continued)

果园编号Orchard No.对应果园及品种Corresponding orchards and varieties果园编号Orchard No.对应果园及品种Corresponding orchards and varieties 43 50 44 51 45 52 46 53 47 54 48 55 49十堰市十堰试验站龟井2501 Shiyan Test Station,Shiyan city,Satsuma mandarin Kamei 2501枝江市国庆1号Zhijiang city,Satsuma mandarin Guoqing No.1宜昌市夷橘香合作社龟井Yichang city Yijuxiang cooperative,Satsuma mandarin Kamei宜都市白洪溪村鄂柑2号Baihongxi village,Yidu city,Satsuma mandarin Egan No.2宜昌市杨越合作社兴津Yichang Yangyue cooperative,Satsuma mandarin Okitus wase宜昌市星翔合作社龟井Yichang Xingxiang cooperative,Satsuma mandarin Kamei宜都市绿兴合作社鄂柑2号Yidu city Lüxing cooperative,Satsuma mandarin Egan No.2 56宜昌市津灏合作社国庆1号Yichang city Jinhao cooperative,Satsuma mandarin Guoq‐ing No.1宜昌市畅欣合作社龟井Yichang city Changxin cooperative,Satsuma mandarin Ka‐宜都市楚冠合作社鄂柑2号Yidu city Chuguan cooperative,Satsuma mandarin Egan No.2宜都市高坝洲镇鄂柑2号Gaobazhou town,Yidu city,Satsuma mandarin Egan No.2当阳市春新合作社国庆1号Dangyang city Chunxin cooperative,Satsuma mandarin Guoqing No.1当阳市紫盖寺林场国庆1号Zigai Temple forest farm, Dangyang city,Satsuma manda‐rin Guoqing No.1宜昌市长阳县兴津Changyang county,Yichang city,Satsuma mandarin Okitus wase

特早熟温州蜜柑品种:日南1 号(Citrus unshiu Marc.‘Rinan No. 1’)、大分4 号(C. unshiu Marc.‘Dafen No.4’)、由良(C.unshiu Marc.‘Yura’)、肥之署(C.unshiu Marc.‘Hinoakibono’)。

早中熟温州蜜柑品种:兴津(C. unshiu Marc.‘Okitus wase’)、尾张(C.unshiu Marc.‘Owari’)、龟井(C. unshiu Marc.‘Kamei’)、龟井2501(C. unshiu Marc.‘Kamei 2501’)、鄂柑2 号(C. unshiu Marc.‘Egan No. 2’)、国庆1 号(C. unshiu Marc.‘Guoqing No.1’)、宫川(C.unshiu Marc.‘Miyagawa Wase’)。

1.2 试验方法

样品制备:将样品果皮果肉分离,部分果肉用液氮冷冻后贮于-80 ℃用于纤维素含量和果胶含量的测定;剩余的果肉样品在120 ℃烘箱内干燥至恒重,磨碎后过60 目(0.25 mm)筛,将过筛后的样品置于自封袋内,放入干燥器中常温保存,留作木质素含量的测定。

1.2.1 测定指标 外在品质指标:横径、纵径、单果质量和果皮厚度。

内在品质指标:可溶性固形物(TSS)、可滴定酸(TA)和维生素C含量。

化渣性相关指标:化渣度得分、剪切力和穿刺力。

细胞壁代谢相关指标:木质素、纤维素和果胶含量。

1.2.2 指标测定方法(1)横径、纵径、单果质量、果皮厚度测定:果皮厚度、横径和纵径用游标卡尺测量,平行测定3 次,求平均值,以减小误差;单果质量用千分之一天平称质量,平行试验3 次,求平均值,以减小误差。

(2)可溶性固形物含量:用手持糖酸仪测定。在果实的不同方位取3~5 瓣,剥去果皮,将果肉研磨成果汁,用手持糖酸仪测定,每次测定前需调零,测定前润洗3次,测3次数值,求取平均值,以减小误差。

可滴定酸含量:用酸碱中和滴定法测定[25]。平行测定3次,求平均值,以减小误差。

维生素C 含量:用2,6-二氯靛酚滴定法测定[26],平行测定3次,求平均值,以减小误差。

(3)化渣度得分:利用赋值法和专家打分法[27]根据果肉的口感质地,将化渣程度量化为4 个级别。化渣程度量化为极化渣(>8~10 分)、化渣(>6~8分)、较化渣(>4~6分)、不化渣(0~4分)。

剪切力:使用单柱质构分析仪(TA.XT.plusC,Stable Micro Systems)测定[1],探头选择为HDP/BS,测前速度与测中速度为2 mm·s-1,测后速度为12 mm·s-1。目标模式为位移,位移即剪切深度为30 mm,出发模式为自动力,触发力为5.0 g。

穿刺力:使用单柱质构分析仪(TA.XT.plusC,Stable Micro Systems)测定,探头选择为P/2 的2 mm DIA CYLINDER STAINLESS,接触面积为3.14 mm2,测前速度与测中速度为2.00 mm·s-1,测后速度为12.00 mm·s-1。目标模式为位移,位移即穿刺深度为10 mm,触发模式为自动力,触发力为5.0 g。

(4)木质素含量测定:参照对应检测试剂盒说明书(索莱宝Solarbio 生物科技有限公司)进行试验,使用全波长酶标仪(K6600,北京奥凯)在280 nm 波长处检测吸光度值,通过标准曲线计算最终浓度。

纤维素含量和果胶含量的测定:参照对应检测试剂盒说明书(江苏酶标生物科技有限公司)进行试验,使用全波长酶标仪(K6600,北京奥凯)在450 nm波长处检测吸光度值,通过标准曲线计算最终浓度。

1.3 统计分析

显著性分析、相关性分析、多元线性回归分析利用SPSS 17.0 软件进行,相关性分析默认使用Pear‐son相关系数。

2 结果与分析

2.1 不同产区温州蜜柑果实品质分析

对特早熟温州蜜柑果实主要品质指标进行测定,由表2 可知,不同产区特早熟温州蜜柑的单果质量相差较大,为54.00~129.33 g,3号样品的单果质量最小。果皮厚度的范围为2.15~4.32 mm,23 号样品的果皮最厚,3 号样品果皮最薄。横径范围为5.03~7.03 cm,纵径范围为3.73~5.82 cm,其中,14 号样品横径最大,17 号样品纵径为最大,3 号样品横径和纵径均为最小。

表2 湖北特早熟温州蜜柑品质分析
Table 2 Quality analysis of extra early maturing Satsuma mandarins from Hubei province

注:同列不同字母表示差异显著(p<0.05)。下同。
Note:Different letters in the same column indicate significant difference(p<0.05).The same below.

年份Year果园编号Orchard No.单果质量Single fruit mass/g横径Transverse diameter/cm纵径Longitudinal diameter/cm w(维生素C)Vitamin C content/(mg·100 g-1)固酸比Solid-acid ratio,SAR 2021 1 2 3 4 5 6 7 8 9 2022 17.85±0.34 c 16.04±0.23 de 16.98±0.19 cd 16.59±0.58 cde 31.31±1.16 a 17.60±0.20 c 22.56±0.17 b 16.20±0.55 de 10.33±0.33 f 15.18±0.65 e 21.33±0.37 b 15.37±0.00 de 15.37±0.00 de 12.19±0.28 e 14.21±0.16 cd 15.52±0.29 bc 12.37±0.35 d 15.52±0.50 bc 13.95±0.32 cd 16.41±0.15 b 19.24±0.52 a 16.23±0.79 b 13.64±0.37 d 12.75±0.97 de 15.25±0.38 bc 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 84.33±0.03 cd 86.00±0.01 cd 54.00±0.01 g 136.33±0.02 a 58.67±0.01 f 77.33±0.01 de 73.33±0.04 de 67.07±0.01 ef 95.00±0.01 c 105.33±0.03 bc 125.33±0.03 a 117.33±0.03 ab 70.33±0.03 e 146.67±3.18 a 110.33±2.19 c 144.00±3.61 a 128.00±2.08 b 96.33±2.91 d 129.33±0.88 b 57.67±5.90 g 86.00±2.08 e 90.67±6.23 de 71.67±3.18 f 84.33±1.33 e 111.67±2.33 c果皮厚度Peel thickness/mm 2.70±0.28 d 2.90±1.80 cd 2.15±0.54 f 3.74±2.74 b 2.39±0.75 e 3.13±1.07 c 2.56±0.32 de 2.17±0.38 f 2.74±0.38 d 4.23±0.76 a 3.45±0.89 bc 2.93±2.75 c 2.27±0.22 e 2.23±0.05 e 3.42±0.05 c 3.28±0.09 c 2.86±0.14 d 3.99±0.01 b 3.99±0.11 b 3.35±0.04 c 4.10±0.06 ab 3.30±0.06 c 4.32±0.10 a 2.70±0.13 d 3.19±0.03 c 5.92±0.70 b 5.94±0.40 b 5.03±0.15 d 6.59±0.58 a 5.15±0.18 cd 5.47±0.35 c 5.65±1.13 bc 5.29±0.15 c 5.77±0.43 bc 6.20±0.60 b 6.48±0.52 a 6.53±0.79 a 5.16±0.93 cd 7.03±0.12 a 6.53±0.05 c 6.86±0.09 ab 6.62±0.04 bc 6.27±0.06 cd 6.75±0.05 ab 4.87±0.19 f 5.73±0.07 e 6.09±0.21 d 5.57±0.12 e 5.71±0.05 e 6.72±0.05 ab 4.36±0.46 b 4.55±0.29 b 3.73±0.20 e 5.42±0.86 a 3.97±0.43 d 4.57±0.29 b 4.02±0.70 d 4.34±0.26 c 5.02±0.46 b 5.27±0.69 ab 5.47±0.58 a 4.79±0.24 b 4.29±0.67 cd 5.58±0.07 ab 5.29±0.06 bc 5.74±0.08 ab 5.82±0.35 a 4.97±0.11 cd 5.45±0.03 ab 4.47±0.19 f 5.29±0.09 bc 4.78±0.12 d 5.10±0.16 bcd 5.39±0.07 bc 5.39±0.06 b w(可溶性固形物)Total soluble solid content,TSS/%9.40±0.06 e 8.77±0.03 f 12.30±0.06 ab 8.80±0.10 f 10.37±0.19 c 8.43±0.09 f 9.83±0.09 d 11.90±0.20 b 8.63±0.07 f 9.47±0.23 d 9.43±0.15 de 10.37±0.19 c 12.37±0.22 a 9.40±0.06 h 12.27±0.03 b 11.30±0.06 d 10.23±0.03 f 12.23±0.09 b 9.80±0.20 g 13.67±0.09 a 11.33±0.07 d 10.80±0.06 e 11.40±0.06 d 9.83±0.03 g 11.77±0.15 c w(可滴定酸)Titratable acid content,TA/%0.53±0.01 e 0.55±0.01 e 0.72±0.01 b 0.53±0.01 e 0.33±0.01 h 0.48±0.01 f 0.44±0.00 g 0.74±0.01 b 0.84±0.03 a 0.62±0.01 d 0.44±0.01 g 0.67±0.01 c 0.80±0.01 a 0.77±0.02 bcd 0.86±0.01 a 0.73±0.02 cd 0.83±0.02 ab 0.79±0.02 bc 0.70±0.01 d 0.83±0.01 ab 0.59±0.02 e 0.67±0.03 d 0.84±0.02 ab 0.78±0.06 bc 0.77±0.01 bcd 28.21±0.70 e 28.60±0.51 e 39.81±0.84 a 28.60±0.39 e 38.07±0.70 b 33.24±0.19 d 34.98±0.51 c 36.13±0.39 c 26.47±0.51 f 22.22±0.84 g 26.47±0.19 f 27.25±0.67 ef 32.08±0.19 d 19.71±0.88 b 22.74±2.27 bc 16.17±0.25 d 20.46±0.00 bc 19.45±1.77 cd 19.96±0.91 b 21.73±0.91 bc 15.92±0.44 cd 22.99±1.41 b 30.57±1.34 a 22.99±0.51 b 21.98±1.16 bc

内在品质差异明显,果实TSS 含量在8.63%~13.70%之间,平均值10.56%;果实TA含量在0.33%~0.84%之间,维生素C含量在15.92~39.81 mg·100 g-1之间,固酸比(SAR)在10.33~31.31之间,平均值16.40。2022年的TSS含量和TA 含量整体高于2021年。其中13、15和20号样品表现出高糖高酸的特性。

对早中熟温州蜜柑果实的主要品质指标进行测定,由表3可知,不同产区早中温州蜜柑的单果质量相差较大,为68.17~169.67 g,38 号样品的单果质量最小,43 号样品的单果质量最大。果皮厚度的范围为0.83~4.14 mm,48 号样品的果皮最厚,33 号样品果皮最薄。横径范围为5.56~8.10 cm,纵径范围为4.18~6.64 cm,其中,38 号样品横径和纵径均最小,42号样品横径和纵径均为最大。

表3 湖北早中熟温州蜜柑品质分析
Table 3 Quality analysis of early and medium maturing Satsuma mandarins from Hubei province

年份Year固酸比SAR 2021 2022果园编号Orchard No.26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56单果质量Single fruit mass/g 100.83±4.41 cd 107.67±3.49 bcd 112.17±1.88 bcd 129.50±2.36 b 117.50±7.40 bc 96.50±5.63 cd 128.67±4.92 b 111.67±4.32 bc 111.50±6.89 bc 94.83±3.70 d 129.50±4.92 b 124.52±3.78 b 68.17±4.05 e 92.17±4.19 d 107.33±8.85 bcd 122.33±27.72 bc 99.50±0.29 cd 169.67±5.78 a 99.00±1.15 e 120.67±3.93 bc 114.67±3.76 cd 133.67±4.37 a 122.00±1.00 bc 107.00±2.08 de 120.67±3.53 bc 80.67±2.40 f 128.33±2.33 ab 82.00±3.06 f 133.00±1.53 a 117.67±2.33 c 113.67±6.57 cd果皮厚度Peel thickness/mm 1.21±0.09 e 1.01±0.03 ef 1.13±0.05 ef 1.79±0.08 d 1.27±0.07 e 0.99±0.01 ef 1.11±0.06 ef 0.83±0.05 f 3.19±0.09 a 2.28±0.11 c 2.80±0.01 ab 2.83±0.07 ab 2.73±0.10 b 2.35±0.08 c 2.26±0.20 c 2.10±0.27 cd 2.97±0.08 ab 2.79±0.21 ab 3.37±0.03 c 3.53±0.06 bc 3.71±0.01 b 2.71±0.05 e 4.14±0.06 a 3.85±0.07 ab 3.94±0.09 a 2.78±0.23 de 2.89±0.05 de 3.11±0.02 cd 3.09±0.23 cd 3.23±0.10 cd 3.05±0.11 d横径Transverse diameter/cm 6.27±0.10 de 6.18±0.07 de 6.26±0.05 de 6.81±0.03 b 6.48±0.17 cd 5.96±0.12 e 6.82±0.06 b 6.46±0.24 cd 6.64±0.04 bc 6.18±0.20 de 6.80±0.01 b 6.64±0.09 bc 5.56±0.17 f 6.00±0.09 e 6.14±0.16 e 6.12±0.01 e 8.10±0.15 a 7.88±0.06 a 6.24±0.02 d 6.73±0.07 ab 6.52±0.04 bc 6.72±0.06 ab 6.59±0.01 bc 6.33±0.09 cd 6.61±0.09 b 5.76±0.06 e 6.67±0.08 ab 5.71±0.05 e 6.86±0.06 a 6.35±0.05 cd 6.39±0.15 cd纵径Longitudinal diameter/cm 4.57±0.07 f 4.90±0.05 ef 4.91±0.03 ef 5.27±0.05 cd 5.16±0.15 cd 4.84±0.09 ef 5.11±0.07 de 4.82±0.16 ef 5.35±0.02 cd 4.57±0.09 f 5.32±0.10 cd 5.42±0.07 c 4.18±0.05 g 4.79±0.08 ef 4.78±0.02 ef 5.38±0.38 cd 6.64±0.06 a 5.88±0.04 b 4.83±0.02 de 5.01±0.06 d 5.29±0.07 bc 5.61±0.12 a 5.45±0.03 ab 5.02±0.02 d 5.21±0.05 cd 4.69±0.04 e 5.31±0.04 bc 4.66±0.14 e 5.33±0.05 bc 5.53±0.07 a 5.21±0.07 cd w(可溶性固形物)TSS/%11.73±0.45 b 11.07±0.37 bc 10.40±0.06 de 10.17±0.30 de 9.77±0.32 ef 10.43±0.28 de 10.97±0.09 bc 12.80±0.20 a 10.60±0.17 cd 11.10±0.25 bc 9.30±0.21 fg 9.20±0.10 g 12.70±0.30 a 9.50±0.17 f 10.37±0.07 de 10.07±0.43 de 8.47±0.38 h 8.60±0.06 gh 11.87±0.20 d 13.17±0.45 bc 12.00±0.38 d 14.20±0.12 a 13.20±0.30 bc 12.57±0.18 cd 13.27±0.09 bc 13.63±0.27 ab 12.20±0.06 d 13.20±0.35 bc 11.73±0.33 d 14.20±0.40 a 14.30±0.44 a w(可滴定酸)TA/%0.51±0.03 cd 0.39±0.00 fg 0.42±0.01 ef 0.67±0.01 b 0.54±0.02 cd 0.46±0.00 de 0.30±0.01 g 0.65±0.07 bc 0.50±0.00 cde 0.73±0.02 b 0.65±0.06 bc 0.57±0.03 c 0.48±0.01 de 0.38±0.01 fg 0.95±0.06 a 0.90±0.07 a 0.35±0.01 fg 0.29±0.01 g 0.77±0.05 e 0.79±0.03 de 0.84±0.00 cd 0.94±0.02 bc 0.80±0.06 cd 1.09±0.10 a 1.07±0.07 ab 0.92±0.02 cd 0.87±0.05 cd 1.04±0.05 abc 0.75±0.01 e 1.05±0.04 ab 1.05±0.05 ab w(维生素C)Vitamin C content/(mg·100 g-1)26.11±0.73 cd 26.94±0.28 bc 26.11±0.73 cd 27.50±0.48 bc 26.67±1.27 bc 26.39±0.56 bc 17.50±2.10 f 25.28±2.37 cd 17.50±1.55 f 20.00±0.90 ef 31.79±1.02 a 26.97±0.87 bc 28.06±0.28 b 25.00±0.48 cd 28.02±1.35 b 23.33±0.48 de 24.44±1.00 cde 21.67±0.48 ef 18.95±2.32 b 21.98±1.16 b 21.47±0.51 b 20.72±2.02 b 27.28±2.32 ab 46.23±25.39 a 19.96±0.25 b 28.04±2.87 ab 24.51±1.54 b 25.26±0.51 ab 27.03±0.67 ab 24.51±1.97 b 20.97±1.54 b 22.94±0.52 ef 28.71±0.80 bc 24.76±0.67 de 15.19±0.18 i 18.12±0.51 gh 22.57±0.66 ef 36.18±1.28 a 20.46±2.74 fg 21.78±0.69 f 10.54±5.29 hij 14.34±0.10 i 16.09±0.38 hi 26.61±0.80 cd 25.01±1.20 de 11.03±0.66 k 11.38±0.97 k 24.24±1.57 def 30.08±0.66 b 15.56±0.20 ab 16.78±0.45 a 14.26±0.38 bc 15.16±0.12 ab 16.68±0.30 a 11.71±0.18 d 12.54±0.09 cd 14.82±0.27 ab 14.08±0.06 bc 12.77±0.35 cd 15.72±0.33 a 13.65±0.40 bcd 13.60±0.44 bcd

内在品质差异明显,果实TSS 含量在8.47%~14.30%之间,平均值为11.53;果实TA含量在0.30%~1.09%之间,维生素C 含量在17.5~46.23 mg·100 g-1,SAR 在10.33~31.31 之间,平均值18.30。对于早中熟柑橘品种来说,平均TSS 含量超过11.00%,SAR超过12,果实品质整体表现较优,风味酸甜,对于特早熟柑橘品种来说亦是如此。其中,2022 年的早中熟品种大部分表现出高糖高酸的特性,比如46 号、47 号、48 号、49 号、50 号、51 号、52 号、53 号、55 号和56号样品。

2.2 化渣性评价及相关生理指标检测

对特早熟温州蜜柑果实化渣性评价及相关指标进行测定,由表4 可知,特早熟温州蜜柑的化渣度得分为4.60~8.55,平均得分为6.38;穿刺力在97.09~302.50 g 之间,剪切力在896.43~2 683.33 g 之间,木质素含量在37.05~209.18 mg·g-1之间,纤维素含量在10.10~20.15 mg·g-1之间,果胶含量在7.54~24.79 mg·g-1之间,不同地区栽培化渣性差异较大。其中,13号样品的化渣度得分最高(8.55),同时剪切力最小;9 号样品的化渣度得分最低(4.6),穿刺力和剪切力均为最大,木质素含量也最高。

表4 湖北特早熟温州蜜柑化渣性评价及相关生理指标分析
Table 4 Evaluation of mastication and analysis of related physiological indexes of extra early maturing Satsuma mandarins from Hubei province

年份Year 2021果园编号Orchard No.1 2 3 4 5 6 7 8 9 2022 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25化渣度得分Mastication score 6.20±0.42 c 6.40±0.55 c 5.70±0.32 c 6.25±0.28 c 5.80±0.40 c 5.40±0.55 cd 6.40±0.38 bc 7.45±0.06 b 4.60±0.30 d 5.85±0.28 c 5.40±0.44 cd 6.10±0.47 c 8.55±0.34 a 5.36±0.49 c 5.89±1.08 bc 6.67±0.17 abc 7.50±0.76 ab 6.26±0.70 bc 7.15±0.27 abc 6.92±0.79 abc 6.13±1.00 bc 7.13±0.26 abc 5.81±1.03 bc 6.44±0.19 bc 8.24±0.23 a穿刺力Piercing force/g 167.97±21.31 d 186.81±11.60 cd 259.84±13.93 b 208.53±7.52 c 232.25±10.11 bc 213.60±11.25 cd 114.92±11.14 f 138.31±10.34 de 300.55±4.04 a 187.44±18.51 cd 302.50±9.94 a 256.35±4.76 b 137.84±6.32 de 229.65±11.67 b 177.41±3.14 c 123.95±2.01 de 99.52±9.68 e 254.06±28.20 ab 100.23±1.81 e 139.25±18.41 d 175.75±3.99 cd 153.78±11.65 cd 268.17±15.06 a 176.46±12.03 cd 97.09±8.03 e剪切力Shear force/g 1 836.99±42.75 cd 1 526.82±61.26 e 1 538.83±31.03 e 1 438.67±26.39 e 1 430.00±29.80 e 2 002.63±41.45 bc 1 451.30±61.42 e 932.06±50.79 f 2 311.14±55.68 a 1 871.09±86.47 c 2 201.70±35.03 a 2 032.24±53.48 b 896.43±37.44 f 2 423.65±187.14 ab 1 641.19±45.78 cd 1 090.04±47.42 e 1 077.81±131.4 e 1 892.95±79.99 c 1 311.99±105.76 de 1 592.61±99.32 cd 2 359.29±149.12 b 1 545.47±20.18 d 2 683.33±103.91 a 1 804.21±127.99 cd 1 199.54±87.31 e w(木质素)Lignin content/(mg·g-1)49.80±3.08 e 57.87±1.31 d 78.73±4.38 c 86.87±6.61 cd 37.05±2.60 f 79.08±4.87 c 78.16±9.99 c 62.61±11.33 d 209.18±19.84 a 94.56±3.80 c 152.11±2.86 b 119.86±13.83 bc 46.97±4.43 e 180.96±4.40 a 175.36±6.81 ab 121.21±5.70 de 107.15±11.05 e 115.36±7.10 e 126.53±5.95 d 109.43±5.92 e 158.07±4.16 bc 149.46±5.87 c 167.40±6.77 abc 123.22±4.25 de 105.53±4.60 e w(纤维素)Cellulose content/(mg·g-1)14.51±1.10 de 17.59±0.26 abc 16.65±0.96 cd 17.02±0.98 bc 15.78±1.72 c 12.88±0.34 e 14.10±1.47 de 17.02±0.63 bc 19.90±1.62 a 15.26±0.67 cde 14.87±1.20 de 19.47±1.50 ab 16.70±0.26 c 18.03±0.29 bc 16.40±0.85 d 10.10±0.91 f 13.82±0.22 e 11.38±0.41 f 16.92±0.48 cd 18.25±0.47 bc 19.06±0.19 ab 14.25±0.68 e 17.60±0.73 bcd 16.28±0.20 d 20.15±0.32 a w(果胶)Pectin content/(mg·g-1)13.27±1.73 ab 9.70±1.01 cd 8.04±1.65 d 12.35±0.95 bc 10.37±1.00 bc 8.59±0.49 d 8.23±0.95 cd 9.01±1.36 cd 11.98±0.60 bc 10.99±0.88 bc 11.36±2.05 bc 13.41±1.01 ab 16.16±1.24 a 12.97±2.18 d 13.46±0.54 cd 8.15±0.48 e 7.54±1.68 e 7.55±1.36 de 17.07±0.04 b 9.99±0.14 de 9.09±0.45 e 8.22±1.23 e 16.57±1.19 bc 14.16±1.00 bcd 24.79±1.47 a

由表5可知,早中熟温州蜜柑的化渣度得分为3.38~8.24,平均值为6.01,穿刺力在78.45~239.38 g之间,剪切力在848.58~3 926.24 g 之间,木质素含量为66.48~208.9 mg·g-1,纤维素含量在10.10~20.15 mg·g-1之间,果胶含量在7.54~24.79 mg·g-1之间,不同地区栽培化渣性差异较大。其中,55号样品的化渣度得分最高(8.24);29 号的化渣度得分最低(3.38),穿刺力和剪切力均为最大。

表5 湖北早中熟温州蜜柑化渣性评价及相关生理指标分析
Table 5 Evaluation of mastication and analysis of related physiological indexes of early and medium maturing Satsuma mandarin from Hubei province

年份Year 2021 2022果园编号Orchard No.26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56化渣度得分Mastication score 3.65±0.23 cd 4.70±0.92 bc 5.60±0.49 ab 3.38±0.30 d 4.18±0.63 bcd 5.55±0.80 ab 6.40±0.59 a 5.70±0.15 ab 6.40±0.55 a 5.05±0.83 ab 6.20±0.72 a 6.55±0.73 a 6.50±0.14 a 5.45±0.54 ab 5.90±0.36 ab 4.60±1.10 bc 5.15±0.15 bc 6.25±0.20 a 5.36±0.49 c 5.89±1.08 bc 6.67±0.17 abc 7.50±0.76 ab 6.26±0.70 bc 7.15±0.27 abc 6.92±0.79 abc 6.13±1.00 bc 7.13±0.26 abc 5.81±1.03 c 6.44±0.19 abc 8.24±0.23 a 7.96±0.33 ab穿刺力Piercing force/g 206.99±3.19 bc 200.63±5.25 c 184.14±9.26 de 225.13±5.68 a 231.75±3.37 a 205.90±5.65 bc 190.89±7.37 cde 197.89±4.19 cd 194.39±7.15 cde 187.92±2.68 d 196.09±4.83 cd 194.39±6.79 cde 120.74±2.92 g 195.75±8.30 cde 188.55±7.10 de 217.13±4.26 ab 196.24±3.91 cd 162.99±4.62 f 198.62±10.13 ab 149.26±1.93 cd 107.09±4.33 de 132.02±12.11 cd 186.37±22.77 bc 125.51±18.44 de 146.71±3.73 bcd 173.81±20.41 bc 233.39±30.41 a 176.18±14.28 bcd 239.38±21.89 a 136.78±14.56 de 78.45±5.33 e剪切力Shear force/g 3 283.46±64.34 b 1 546.38±65.76 fg 950.41±34.2 lm 3 926.24±68.91 a 3 397.62±77.71 b 1 779.91±38.06 e 1 151.00±29.54 jk 1 489.62±5.57 gh 1 277.43±75.48 ij 1 199.83±38.70 jk 1 649.38±39.07 ef 1 310.77±19.16 ij 1 066.69±37.56 kl 848.58±42.81 m 1 400.87±23.21 hi 3 035.88±54.97 c 2 455.82±20.89 d 1 334.25±14.57 i 3 110.75±105.93 a 1 841.64±75.27 cd 1 065.91±21.68 fg 1 416.96±124.45 de 2 057.70±112.31 b 1 730.62±217.85 cde 2 457.93±172.36 b 1 628.52±39.51 de 1 620.98±98.98 de 1 862.31±104.31 cd 2 350.97±140.56 b 1 397.74±39.97 ef 1 019.73±144.41 g w(木质素)Lignin content/(mg·g-1)144.83±2.62 a 98.20±4.60 fg 66.48±4.11 j 138.02±1.14 b 105.39±1.74 ef 90.31±3.21 gh 107.71±3.95 ef 76.47±7.80 hi 75.48±4.64 i 113.84±5.21 de 92.21±3.36 g 95.95±2.36 fg 115.47±8.65 de 148.78±4.02 a 96.65±0.81 fg 155.36±8.16 a 125.12±4.46 cd 127.92±3.22 bc 208.90±5.97 a 161.39±3.03 c 123.85±1.16 e 203.43±5.33 a 178.30±7.41 b 143.65±3.05 d 187.70±3.31 b 152.46±2.36 cd 143.98±5.40 d 115.89±4.62 e 182.98±3.31 b 103.84±1.96 e 89.87±1.91 f w(纤维素)Cellulose content/(mg·g-1)33.50±1.44 ab 25.51±2.36 c 31.45±1.49 ab 33.66±1.98 ab 28.39±1.07 bc 29.27±1.85 abc 33.76±1.26 a 22.96±0.40 cd 19.01±1.00 d 18.61±2.08 d 22.89±1.89 cd 28.95±2.58 ab 21.04±0.29 cd 24.09±1.82 cd 30.41±1.70 ab 29.99±2.46 ab 30.90±2.20 ab 28.55±2.85 ab 16.54±0.35 ab 13.58±0.75 cd 13.64±0.75 cd 14.38±0.56 bc 19.33±1.54 a 14.36±0.88 bc 12.31±0.07 cd 11.28±0.70 d 13.70±0.00 cd 12.45±0.38 cd 15.12±0.55 b 16.36±0.06 ab 15.00±0.21 b w(果胶)Pectin content/(mg·g-1)15.84±1.19 ab 16.73±0.19 ab 18.26±0.90 ab 7.11±4.55 ab 11.74±0.90 b 16.38±1.70 ab 20.90±0.78 ab 14.09±1.58 ab 15.69±0.97 ab 14.35±0.73 ab 17.78±1.82 ab 11.84±2.58 ab 12.01±1.06 b 11.39±0.71 b 14.26±2.61 ab 15.54±1.42 ab 14.02±3.43 ab 21.76±1.50 a 16.06±0.10 bc 12.68±2.33 cd 10.25±0.25 d 17.94±1.98 b 23.55±1.61 a 18.56±0.64 b 7.45±2.09 de 14.94±1.19 cd 9.79±0.27 d 5.55±0.46 e 16.47±1.81 bc 5.32±0.45 e 15.38±0.50 c

2.3 相关生理指标相关性分析

对特早熟温州蜜柑的所有指标进行相关性分析(表6)可知:横径、纵径、单果质量、果皮厚度之间均呈显著正相关,横径与单果质量相关性高达0.945,纵径与单果质量相关系数高达0.809,达到极显著水平,且与木质素含量呈显著正相关,同时横径、纵径、单果质量均与TSS 含量、维生素C 含量、SAR 呈显著负相关,说明对特早熟温州蜜柑来说,在一定范围内果实越大果皮越厚,其TSS、维生素C 含量和SAR 越低,同时木质素含量变高;化渣度得分与TA、TSS 和果胶含量呈显著正相关,但与剪切力、穿刺力、木质素含量均呈显著负相关,其中穿刺力与化渣度得分的相关系数为-0.529,而剪切力与穿刺力呈显著正相关,其相关系数为0.583,达到极显著水平,说明果实的TSS、TA和果胶含量越高,化渣度得分越高,化渣性就越好,而剪切力和穿刺力越大,即剪切和穿刺果肉囊衣所需要的力越大,木质素含量越高,化渣度得分越低,化渣性就越差;木质素含量与剪切力呈显著正相关,相关系数为0.484,达到极显著水平,在某种程度上可以说明木质素含量越高,则剪切果肉所用的力越大,导致果肉化渣度得分越低,即化渣度越差。

表6 湖北省特早熟温州蜜柑果实品质指标的相关性分析
Table 6 Correlation analysis of fruit quality indexes of extra early maturing Satsuma mandarins from Hubei province

注:*表示显著相关,**表示极显著相关。下同。
Note:* indicates significant correlation, ** indicates extremely significant correlation. The same below.

?

对早中熟温州蜜柑的所有指标进行相关性分析(表7)发现:横径、纵径、单果质量之间均呈显著正相关,横径与纵径相关系数高达0.835,横径、纵径与单果质量相关系数分别为0.648、0.634,达到极显著水平,均与TSS含量呈显著负相关,说明对早中熟温州蜜柑来说,在一定范围内果实越大果皮越厚,其TSS 含量越低;化渣度得分与TA、TSS 含量呈显著正相关,但与剪切力、穿刺力和纤维素含量均呈显著负相关,其中穿刺力、剪切力与化渣度得分的相关系数分别为-0.480、-0.504,而剪切力与穿刺力呈显著正相关,相关系数为0.446,达到极显著水平,说明果实的TSS、TA 含量越高,化渣度得分越高,化渣性就越好,而剪切力和穿刺力越大,纤维素含量越高,化渣度得分越低,化渣性就越差;木质素含量与剪切力呈显著正相关,相关系数为0.409,达到极显著水平,与特早熟温州蜜柑的结果基本一致;纤维素含量与穿刺力、剪切力呈显著正相关,与穿刺力的相关系数为0.419,达到极显著水平,与剪切力的相关系数为0.232,在0.05 水平上相关性显著,且与TSS、TA 含量和化渣度得分呈显著负相关,说明早中熟温州蜜柑的TSS 和TA 含量越高,化渣度得分就会越高,即化渣性越好,纤维素含量越高,剪切和穿刺果肉所用的力就越大,化渣度得分就会越低,即化渣性越差。

表7 湖北省早中熟温州蜜柑果实品质指标的相关性分析
Table 7 Correlation analysis of fruit quality indexes of early and medium maturing Satsuma mandarins from Hubei province

?

2.4 多元线性回归分析

对56个样品的13个指标进行相关性分析,发现与化渣性得分有显著相关性的品质指标有:TSS、TA含量,同时选取化渣性相关指标(穿刺力、剪切力)以及细胞壁代谢的指标(纤维素含量、木质素含量和果胶含量),将这些指标进行多元线性回归分析。

调整后R2=0.408,表明所有自变量解释化渣度得分的40.8%变异。F=8.277,p=0.000<0.001,说明至少有一个自变量可以解释因变量的变异,R2=56.708/105.749=0.464,与R2 结果同出一源,说明回归模型有统计学意义。方差膨胀因子VIF<10,容差均在0.1~1.0 之间,说明自变量多重共线性不严重,适合作多元线性回归分析(表8)。

表8 多元线性回归系数
Table 8 Multiple linear regression coefficients

模型Model标准系数Standard coefficient,Beta t Sig.共线性统计量Collinear statistics容差Allowance F非标准化系数Nonstandard coefficient,B 5.875 VIF调整R2 Adjusted R2常量Constant quantity可溶性固形物含量TSS content可滴定酸含量TA content穿刺力Piercing force剪切力Shear force木质素含量Lignin content纤维素含量Cellulose content果胶含量Pectin content 5.252 0.000 8.277 0.408 0.108 0.128 1.137 0.026 0.634 1.576 1.724 0.218 1.674 0.099 0.474 2.109-0.007-0.342-2.967 0.004 0.603 1.659 0.000-0.142-1.097 0.276 0.477 2.095-0.007-0.275-2.208 0.031 0.514 1.944 0.023 0.051 0.483 0.631 0.706 1.416 0.044 0.157 1.469 0.046 0.704 1.420

由多元线性回归系数表(表8)中看出:剪切力(B=0.00,Beta=-0.142,P=0.276)、TA(B=1.724,Be‐ta=0.218,P=0.099)、纤维素含量(B=0.023,Beta=0.051,P=0.631)不会对化渣度得分产生影响;穿刺力(B=-0.007,Beta=-0.324,P=0.004)、木质素含量(B=-0.007,Beta=-0.275,P=0.031)对化渣度得分有负向影响,TSS含量(B=0.108,Beta=0.128,P=0.026)、果胶含量(B=0.044,Beta=0.157,P=0.046)对化渣度得分有正向影响。

残差直方图满足正态分布,且均数为2.68×10-15,接近于0,标准偏差为0.979 接近于1,说明达到线性回归的正态性条件,回归标准残差P_P 图(图1)也说明满足正态性条件。将7 个品质及质构特征指标作为自变量进行回归分析,构建了包括TSS 含量、穿刺力、木质素含量和果胶含量4 个指标且具有统计学意义的感官综合评价的预测模型:Y(化渣度得分)=5.875+0.108×X(TSS 含量)-0.007×X(穿刺力)-0.007×X(木质素含量)+0.044×X(果胶含量)。模型综合口感预测得分与综合口感实际得分基本一致。因此,基于回归分析建立的综合得分预测模型可实现温州蜜柑果实感官品质的综合评价,质构特征指标和理化成分指标作为客观方法可以较好地弥补感官分析的主观性缺陷,可应用于湖北省温州蜜柑的品质评价。

图1 回归标准残差的标准P_P 图
Fig.1 Standard P_P plot of regression standard residuals

3 讨 论

柑橘化渣性差表现为果肉入口咀嚼时感觉粗糙,甚至有时嚼不烂无法吞咽。而这一性状作为衡量果实感官品质的一个重要因素影响消费者的口感,对消费者继续购买行为的发生具有重要影响。研究发现,TSS 含量的增加有利于提高温州蜜柑果实的化渣性。这一结论与王鲲娇等[28]报道的推荐施肥后温州蜜柑和南丰蜜橘果实中TSS 含量显著增加、有效提升了果实的化渣性的结果相符合。吴迪等[29]对南丰蜜橘进行转录组分析,也发现在化渣性比较好的南丰蜜广中糖和酸代谢相关基因的相对表达量显著增高,有机酸的积累较多。魏清江等[13]对不同结果习性南丰蜜橘果实的品质进行比较,发现不同结果习性的果实品质有差异,化渣性品质好的果实,其常规品质往往也较好。

温州蜜柑的化渣度得分与穿刺力和剪切力呈显著负相关,即剪切和穿刺果肉所用的力越小,果肉化渣度得分越高,温州蜜柑果实的化渣性就越好。Yan等[30]对南丰蜜橘质构特性研究发现,南丰蜜橘果实化渣性与囊衣硬度呈显著负相关(r2=-0.998*),南丰蜜广果实化渣性与囊衣硬度也呈显著负相关(r2=-0.997*),南丰蜜橘果实化渣性与囊衣质地密切相关,囊衣硬度越低,果实化渣性越好。汪妙秋[31]和魏清江等[13]的研究结果表明南丰蜜橘果实化渣性与剪切力、硬度、咀嚼度均呈极显著正相关。表现为剪切力、硬度和咀嚼度越低,化渣性越好。柑橘果实囊衣化渣性与囊衣厚度关系较大,囊衣厚度增加是细胞数目和细胞壁果胶类物质增多的共同结果;果胶与囊衣发育程度、细胞壁厚度形成密切相关,可能是反映柑橘果实化渣性的潜在生化标志物[10]

前期的研究表明柑橘果实的化渣性与囊衣中果胶含量的积累相关[10]。柑橘果肉中纤维素及原果胶含量增加是果实化渣性能下降的原因,从而导致果渣变得粗糙和残渣增多[17]。曾秀丽等[18]研究发现纤维素和木质素含量低可使脐橙果实的脆性增加,同时使化渣性变好。清见比不知火化渣性差是因其具有更高的果胶和木质素含量[32]。化渣性差的南丰蜜橘囊衣细胞壁中的原果胶、水溶性果胶、纤维素、半纤维素和木质素含量在果实发育的各个阶段均显著高于化渣性好的南丰蜜广[30]。笔者在本研究中发现,温州蜜柑的化渣度得分与木质素含量、纤维素含量呈显著负相关,与果胶含量呈正相关。

笔者在本研究中通过感官评价、质构仪对温州蜜柑化渣性进行综合评价,并通过相关性分析及多元线性回归分析初步解析了温州蜜柑果实化渣性的主要影响因素。基于回归分析建立的综合得分预测模型可实现温州蜜柑果实感官品质的综合评价,质构特征指标和理化成分指标作为客观方法可以较好地弥补感官分析的主观性缺陷,可应用于湖北省温州蜜柑的化渣性评价。

4 结 论

评价柑橘果实化渣性的方法大致有两种:感官品尝评价的方法、质构仪测试法。笔者在本研究中将两种评价方法进行结合,以化渣度得分为因变量,将7 个品质及质构特征指标作为自变量进行回归分析,构建了包括TSS 含量、穿刺力、木质素含量和果胶含量4 个指标且具有统计学意义的感官综合评价的预测模型:Y(化渣度得分)=5.875+0.108×X(TSS 含量)-0.007×X(穿刺力)-0.007×X(木质素含量)+0.044×X(果胶含量)。根据感官品质分析、质构特征和细胞壁成分指标建立温州蜜柑果实客观、科学的化渣性评价方法具有可行性,可为优良品质资源筛选、创新以及品种选育提供数据化判断依据。

参考文献References:

[1] WU G A,PROCHNIK S,JENKINS J,SALSE J,HELLSTEN U,MURAT F,PERRIER X,RUIZ M,SCALABRIN S,TEROL J,TAKITA M A,LABADIE K,POULAIN J,COULOUX A,JABBARI K,CATTONARO F,DEL FABBRO C,PINOSIO S,ZUCCOLO A,CHAPMAN J,GRIMWOOD J,TADEO F R,ESTORNELL L H,MUÑOZ-SANZ J V,IBANEZ V,HERRE‐RO-ORTEGA A,ALEZA P,PÉREZ-PÉREZ J,RAMÓN D,BRUNEL D,LURO F,CHEN C X,FARMERIE W G,DESA‐NY B,KODIRA C,MOHIUDDIN M,HARKINS T,FREDRIK‐SON K,BURNS P,LOMSADZE A,BORODOVSKY M,RE‐FORGIATO G,FREITAS-ASTÚA J,QUETIER F,NAVARRO L,ROOSE M,WINCKER P,SCHMUTZ J,MORGANTE M,MACHADO M A,TALON M,JAILLON O,OLLITRAULT P,GMITTER F,ROKHSAR D. Sequencing of diverse mandarin,pummelo and orange genomes reveals complex history of ad‐mixture during citrus domestication[J]. Nature Biotechnology,2014,32(7):656-662.

[2] 乔进超,李旭玮,施蕊.中国柑橘三大产区产业探究:以广西、湖南、湖北为例[J].云南科技管理,2021,34(1):45-49.QIAO Jinchao,LI Xuwei,SHI Rui. Research on the three major citrus producing areas in China:Taking Guangxi,Hunan and Hu‐bei as examples[J]. Yunnan Science and Technology Manage‐ment,2021,34(1):45-49.

[3] 刘澍森.湖北日报报道:我省柑橘产量位居全国第三:2023 年达570.9 万吨[N/OL].湖北日报,2024-04-19. http://nyt.hubei.gov.cn/bmdt/yw/mtksn/202404/t20240418_5162357.shtml.LIU Shusen. Hubei Daily:The output of citrus in our province ranks third in China,reaching 5.709 million tons in 2023[N/OL].Hubei Daily,2024-04-19. http://nyt.hubei.gov.cn/bmdt/yw/mtk‐sn/202404/t20240418_5162357.shtml.

[4] 陆平波,廖胜才,熊仁财,金天云,赵昆松.湖北省柑橘产业高效节水灌溉现状及发展对策[J].中国农技推广,2022,38(12):58-60.LU Pingbo,LIAO Shengcai,XIONG Rencai,JIN Tianyun,ZHAO Kunsong. Current situation and development counter‐measures of high-efficiency water-saving irrigation for citrus in‐dustry in Hubei Province[J]. China Agricultural Technology Ex‐tension,2022,38(12):58-60.

[5] 张丽芳.南丰蜜橘果胶代谢与化渣性关系研究[D].南昌:江西农业大学,2014.ZHANG Lifang. Correlation analysis on pectic metabolism and mastication of Nanfeng tangerine fruit[D]. Nanchang:Jiangxi Agricultural University,2014.

[6] 鲍江峰,夏仁学,彭抒昂,陈传友,朱洪敏.湖北省柑橘产业的现状与发展对策[J].中国农学通报,2005,21(1):208-212.BAO Jiangfeng,XIA Renxue,PENG Shu’ang,CHEN Chuanyou,ZHU Hongmin.Study on the present situation and develop‐ment strategy of citrus industry of Hubei Province[J]. Chinese Agricultural Science Bulletin,2005,21(1):208-212.

[7] 祁春节,邓秀新. 当前我国柑桔产业发展面临的重大问题和对策措施[J].中国果业信息,2016,33(12):9-11.QI Chunjie,DENG Xiuxin. Major problems and countermea‐sures in the development of citrus industry in China[J]. China Fruit News,2016,33(12):9-11.

[8] 伊华林,刘慧宇.我国柑橘品种分布特点及适地适栽品种选择探讨[J].中国果树,2022(1):1-7.YI Hualin,LIU Huiyu. Distribution characteristics of citrus vari‐eties and selection of varieties suitable for planting in China[J].China Fruits,2022(1):1-7.

[9] 李菲菲,廉雪菲,尹韬,常媛媛,金燕,马小川,陈岳文,叶丽,李云松,卢晓鹏.柑橘果实囊衣发育与化渣性的形成[J].中国农业科学,2023,56(2):333-344.LI Feifei,LIAN Xuefei,YIN Tao,CHANG Yuanyuan,JIN Yan,MA Xiaochuan,CHEN Yuewen,YE Li,LI Yunsong,LU Xiao‐peng. The relationship between mastication and development of segment membranes in citrus fruits[J]. Scientia Agricultura Sini‐ca,2023,56(2):333-344.

[10] LIAN X F,LI F F,CHANG Y Y,ZHOU T,CHEN Y W,YIN T,LI Y S,YE L,JIN Y,LU X P. Physiological and ultrastructural alterations linked to intrinsic mastication inferiority of segment membranes in Satsuma mandarin (Citrus unshiu Marc.) fruits[J].Plants,2021,11(1):39.

[11] 王彬彬,李娜,贾漫丽,陈秀灵,范伟,夏爱华,高玉军,李季生.质构仪检测桑葚质地品质的方法研究[J].果树学报,2021,38(11):2014-2020.WANG Binbin,LI Na,JIA Manli,CHEN Xiuling,FAN Wei,XIA Aihua,GAO Yujun,LI Jisheng. Measuring texture quality of mulberry fruit using a texture analyser[J].Journal of Fruit Sci‐ence,2021,38(11):2014-2020.

[12] 罗斌,赵有斌,尹学清,赵东林,杜志龙,何江涛.质构仪在果蔬品质评定中应用的研究进展[J]. 食品研究与开发,2019,40(5):209-213.LUO Bin,ZHAO Youbin,YIN Xueqing,ZHAO Donglin,DU Zhilong,HE Jiangtao. Application progress of texture analyzer in the research of fruit and vegetable quality evaluation[J]. Food Research and Development,2019,40(5):209-213.

[13] 魏清江,汪妙秋,曾知富,杨成泉,彭抒昂,刘永忠.南丰蜜橘化渣性评价及不同结果习性果实的品质比较[J].中国农业科学,2014,47(6):1162-1170.WEI Qingjiang,WANG Miaoqiu,ZENG Zhifu,YANG Chengquan,PENG Shu’ang,LIU Yongzhong. Evaluation of the mastication and comparison of fruit quality with different bear‐ing habits in Nanfeng Tangerine(Citrus reticulata Blanco cv.Ki‐nokuni)[J].Scientia Agricultura Sinica,2014,47(6):1162-1170.

[14] 崔永宁,陈洁珍,史发超,姜永华,严倩,欧良喜,刘海伦,蔡长河.基于TPA 法的荔枝资源果肉质地品质分析[J].果树学报,2022,39(12):2241-2252.CUI Yongning,CHEN Jiezhen,SHI Fachao,JIANG Yonghua,YAN Qian,OU Liangxi,LIU Hailun,CAI Changhe.Analysis of texture quality of the fruits in litchi based on the texture profile analysis (TPA)[J]. Journal of Fruit Science,2022,39(12):2241-2252.

[15] 唐红英.南丰蜜橘纤维素、半纤维素代谢与化渣性关系研究[D].南昌:江西农业大学,2015.TANG Hongying. Study on the relationship between cellulose,hemicellulose metabolism and mastication of Nanfeng tanger‐ine[D].Nanchang:Jiangxi Agricultural University,2015.

[16] 古湘.南丰蜜橘木质素代谢与化渣的关系研究[D].南昌:江西农业大学,2016.GU Xiang. Study on the relationship between lignin metabolism and mastication of Nanfeng tangerine[D]. Nanchang:Jiangxi Agricultural University,2016.

[17] DONG T,XIA R X,XIAO Z Y,WANG P,SONG W H. Effect of pre-harvest application of calcium and boron on dietary fibre,hydrolases and ultrastructure in‘Cara Cara’navel orange (Cit‐rus sinensis L. Osbeck) fruit[J]. Scientia Horticulturae,2009,121(3):272-277.

[18] 曾秀丽,张光伦,李春燕,汪志辉,罗楠,胡强.脐橙果实膳食纤维的动态变化研究[J].四川农业大学学报,2006,24(1):69-72.ZENG Xiuli,ZHANG Guanglun,LI Chunyan,WANG Zhihui,LUO Nan,HU Qiang.The studying on the dietary fiber of navel orange [Citrus sinesis (L.) Osb.] fruit[J]. Journal of Sichuan Ag‐ricultural University,2006,24(1):69-72.

[19] 雷莹.柑橘果实化渣性研究[D].武汉:华中农业大学,2010.LEI Ying. Mastication of Citrus fruit[D].Wuhan:Huazhong Ag‐ricultural University,2010.

[20] LEI Y,LIU Y Z,GU Q Q,YANG X Y,DENG X X,CHEN J Y.Comparison of cell wall metabolism in the pulp of three culti‐vars of‘Nanfeng’tangerine differing in mastication trait[J].Journal of the Science of Food and Agriculture,2012,92(3):496-502.

[21] LEI Y,LIU Y Z,ZENG W F,DENG X X. Physicochemical and molecular analysis of cell wall metabolism between two navel oranges (Citrus sinensis) with different mastication traits[J].Journal of the Science of Food and Agriculture,2010,90(9):1479-1484.

[22] 董涛.甜橙果实膳食纤维代谢机理研究[D].武汉:华中农业大学,2009.DONG Tao. Metabolism mechanism of dietary fibre of sweet orang (Citrus sinensis Osbeck)[D]. Wuhan:Huazhong Agricul‐tural University,2009.

[23] 魏张奎.基于质构特性的夏橙化渣性研究[D].武汉:华中农业大学,2013.WEI Zhangkui. Research on mastication of late orange base on textural properties[D]. Wuhan:Huazhong Agricultural Universi‐ty,2013.

[24] 辜青青,唐红英,魏清江,古湘,冯芳芳,罗正荣.南丰蜜橘果实纤维素代谢与化渣的关系研究[J]. 园艺学报,2016,43(5):867-875.GU Qingqing,TANG Hongying,WEI Qingjiang,GU Xiang,FENG Fangfang,LUO Zhengrong.Studies on the relationship be‐tween cellulose metabolism and fruit mastication trait of Nanfeng tangerine[J].Acta Horticulturae Sinica,2016,43(5):867-875.

[25] 孙权,何政辰,叶俊丽,魏冉冉,尹映紫,柴利军,谢宗周,徐强,徐娟,郭文武,程运江,邓秀新.与呼吸跃变型果实共贮藏改善柑橘果实色泽和品质[J].园艺学报,2024,51(3):601-615.SUN Quan,HE Zhengchen,YE Junli,WEI Ranran,YIN Yingzi,CHAI Lijun,XIE Zongzhou,XU Qiang,XU Juan,GUO Wen‐wu,CHENG Yunjiang,DENG Xiuxin. Storage with climacteric fruits improves color and quality of citrus fruit[J].Acta Horticul‐turae Sinica,2024,51(3):601-615.

[26] 薛源,吴剑南.猕猴桃果肉维生素C 含量测定方法比较[J].种业导刊,2024(2):47-48.XUE Yuan,WU Jiannan. Comparison of methods for determina‐tion of vitamin C content in kiwi fruit pulp[J]. Journal of Seed Industry Guide,2024(2):47-48.

[27] 金志农,李端妹,金莹,熊妮.地方科研机构绩效考核指标及其权重计算:基于专家分析法和层次分析法的对比研究[J].科技管理研究,2009,29(12):103-106.JIN Zhinong,LI Duanmei,JIN Ying,XIONG Ni. Performance appraisal index and weight calculation of local scientific re‐search institutions:A comparative study based on expert analy‐sis and analytic hierarchy process[J]. Science and Technology Management Research,2009,29(12):103-106.

[28] 王鲲娇,韩旭,张志成,朱宗瑛,谭启玲,胡承孝. 推荐施肥对‘温州蜜柑’和‘南丰蜜橘’品质与化渣性的影响[J].果树学报,2018,35(10):1190-1196.WANG Kunjiao,HAN Xu,ZHANG Zhicheng,ZHU Zongying,TAN Qiling,HU Chengxiao. Effects of recommended fertiliza‐tion on fruit quality and pulp texture in mandarin orange‘Satsu‐ma mandarin’and‘Nanfeng tangerine’[J]. Journal of Fruit Sci‐ence,2018,35(10):1190-1196.

[29] 吴迪,田志娇,周秋蓉,陈秋佑,高志键,葛聪,李江波,李延,王平.纤维素和果胶代谢相关基因调控南丰蜜橘化渣性[J/OL].分子植物育种,2023:1-12. (2023-03-22). https://kns.cnki.net/kcms/detail/46.1068.s.20230321.0955.002.html.WU Di,TIAN Zhijiao,ZHOU Qiurong,CHEN Qiuyou,GAO Zhijian,GE Cong,LI Jiangbo,LI Yan,WANG Ping. Cellulose and pectin metabolism-related genes regulate the masticaton of Citrus reticulita Blanco cv. Nanfeng tangerine[J/OL]. Molecular Plant Breeding,2023:1-12. (2023-03-22). https://kns.cnki.net/kcms/detail/46.1068.s.20230321.0955.002.html.

[30] YAN Min,LUO Lijuan,HAN Zhongxing,YUAN Ye,LI Jiang‐bo,DU Wei,LIU Yongzhong. Comparative study on fruit tex‐ture,cell wall structural componentsand nutrient content be‐tween‘Nanfengmiju’and‘Nanfengmiguang’[J]. Hans Journal of Agricultural Sciences,2019,9(8):689-696.

[31] 汪妙秋.南丰蜜橘生长与结实方式对果实品质的影响[D].武汉:华中农业大学,2013.WANG Miaoqiu.Impact of tree growth and fruit bearing on fruit qualities of nanfengmiju[D]. Wuhan:Huazhong Agricultural University,2013.

[32] WANG X,LIN L J,TANG Y,XIA H,ZHANG X C,YUE M L,QIU X,XU K,WANG Z H. Transcriptomic insights into citrus segment membrane’s cell wall components relating to fruit sen‐sory texture[J].BMC Genomics,2018,19(1):280.

Analysis and evaluation of fruit mastication of mandarins in Hubei Prov‐ince

WANG Ce1, HUANG Rui2, SHI Zhipeng2, JIANG Yingchun1, HE Ligang1, WANG Zhijing1, ZHANG Yu1,SONG Xin1,WU Liming1*,SONG Fang1*
(1Institute of Fruit and Tea, Hubei Academy of Agricultural Science/Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees,Wuhan 430064,Hubei,China;2Zhijiang Agricultural Technology Extension Center,Zhijiang 443200,Hubei,China)

Abstract: 【Objective】Mastication quality is one of the important qualities of citrus fruits,which signif‐icantly affects the consumer’s taste experience. However, previous researches of citrus fruit qualities mainly focus on the sugar and acid. The researches of citrus fruit mastication are still very limited.Thus,the objective of this study is to explore the differences in mastication quality among mandarins in Hubei Province and its main influencing factors.【Methods】Samples of early-maturing and mid-early maturing mandarins were selected from different orchards in Hubei Province.Fully ripe fruits were col‐lected at the appropriate harvest time, and 45 healthy fruit of medium size from different parts of the tree were selected for the experiment.The fruit samples were transported to the laboratory on the day of harvest for the determination of physiological and biochemical indicators. The samples were separated into peel and pulp,with a portion of the pulp frozen in liquid nitrogen and stored at-80 ℃for the deter‐mination of cellulose and pectin.The remaining pulp samples were dried in an oven at 120 ℃to a con‐stant weight, ground, and then sieved through a 60-mesh screen. The sieved samples were placed in sealed bags and stored at room temperature in a desiccator for later determination of lignin content.A comprehensive evaluation of the mastication quality of mandarins was conducted through sensory as‐sessment and texture analysis instruments. Furthermore, the main factors influencing the mastication quality of mandarin fruits were preliminarily analyzed through correlation analysis, multiple linear re‐gression analysis, and principal component analysis.【Results】The individual fruit weight of early-ma‐turing mandarins from different production areas varied significantly, ranging from 54.00 to 129.33 g,with peel thickness ranging from 2.15 to 4.32 mm.The transverse diameter ranged from 5.03 to 7.03 cm,and the longitudinal diameter from 3.73 to 5.82 cm. The internal quality differences were pronounced,with soluble solids content ranging between 8.63% and 13.7%, averaging 10.56%; titratable acidity be‐tween 0.33%and 0.84%;vitamin C content between 15.92%and 39.81 mg·100 g-1,and the sugar to ac‐id ratio between 10.33 and 31.31,with an average value of 16.40.The individual fruit mass of mid-ear‐ly maturing mandarins from different production areas ranged from 68.17 to 169.67 g, with peel thick‐ness ranging from 0.83 to 4.14 mm.The transverse diameter ranged from 5.56 to 8.1 cm,and the longi‐tudinal diameter from 4.18 to 6.64 cm.The content of soluble solids in the fruits of mid-early maturing mandarins ranged from 8.47% to 14.3%, with an average of 11.53%; titratable acidity ranged from 0.3%to 1.09%,vitamin C content from 17.5 to 46.23 mg·100 g-1,and the sugar to acid ratio from 10.33 to 31.31, with an average value of 18.30.There were significant differences in the quality of mandarins from different production areas in Hubei, with the mid-early maturing mandarins generally exhibiting better quality than the early-maturing mandarins. The mid-early maturing varieties in 2022 exhibited characteristics of high sugar and high acidity. The mastication score of early-maturing mandarins ranged from 4.6 to 8.55, with an average score of 6.38. Puncture force ranged from 97.09 to 302.5 g;shear force from 896.43 to 2 683.33 g; lignin content from 37.05 to 209.18 mg·g-1; cellulose content from 10.1 to 20.15 mg·g-1; and pectin content from 7.54 to 24.79 mg·g-1. Specifically, sample No. 9 had the lowest mastication score at 4.6 but the highest puncture and shear forces, as well as the highest lignin content. The mastication score of mid-early maturing mandarins ranged from 3.38 to 8.24, with an average of 6.01.Puncture force ranged between 78.45 and 239.38 g;shear force between 848.58 and 3 926.24 g;lignin content from 66.48 to 208.9 mg·g-1;cellulose content from 10.1 to 20.15 mg·g-1;and pectin content from 7.54 to 24.79 mg·g-1. Specifically, sample No. 55 had the highest in mastication score at 8.24; sample No. 29 had the lowest score at 3.38, but the highest puncture and shear forces.Correlation analysis indicated that the transverse diameter, longitudinal diameter, and individual fruit weight were significantly positively correlated with each other and negatively correlated with total solu‐ble solids and vitamin C content,but positively correlated with shear force and lignin content.The mas‐tication score was significantly negatively correlated with titratable acidity, shear force, and puncture force, while shear force was significantly positively correlated with puncture force. Lignin content was significantly positively correlated with peel thickness and shear force, and negatively correlated with sugar to acid ratio. Pectin content showed a significant positive correlation with transverse diameter, ti‐tratable acidity,and cellulose content.A predictive model for the sensory comprehensive evaluation was constructed using multiple linear regression analysis with variables including total soluble solids, punc‐ture force,lignin content,and pectin content.The regressed function was Y(mastication score)=5.875+0.108X (TSS content)-0.007X (puncture force)-0.007X (lignin content) + 0.044X (pectin content).The comprehensive taste prediction score based on this model was essentially consistent with the actual comprehensive taste score.【Conclusion】The comprehensive score prediction model established based on regression analysis facilitates the comprehensive evaluation of the sensory quality of mandarin fruits. The indices of texture characteristics and physicochemical components, serving as objective methods,can effectively compensate for the subjective shortcomings in sensory analysis and can be ap‐plied to the quality evaluation of mandarins in Hubei Province.

Key words: Mandarin; Quality analysis; Mastication; Correlation analysis; Multiple linear regression analysis

中图分类号:S666.1

文献标志码:A

文章编号:1009-9980(2024)08-1577-15

DOI:10.13925/j.cnki.gsxb.20240147

收稿日期:2024-03-27 接受日期: 2024-05-21

基金项目:国家重点研发计划项目(2023YFD2300605);湖北省重点研发计划(2021BBA237);湖北省重点研发计划(2022BBA0029);湖北省农业科学院青年拔尖人才项目

作者简介:王策,女,助理研究员,硕士,研究方向为柑橘栽培。E-mail:wangce@hbaas.com

*通信作者 Author for correspondence.E-mail:songfang@hbaas.com;E-mail:wuliming2005@126.com