枣(Ziziphus jujuba Mill.)是中国特色优势果树和栽培历史最为悠久的“五果”之一[1-3],现已遍及世界五大洲的近50 个国家和地区,并在韩国、伊朗等国家形成规模化商品栽培,但枣的栽培和消费主要在中国[4-6]。当前枣产业正经历着由传统农业向现代农业转型发展的关键时期,传统的栽培方式面临效益不高、资源利用不均衡等问题,而现代农业注重科技创新、优质品种的引入和高效管理模式的应用[7]。为迎合市场需求、提高农业整体效益,轻简高效栽培模式逐渐演变成当前枣产业发展的趋势[7]。
通过优良品种轻简高效栽培实现提质增效,是现代枣业发展的客观需求[8]。在轻简高效栽培模式下,水肥管理显得尤为关键。水肥合理搭配,可以更好地满足枣树在不同生长阶段的水肥需求,提高资源利用效率,降低生产成本,进而实现高效、经济的农业生产[9]。应用水肥一体化技术对盐碱地冬枣灌溉施肥,可提高水分利用率40%~60%,植株对肥料的利用率提高30%~50%[10]。通过水肥耦合可高效供应水肥,促进南疆枣实现提质增效目标[11-13]。虽然水肥一体化技术在西北地区得到广泛应用,但太行山区的研究相对较少,尚未形成统一的标准。冬枣(Z.jujuba Mill.‘Dongzao’)是极晚熟鲜食品种[14],也是枣产业当今第一大鲜食品种;月光(Z. jujuba Mill.‘Yueguang’)是早熟鲜食品种,两者在广大消费者中享有极高的声誉和欢迎度。为促进月光和冬枣在太行传统枣栽培区引种栽培,急需与之高效栽培配套的水肥一体化技术。笔者以月光和冬枣为试材,比较不同水肥配置对月光和冬枣枝叶生长和果实品质的影响,从而为太行山区月光和冬枣高效栽培所需的适宜水肥一体化技术提供参考。
以河北省保定市阜平县河北农业大学-阜平枣业综合试验站5年生、株行距2 m×4 m、长势一致、生长状况良好、管理一致的早熟品种月光与极晚熟品种冬枣为材料。该地于保定西部,太行山中北部,地理位置为东经114°17′10″,北纬38°44′05″,为大陆性季风气候,暖温带半湿润地区,季节变化明显,夏季相对较短而温暖,冬季漫长而寒冷。降水主要分布在夏季和早秋,冬季较为干燥。2021 年年降水量为812.3 mm,无霜期170 d,土壤冻融79 d,20 cm,地方小气候特征明显。土壤全氮、全磷、全钾、交换性钙、交换性镁含量(w,后同)分别为0.271、0.372、8.554、1.274、0.120 g·kg-1。
在春季土壤解冻后对月光和冬枣施肥试验样地施入一次有机农家肥做基肥,然后采用单因素随机区组设计,水肥条件设置4个处理水平,高水肥处理W1(每666.7 m2年滴灌水14 t,水溶肥A 25 kg,水溶肥B 40 kg)、中水肥处理W2(每666.7 m2年滴灌水12 t,水溶肥A 20 kg,水溶肥B 25 kg)、低水肥处理W3(每666.7 m2年滴灌水10 t,水溶肥A 15 kg,水溶肥B 15 kg)与对照(CK,不施水肥),每个处理9株,3次重复。分5 次以滴灌的方式灌入,施入时期分别为5 月上旬、6 月上旬、6 月下旬、7 月下旬与8 月中旬。其中A 为矿源黄腐质酸钾水溶肥(黄腐酸含量含量≥55%、氧化钾含量≥12%);B 为平衡性大量元素水溶肥[20-20-20+TE,(N+P2O5+K2O)含量≥60%、(B+Zn)含量在0.2%~3.0%]。
1.3.1 枝叶花性状测定 在7 月中旬,调查月光所选植株新生枣头枝的个数、长度、粗度;对于冬枣需要定时调查枣头个数,然后将其去掉,统计枣头总数。用卷尺测量枣头节间长度、枣头二次枝长度;枣吊停止生长后,测量枣吊长度、调查枣吊叶片数。盛花期,每棵样本树按照东西南北四个方位,调查各类型枣吊的花序数、成花数,取平均值。
1.3.2 果实品质特性测定 在果实半红期,采摘多年生枝上枣果,各个处理随机采摘30 个以上枣果,装入采样袋,标记清楚,带回实验室及时进行果实各项指标测定。采用电子天平称量各处理所采枣果单果质量,用游标卡尺测量对应枣果的纵径和横径,并计算果形指数(果形指数=果实纵径/果实横径)。将采集到的新鲜枣果分为3 组,进行混样处理,切成片状后,用水果挤压器分别挤出汁液置于手持电子糖度计(折射仪法)测定可溶性固形物含量。采用2,6-二氯靛酚滴定法测定维生素C 含量[15];采用3,5-二硝基水杨酸比色法测定可溶性糖含量[16];采用氢氧化钠-酚酞滴定法测定可滴定酸含量[16];糖酸比为可溶性糖和可滴定酸含量的比值。
1.3.3 矿质元素测定 于2022 年7 月中旬,完成第三次水肥滴灌3 d后及8月中旬,采集每个处理50枚叶片,装入采样袋标记,带回实验室。采用硫酸-双氧水消解、凯氏法测定叶片全氮(N)含量,采用钼锑抗比色法测定叶片全磷(P)含量;采用硝酸消解,ICP-OES测定钾(K)、钙(Ca)、镁(Mg)元素含量。
采用Excel 2016 整理数据和绘图,采用SPSS 22.0 对试验数据进行单因素方差(ANOVA)分析,多重比较采用Duncan’s 法,分别检验0.05和0.01水平的显著性差异。
随着水肥量的增多,月光枝、叶和花生长势变强。如表1 所示,2021 年高水肥处理的月光新生枣头数、枣头长度、二次枝节间长度、枣头二次枝长度、枣吊花序数以及枣吊成花数均显著高于低水肥处理与对照。中水肥处理的新生枣头数、枣头长度与枣吊成花数与高水肥、低水肥处理、对照均差异不显著。2022年的结果与2021年基本一致,高水肥处理的月光新生枣头数、枣头长度、二次枝节间长度和枣头二次枝长度均显著高于低水肥处理与对照。以上结果说明不同水肥量对月光植株生长的影响明显且年份间基本一致。
表1 不同水肥条件对月光枝叶花的影响
Table 1 Effects of different water and fertilizer treatments on branches, leaves and flowers of Yueguang
注:同一年份同列数字后不同小写字母表示不同水肥处理之间差异显著(p<0.05),不同大写字母表示不同水肥处理之间差异极显著(p<0.01)。下同。
Note:Different small letters of the same year in the same column indicate significant differences among different water fertilizer treatments (p<0.05), and different capital letters indicate extremely significant differences among different water fertilizer treatments (p<0.01). The same below.
?
不同水肥条件处理后,冬枣枝叶花生长情况如表2所示,2021年中水肥处理的新生枣头数、枣吊花序数和枣吊成花数均最多,分别为22.4个、4.87个与54.77朵,而高水肥处理各指标(枣吊长度除外)生长量小于中水肥;2022 年中水肥处理后冬枣新生枣头数、枣吊花序数与枣吊成花数显著高于高水肥处理与对照,除枣吊长度和枣吊花序数外,也显著高于低水肥处理。以上结果说明中水肥处理对促进冬枣枝、叶、花生长最为明显,所设置的高水肥条件未明显促进冬枣植株生长。
表2 不同水肥条件对冬枣枝叶花的影响
Table 2 Effects of different water and fertilizer treatments on branches, leaves and flowers of Dongzao
?
不同水肥处理影响月光和冬枣果实形态,如表3 所示,月光2021 年高水肥与中水肥处理单果质量极显著高于低水肥处理与对照;2022 年随着水肥量的增加,单果质量逐渐增加,但各处理间无显著差异,高水肥处理最高,较2021 年增加了24.15%。对比果形指数这一指标的变化,可以看出,果形指数与单果质量呈相反的变化趋势,果形由细长稍变圆润。2021 年冬枣不同水肥处理后,单果质量较对照均有增加,从低水肥到高水肥依次增加了16.61%、4.07%、27.76%。中水肥处理的果形指数显著大于对照,果实相对较小且圆,其他处理的果形指数与对照无显著差异,水肥量的变化对果形的影响效果不明显。
表3 不同水肥条件对枣果实形态的影响
Table 3 Effects of different water and fertilizer treatments on fruit morphology of Chinese jujube
品种Variety月光Yueguang年份Year 2021年In 2021 2022年In 2022冬枣Dongzao 2021年In 2021 2022年In 2022处理Treatment W1 W2 W3 CK W1 W2 W3 CK W1 W2 W3 CK W1 W2 W3 CK单果质量Single fruit mass/g 7.33±2.24 Aa 7.57±1.95 Aa 5.42±1.10 Bb 5.86±1.96 Bb 9.10±2.13 Aa 8.44±1.55 Aa 8.37±1.45 Aa 8.33±2.26 Aa 11.00±2.41 Aa 8.96±2.21 Bbc 10.04±2.11 ABab 8.61±1.42 Bc 10.13±1.62 Aab 10.73±3.35 Aa 7.43±1.58 Ab 10.48±2.78 Aa果实纵径Fruit longitudinal diameter/mm 36.60±5.30 Aa 36.91±3.41 Aa 36.51±3.31 Aa 33.93±4.32 Bb 41.22±4.51 Aa 37.19±3.30 Bc 38.96±3.42 ABbc 39.75±5.16 ABab 28.32±2.63 Aa 26.83±2.06 Ab 27.40±2.68 Aab 26.79±2.21 Ab 27.72±3.01 Aa 28.83±2.89 Aa 25.97±2.37 Aa 27.68±2.24 Aa果实横径Fruit transverse diameter/mm 19.40±2.03 ABb 20.21±1.63 Aa 19.00±1.81 BCb 18.31±1.80 Cc 21.71±1.95 Aa 20.20±1.24 Bb 20.94±1.34 ABab 20.39±1.97 ABb 27.13±2.07 Aa 24.87±1.62 Bb 26.02±1.88 ABa 26.24±2.25 ABa 25.71±1.55 Aa 25.77±2.20 Aa 22.44±1.41 Bb 26.95±2.61 Aa果形指数Fruit shape index 1.89±0.20 ABab 1.83±0.14 Bc 1.92±0.14 Aa 1.85±0.12 Bbc 1.90±0.12 ABab 1.84±0.11 Bb 1.86±0.11 ABb 1.94±0.11 Aa 1.04±0.06 Aab 1.08±0.05 Aa 1.05±0.06 Aab 1.03±0.10 Ab 1.08±0.08 ABab 1.12±0.06 ABa 1.16±0.07 Aa 1.03±0.08 Bb
不同的水肥条件对月光果实各营养品质指标的影响不同。如表4 所示,2021 年月光果实的可滴定酸和可溶性固形物含量在不同处理间差异不显著,高水肥处理的最高;维生素C 含量随着水肥施入量的增加呈先升高后降低的变化趋势,高水肥与中水肥处理显著高于对照,而中水肥处理的含量最高,达到212.11 mg·100 g-1;对于可溶性糖含量而言,高水肥处理的含量最高,达到20.65%,显著高于对照;中水肥处理的糖酸比最高,对照最低。2022 年月光果实可滴定酸含量在不同处理间差异不显著;维生素C 含量、可溶性糖含量与可溶性固形物含量均在中水肥处理下最高,分别比对照提高2.68%、6.31%、3.49%;高水肥处理的糖酸比最高。
表4 不同水肥条件对枣果实品质的影响
Table 4 Effects of different water and fertilizer treatments on fruit quality of Chinese jujube
品种Variety月光Yueguang年份Year 2021年In 2021 2022年In 2022冬枣Dongzao 2021年In 2021 2022年In 2022处理Treatment W1 W2 W3 CK W1 W2 W3 CK W1 W2 W3 CK W1 W2 W3 CK w(维生素C)Vitamin C content/(mg·100 g-1)206.64±8.68 Aa 212.11±21.09 Aa 183.68±17.36 Aab 159.63±24.84 Ab 193.52±3.28 Ab 209.92±9.84 Aa 200.08±6.56 Aab 204.45±6.83 Aab 210.74±21.98 Aa 207.46±10.15 Aa 226.32±14.17 Aa 222.22±12.38 Aa 259.12±6.56 Bb 287.55±11.52 Aa 261.31±5.01 Bb 241.63±6.83 Bc w(可滴定酸)Titratable acid content/%0.36±0.01 Aa 0.32±0.04 Aa 0.33±0.03 Aa 0.36±0.03 Aa 0.22±0.03 Aa 0.25±0.03 Aa 0.26±0.02 Aa 0.24±0.03 Aa 0.23±0.04 Ab 0.30±0.04 Aab 0.33±0.07 Aa 0.32±0.02 Aa 0.36±0.05 Aab 0.39±0.02 Aa 0.36±0.05 Aab 0.30±0.00 Ab w(可溶性糖)Soluble sugar content/%20.65±0.44 Aa 19.41±1.48 Aab 19.66±0.60 Aab 18.49±0.22 Ab 19.16±0.24 ABa 19.38±0.06 Aa 18.74±0.16 BCb 18.23±0.31 Cc 24.44±1.89 Aa 25.33±2.57 Aa 23.11±2.43 Aa 26.28±1.91 Aa 28.04±0.91 Bb 29.89±0.70 Aa 25.11±0.48 Cc 24.82±0.36 Cc w(可溶性固形物)Soluble solid content/%23.05±1.73 Aa 21.70±1.85 Aa 22.18±0.65 Aa 21.47±0.92 Aa 21.55±0.48 Aab 21.63±0.29 Aa 20.98±0.49 Aab 20.90±0.78 Ab 26.57±0.99 ABa 27.52±1.12 Aa 25.08±1.20 Bb 26.88±0.90 ABa 30.84±0.13 Bb 32.34±0.13 Aa 29.64±0.13 Cc 29.46±0.13 Cd糖酸比Sugar acid ratio 56.90 61.00 59.67 51.76 86.88 77.98 72.18 75.04 106.12 85.20 69.85 81.52 78.46 76.49 70.28 82.31
不同水肥处理后,冬枣2021 年果实品质指标维生素C含量和可溶性糖含量在不同处理间差异不显著。随着水肥量的增加,可滴定酸含量降低,果实酸度降低,糖酸比增大,果实变甜。低水肥处理果实的可溶性糖含量和可溶性固形物含量均为最低,而维生素C 含量最高。中水肥处理条件下,2022 年冬枣维生素C 含量、可溶性糖含量和可溶性固形物含量均极显著高于低水肥、高水肥处理和对照,果实品质佳;可滴定酸含量显著高于对照。
叶片中矿质元素含量可以反映营养供给情况,影响果树生长和结实,而不同水肥处理对叶片中矿质元素含量的影响存在显著差异。在两次施肥后,月光叶片矿质元素含量变化如图1 所示,叶片不同时期的K、Ca、Mg含量在各处理间差异均不显著,而N、P 含量存在显著差异。在不同发育时期,高水肥处理叶片中N 含量均显著高于对照,7 月中旬处理后,中水肥处理的N 含量最低,为30.23 g·kg-1,8 月份处理叶片中N 含量随着水肥施入量的增加而增加,中水肥处理含量最多,为32.86 g·kg-1;高水平的施入量使N 含量降低为29.78 g·kg-1。P 含量在7、8月份水肥施入后随水肥施入量增多均呈现先升高后降低的趋势。叶片中K、Ca、Mg 含量虽不存在显著差异,但K 含量在数值上仍可以看出与P 含量的变化趋势一致,Ca 元素含量随着施入量的增加而减少。整体来看,8月份叶片K元素含量较7月份有所降低,而Ca 含量有所升高,推测在果实进入膨大后期,根系吸收矿质元素多作用于果实生理生化反应的调控,叶片K含量的降低,利于Ca的积累。
图1 不同水肥条件对月光叶片矿质元素含量的影响Fig.1 Effect of different water and fertilizer treatments on the leaf mineral element content of Yueguang
冬枣两次水肥施入后叶片中矿质元素含量分析结果如图2所示,除P元素和Ca元素含量外,其他元素含量不同水平处理后较对照均有显著性差异。叶片中N 元素含量随着水肥量的增大而升高,中水肥处理在7 月份达到最大值33.50 g·kg-1,极显著高于其他处理,8 月份高水肥处理叶片中N 含量最高,为35.92 g·kg-1;7 月份Ca、Mg含量不存在显著性差异,P、K、Mg 含量基本随着施入量的增大呈先升高后降低的趋势,在中水肥处理下含量最高。8月份P元素含量各处理与对照间不存在显著差异,高水肥处理的含量最高,为2.21 g·kg-1;K、Mg 含量均在高水肥处理下含量最高,分别为19.57、4.00 g·kg-1,均极显著高于对照。
图2 不同水肥条件对冬枣叶片矿质元素含量的影响
Fig.2 Effect of different water and fertilizer treatments on the leaf mineral element content of Dongzao
水肥条件影响植物的生长发育,合适的水肥供应会促进果树生长和结实。腐殖酸可以改变土壤真菌群落的结构,帮助植株更新复壮,促进植株各器官的生长发育,改善果实品质[17-18]。大量元素平衡肥可以改善土壤缺素(N、P、K)现象,提高土壤有机质含量[19]。采用腐殖酸水溶肥与大量元素平衡肥的组合,可以改善植株生长发育现状。Ma 等[20]研究表明,保持高土壤水分供应对提高凤梨生长、水和肥料氮的利用效率至关重要。在本研究中,通过枣园布施的滴管系统实施不同水肥处理,发现月光随着水肥量的增多,树冠不断变大,新生枣头数、成花数等指标生长越来越好。张海棠[21]、Jia等[22]的研究表明,增施N、K 肥,可以促进生长,但当株施钾肥超过900 g时会降低净光合速率,过量的N 肥会使水体富营养化不利于生长。白少倩[23]发现,随着灌水施肥量的增加,骏枣枣头、枣吊与叶面积均呈现增大趋势,但水肥量过高会对骏枣生长及产量产生抑制作用。本研究冬枣中水肥处理各生长指标生长势最好,果实品质最佳,而高水肥处理生长势却降低,可能反映出此时水肥量过大。矿质元素在糖代谢过程中起到一定的促进作用,利于果实中糖分积累[24]。月光和冬枣中水肥处理后可溶性糖含量最高,可能与矿质元素含量增加有关。
水肥管理影响枣树长势、产量、品质和病虫害,是枣树栽培管理的关键环节之一。通过水肥一体化管理可以节约灌溉用水和肥料,减少水肥管理投入,提升果实品质和稳定产量,是实现枣树省力高效栽培的关键技术之一,而采用滴灌、喷灌等节水灌溉系统,耦合节水灌溉系统和肥水混配系统,可实现枣树水肥一体化[7]。在具体水肥条件方面,每株氮磷钾复合水溶肥200 g时,灵武长枣可获得最佳的果实品质和产量[25];矮化密植枣树灌水定额为900 mm、施肥量为1500 kg·ha-1时,果实产量达到最高[26]。在栽培实践中,应考虑到品种和栽培条件的差异,采用具体的水肥管理方法。本研究在试验地布施滴管系统,通过灌溉和水溶肥结合进行,探索了月光和冬枣两个品种在太行山区栽培时,不同水肥条件对生长结实的影响。整体来看,月光高水肥处理植株生长势最强,中高水肥处理对果实大小和品质有明显促进作用,综合考虑月光应采用高水肥供应。冬枣中水肥处理植株生长与果实品质方面均表现最佳,建议中水肥供应。
综合考虑不同水肥条件对月光和冬枣两个品种植株生长、果实大小和果实品质的影响,在太行山区水肥一体化栽培模式下,月光应采用高水肥供应(每666.7 m2年滴灌水14 t,腐殖酸水溶肥25 kg,大量元素平衡肥40 kg),冬枣应采用中水肥供应(每666.7 m2年滴灌水12 t,腐殖酸水溶肥20 kg,大量元素平衡肥25 kg)。
[1] ,王永蕙. 中国果树志-枣卷[M]. 北京:中国林业出版社,1993.,WANG Yonghui. Chinese fruit trees record-Chinese jujube[M]. Beijing:China Forestry Publishing House,1993.
[2] LIU Mengjun.Chinese jujube:Botany and horticulture[J].Horticultural Review,2006,32:229-298.
[3] LIU M J,ZHAO J,CAI Q L,LIU G C,WANG J R,ZHAO Z H,LIU P,DAI L,YAN G J,WANG W J,LI X S,CHEN Y,SUN Y D,LIU Z G,LIN M J,XIAO J,CHEN Y Y,LI X F,WU B,MA Y,JIAN J B,YANG W,YUAN Z,SUN X C,WEI Y L,YU L L,ZHANG C,LIAO S G,HE R J,GUANG X M,WANG Z,ZHANG Y Y,LUO L H. The complex jujube genome provides insights into fruit tree biology[J]. Nature Communications,2014,5:5315.
[4] 刘孟军,王玖瑞. 新中国果树科学研究70 年:枣[J]. 果树学报,2019,36(10):1369-1381.LIU Mengjun,WANG Jiurui. Fruit scientific research in New China in the past 70 years:Chinese jujube[J]. Journal of Fruit Science,2019,36(10):1369-1381.
[5] LIU M J,WANG J R,WANG L L,LIU P,ZHAO J,ZHAO Z H,YAO S R,STĂNICĂ F,LIU Z G,WANG L X,AO C W,DAI L,LI X S,ZHAO X,JIA C X. The historical and current research progress on jujube-a superfruit for the future[J].Horticulture Research,2020,7:119.
[6] LIU M J.Chinese jujube:Botany and horticulture[M].Hoboken,USA:John Wiley&Sons,Ltd,2010.
[7] 刘孟军,刘志国,李宪松,高清月.枣树省力安全优质高效新一代栽培技术探索与实践[J]. 果树学报,2015,32(6):1253-1257.LIU Mengjun,LIU Zhiguo,LI Xiansong,GAO Qingyue.Exploration and practice of a next generation cultivation system for Chinese jujube characterized by labor-saving,safety,high-quality and high-profit[J]. Journal of Fruit Science,2015,32(6):1253-1257.
[8] 梁芊,孙慧英,李一路,王燕平,薛晓芳,高鹏.我国枣树栽培现状及建议[J].山西农业科学,2017,45(4):636-638.LIANG Qian,SUN Huiying,LI Yilu,WANG Yanping,XUE Xiaofang,GAO Peng.Present situation and suggestion of jujube cultivation in China[J].Journal of Shanxi Agricultural Sciences,2017,45(4):636-638.
[9] 全国龙,黄春华,丁汉卿,李光玉,徐杨玉.水肥一体化技术在葡萄栽培中的应用研究进展[J].南方农业,2022,16(24):1-3.QUAN Guolong,HUANG Chunhua,DING Hanqing,LI Guangyu,XU Yangyu. Research progress on the application of water and fertilizer integration technology in viticulture[J].South China Agriculture,2022,16(24):1-3.
[10] 刘国利. 冬枣盐碱地水肥一体化种植效益探究[J]. 果树实用技术与信息,2020(7):23-25.LIU Guoli. Exploration on the benefits of water-fertilisation planting in saline and alkaline land of Dongzao[J]. Fruit Tree Practical Technology and Information,2020(7):23-25.
[11] 胡安焱,董新光,魏光辉,马英杰,姚鹏亮.滴灌条件下水肥耦合对干旱区红枣产量的影响[J]. 灌溉排水学报,2010,29(6):60-63.HU Anyan,DONG Xinguang,WEI Guanghui,MA Yingjie,YAO Pengliang.Coupling effects of water and fertilizer on yield of Chinese jujube under drip irrigation in the arid area[J]. Journal of Irrigation and Drainage,2010,29(6):60-63.
[12] 周小杰,吕廷波,邢猛,宋仁友,付鑫法.水肥耦合对滴灌骏枣产量及果品等级的影响研究[J]. 灌溉排水学报,2023,42(7):45-51.ZHOU Xiaojie,LÜ Tingbo,XING Meng,SONG Renyou,FU Xinfa. The combined effect of irrigation and fertilization on yield and quality of fruits of Chinese date[J]. Journal of Irrigation and Drainage,2023,42(7):45-51.
[13] 扁青永,王振华,胡家帅,何新林,李朝阳.水肥耦合对南疆沙区滴灌红枣光合特性及产量的影响[J].西北农业学报,2018,27(5):707-715.BIAN Qingyong,WANG Zhenhua,HU Jiashuai,HE Xinlin,LI Chaoyang. Effects of water and fertilizer coupling on photosynthetic characteristics,growth and yield of red jujube under drip irrigation condition[J]. Acta Agriculturae Boreali-Occidentalis Sinica,2018,27(5):707-715.
[14] 戎俊青,李素杰,赵惠芬,范会英,王丽娟.月光枣的引种表现及栽培技术要点[J].山西果树,2013(4):46-47.RONG Junqing,LI Sujie,ZHAO Huifen,FAN Huiying,WANG Lijuan. Introduction performance and cultivation technology points of Yueguang[J].Shanxi Fruits,2013(4):46-47.
[15] 侯倩.干制与贮藏方法对枣果品质的影响[D].保定:河北农业大学,2012.HOU Qian. Influences of different drying and storage methods on the quality of Chinese jujube fruit[D]. Baoding:Hebei Agricultural University,2012.
[16] 蔺金龙.不同整形修剪对枣园微环境和枣果产量品质影响的研究[D].阿拉尔:塔里木大学,2016.LIN Jinlong.Study on the impacts of different pruning on jujube orchard microenvironment and yield and quality of jujube fruit[D].Alar:Tarim University,2016.
[17] 魏世平,吴萌,李朋发,刘佳,李桂龙,刘凯,刘明,李忠佩.腐殖酸对花生连作地土壤真菌群落结构的影响[J]. 土壤学报,2023,60(3):846-856.WEI Shiping,WU Meng,LI Pengfa,LIU Jia,LI Guilong,LIU Kai,LIU Ming,LI Zhongpei. Effects of humic acid on fungal community structure in a peanut-continuous cropping soil[J].Acta Pedologica Sinica,2023,60(3):846-856.
[18] 任海英,王红艳,王程安,郑锡良,戚行江.腐殖酸对衰弱病杨梅营养生长及果实品质的改良作用[J]. 湖南农业科学,2022(6):50-52.REN Haiying,WANG Hongyan,WANG Cheng’an,ZHENG Xiliang,QI Xingjiang. Effects of humic acid on vegetative growth and fruit quality of bayberry with decline disease[J].Hunan Agricultural Sciences,2022(6):50-52.
[19] OU-ZINE M,SYMANCZIK S,RACHIDI F,FAGROUD M,AZIZ L,ABIDAR A,MÄDER P,ACHBANI E H,HAGGOUD A,ABDELLAOUI M,BOUAMRI R. Effect of organic amendment on soil fertility,mineral nutrition,and yield of Majhoul date palm cultivar in DrâA-Tafilalet region,Morocco[J]. Journal of Soil Science and Plant Nutrition,2021,21(2):1745-1758.
[20] MA H Y,LI L,LIU S R,SHI W Q,WANG C,ZHAO Q F,CUI N B,WANG Y S.Physiological response,phytohormone signaling,biomass production and water use efficiency of the CAM plant Ananas comosus under different water and nitrogen regimes[J].Agricultural Water Management,2022,266:107563.
[21] 张海棠.钾镁配施对‘早酥’梨养分吸收和果实品质影响的研究[D].北京:中国农业科学院,2021.ZHANG Haitang. Effects of potassium and magnesium combined application on nutrient absorption and fruit quality of‘Zaosu’pear[D]. Beijing:Chinese Academy of Agricultural Sciences,2021.
[22] JIA X,WANG Q,YE Y,LI T T,SUN X,HUO L Q,WANG P,GONG X Q,MA F W. MdATG5a positively regulates nitrogen uptake under low nitrogen conditions by enhancing the accumulation of flavonoids and auxin in apple roots[J]. Environmental and Experimental Botany,2022,197:104840.
[23] 白少倩.不同水肥处理对骏枣树体生长及果实品质的影响[D].阿拉尔:塔里木大学,2023.BAI Shaoqian. Influence of different water and fertilizer treatment on the body growth and fruit quality of‘Junzao’jujube tree[D].Alar:Tarim University,2023.
[24] 闫帅,宋良,刘振杰,仉服春,徐锴,袁继存,张少瑜,赵德英.南果梨叶片、果实矿质营养与果实品质的相关性分析[J].中国果树,2022(7):33-36.YAN Shuai,SONG Liang,LIU Zhenjie,ZHANG Fuchun,XU Kai,YUAN Jicun,ZHANG Shaoyu,ZHAO Deying. Correlation analysis of mineral nutrition and fruit quality of‘Nanguoli’pear[J].China Fruits,2022(7):33-36.
[25] 郝璐.不同灌水和施肥条件对灵武长枣果实品质和产量的影响研究[D].银川:宁夏大学,2020.HAO Lu. Effects of different irrigation and fertilization conditions on fruit quality and yield of jujube (Lingwuchangzao)[D].Yinchuan:Ningxia University,2020.
[26] 石培君,刘洪光,何新林,陆华天,叶建威.水肥耦合对滴灌矮化密植大枣生理变化及产量影响[J]. 核农学报,2018,32(1):177-187.SHI Peijun,LIU Hongguang,HE Xinlin,LU Huatian,YE Jianwei.The influence of water and fertilizer coupling on physiological change and yield of dwarf dense planting jujube under drip irrigation[J]. Journal of Nuclear Agricultural Sciences,2018,32(1):177-187.
Effects of different treatments of water and fertilization on growth and fruiting of Chinese jujube