欧李果实发育过程中钙与有机酸含量的变化及相关性分析

张 莉,张 薇,郭金丽*

(内蒙古农业大学园艺与植物保护学院,呼和浩特 010010)

摘 要:【目的】探讨欧李果实发育过程中不同形态钙及有机酸代谢的变化及二者之间的关系,以期为解析欧李果实钙素吸收积累机制及进一步研究调控提供理论依据。【方法】以内蒙古地区高钙和低钙两种钙素水平欧李果实为试材,比较研究果实发育成熟过程中不同形态钙以及有机酸代谢相关指标的变化,并进行相关性分析。【结果】(1)在果实发育成熟过程中,两种钙素水平欧李果实中水溶性钙含量表现为先降后升,整体为上升趋势;总钙、果胶钙、磷酸钙和草酸钙含量均表现为先升后降,整体为下降趋势;残渣钙含量表现为持续下降。(2)两种钙素水平欧李果实中苹果酸脱氢酶(NAD-MDH)活性、苹果酸含量及有机酸总量的变化一致,均表现为先升后降,在硬熟期达到最高值,整体呈明显上升趋势,且以上三者活性或含量均表现为低钙果实高于高钙果实;苹果酸酶(NADP-ME)活性整体表现为下降;柠檬酸含量表现为先升后降,在硬核期达到最高值,整体呈下降趋势,且高钙果实中柠檬酸含量高于低钙果实。(3)相关性分析表明,两种钙素水平欧李果实中NAD-MDH活性、苹果酸含量、有机酸总量与水溶性钙含量均呈极显著正相关,与其他组分钙及总钙含量均呈不同程度的负相关;NADP-ME活性和柠檬酸含量与水溶性钙含量均呈显著或极显著负相关,与其他组分钙及总钙含量均呈不同程度的正相关。【结论】在欧李果实发育成熟过程中钙素积累与有机酸代谢有关,苹果酸是欧李果实中主要的有机酸,苹果酸合成代谢增强有利于水溶性钙含量的增加,柠檬酸含量增加则趋向于促进非水溶性钙类果胶钙、磷酸钙和草酸钙的积累。

关键词:欧李果实;钙;有机酸;相关性分析

欧李[Cerasus humilis(Bge.)Sok.]属蔷薇科樱桃属矮生樱亚属植物,又称为“钙果”,是中国特有的果树资源[1]。欧李植株耐旱、耐寒、耐瘠薄,防风固土、防治水土流失能力强[2];果实色泽鲜艳,风味独特,富含氨基酸、维生素、有机酸,以及钙、铁、镁等矿质元素[3-4],既可鲜食,也可深加工成果酒、果汁、果酱、蜜饯等产品[5];欧李果肉中钙含量是其他水果中的2~10 倍,且易被人体吸收[6];此外,欧李仁可入药[7],叶可制茶[8]。欧李集果、叶、仁等综合利用于一身,具有较高的营养价值和经济价值,可应用于食品、营养保健等多个领域,开发前景广阔[9-10]

钙是植物生长发育必需的矿质元素,在调节植物体内的代谢、参与信息传递、维持细胞壁强度、保护细胞膜结构等方面有重要作用[11-12]。钙既是果实重要营养品质之一,又对品质有重要影响。钙在果实中的形态主要有水溶性钙、果胶钙、磷酸钙和草酸钙等[13];果胶钙和水溶性钙为活性钙,尤其是水溶性钙有利于钙离子的转移和吸收利用[14]。在果树体内,钙主要通过木质部,以离子态、苹果酸钙和柠檬酸钙的形式向上运输,以有机酸钙和果胶钙等形态在果实中积累[15]

有机酸存在于所有植物中,在细胞代谢中发挥着重要功能,有机酸组分和含量是决定果实风味和品质的重要因子[16]。果实中含有多种有机酸,如苹果酸、柠檬酸和琥珀酸等[17]。欧李果实有机酸含量丰富,可滴定酸含量在1.0%~2.0%之间[18]。有研究表明,欧李果实中的有机酸以苹果酸和柠檬酸为主[19],通常以柠檬酸和苹果酸含量之和表示果实的总有机酸含量。有机酸可以与钙结合形成有机酸钙,能够增强钙的活性,促进果实对于钙素营养的吸收和利用,因此欧李果实中有机酸的含量与果实钙积累及钙的形态转化有一定的关系。目前对欧李果实钙素营养的研究主要集中在不同生长时期、不同形态钙的含量和组成[20],以及不同贮藏条件下钙的变化等方面[21],而对于欧李果实中钙素积累调控方面研究较少。有机酸调控果实品质已有过报道,但有关欧李果实发育成熟过程中钙积累与有机酸代谢关系的研究还鲜见报道。因此笔者在本研究中以前期研究为基础,以不同钙含量的欧李果实为材料,进一步研究欧李果实发育成熟过程中钙素营养积累和有机酸代谢的变化,解析欧李果实中有机酸代谢与钙素积累之间的关系,以期为欧李果实钙素营养调控及进一步开发利用提供理论依据。

1 材料和方法

1.1 试验材料

以种植于内蒙古农业大学欧李科研基地中果实钙含量较高(MY-2)和钙含量较低(MY-9)的两种欧李优系资源为试验材料。

1.2 样品采集

试验在2022年6—9月进行,分别于果实幼果期(S1)、硬核期(S2)、着色膨大期(S3)、硬熟期(S4)和完熟期(S5),挑选无损伤、无病虫害、大小均一以及成熟度一致的果实,用蒸馏水洗净晾干后用液氮速冻,于-80 ℃冰箱中保存待测。

1.3 试验指标测定

1.3.1 欧李果实中钙含量的测定 不同形态钙的提取参照Ohta等[22]的方法。分别称取不同发育期欧李果实5.0 g,依次用超纯水、氯化钠、乙酸、盐酸浸提剂逐级提取得到水溶性钙、果胶钙、磷酸钙、草酸钙;剩余残渣用HNO3-HClO4(体积比为5∶1)混合酸消化得到残渣钙。用火焰原子吸收分光光度计测定不同形态钙的含量,总钙含量为不同形态钙含量之和。测定时每个指标均设3次生物学重复。

1.3.2 欧李果实有机酸含量及相关代谢酶活性的测定 有机酸含量的测定参考冀晓昊等[23]的方法。称取不同发育期欧李果实5.0 g,加入25 mL 80%乙醇研磨成匀浆,75 ℃水浴提取60 min后抽滤,在60 ℃下将滤液用旋转蒸发仪蒸干,残渣用3 mL重蒸水溶解,过0.45 μm 滤膜。采用高效液相色谱分析果实中柠檬酸和苹果酸含量,有机酸总量为柠檬酸和苹果酸含量之和。

用北京索莱宝科技有限公司的试剂盒测定苹果酸脱氢酶(NAD-MDH)和苹果酸酶(NADP-ME)活性。具体方法按操作说明进行。以上指标测定时均3次生物学重复。

1.4 数据处理与分析

用Excel 2010 和GraphPad Prism 软件进行数据分析和作图,采用SPSS 26.0统计软件进行相关性分析,使用https://www.chiplot.online/网站绘制相关性分析热图。

2 结果与分析

2.1 欧李果实发育过程中不同形态钙含量的变化

在果实发育成熟过程中,不同钙素水平欧李果实中总钙、果胶钙、磷酸钙及草酸钙含量的变化趋势相似,整体均呈现先升高后降低的趋势,于硬核期达到最高,之后随着果实的成熟快速下降,至完熟期达到最低;两种钙素水平果实中以上4 种钙含量在幼果期和硬核期均表现为低钙果实高于高钙果实,膨大期至完熟期均表现为高钙果实高于低钙果实。不同钙素水平果实中水溶性钙含量均表现为先降低后逐渐升高,于硬核期达到最低,硬核期后快速积累,至完熟期达到最高;整个发育过程中低钙果实的水溶性钙含量高于高钙果实。两种钙素水平果实中残渣钙含量均表现为持续降低,完熟期时含量仅为微量,且二者之间残渣钙含量基本无差异(图1)。综上所述,果实发育成熟过程中不同钙素水平欧李果实中各钙组分含量的变化相似,但含量有所差异;在钙组分的变化方面,总钙、果胶钙、磷酸钙、草酸钙含量与水溶性钙含量呈相反的趋势。

图1 欧李果实发育过程中不同形态钙含量的变化
Fig.1 Changes in calcium content of different forms during the development of C.humilis fruits

2.2 欧李果实发育过程中活性钙占比的变化

在果实发育成熟过程中,不同钙素水平欧李果实中水溶性钙占比均呈现先降低后升高的趋势,完熟期时占比最高,高钙果实中占比为36.04%,低钙果实中占比达到46.11%;果胶钙占比在不同钙素水平欧李果实中的变化趋势略微不同,从幼果期到硬熟期变化趋势不明显,从硬熟期开始,果胶钙占比快速下降,到完熟期占比最低,高钙果实中占比为34.25%,低钙果实中占比为22.19%。完熟期高钙和低钙果实中活性钙占比分别为70.29%和68.30%,均表现为水溶性钙高于果胶钙,其组成差异较大,高钙果实中水溶性钙比果胶钙高5.19%,两种活性钙的含量基本一致,低钙果实中水溶性钙是果胶钙的2.08倍(图2)。可见,随着果实的发育成熟,不同钙素水平果实中水溶性钙和果胶钙的变化趋势虽相似,但两种组分所占比例差异较大;在果实完熟期,高钙果实中水溶性钙和果胶钙比例相当,低钙果实中水溶性钙占比高于果胶钙。

图2 欧李果实发育过程中活性钙占比的变化
Fig.2 Changes in the percentage of active calcium during the development of C.humilis fruits

2.3 欧李果实发育过程中有机酸含量的变化

在果实发育成熟过程中,不同钙素水平欧李果实中有机酸总量和苹果酸含量的变化趋势相似,均呈现先升高后降低的趋势,硬熟期含量最高且差异最大;两种钙素水平果实中有机酸总量和苹果酸含量从幼果期到硬熟期均表现为低钙果实高于高钙果实,完熟期含量基本一致。不同钙素水平果实中柠檬酸含量均呈现先升高后降低的趋势,硬核期含量最高且差异最大,之后持续下降;从硬核期到完熟期,均表现为高钙果实中柠檬酸含量高于低钙果实(图3)。综上,欧李果实中苹果酸为主要的有机酸,占比超过90%。在果实发育过程中不同钙素水平果实中3种有机酸变化趋势相似,含量差异较大;表现为低钙果实的苹果酸含量和有机酸总量高于高钙果实,高钙果实的柠檬酸含量高于低钙果实。

图3 欧李果实发育过程中有机酸含量的变化
Fig.3 Changes in organic acid content during the development of C.humilis fruits

2.4 欧李果实发育过程中有机酸相关代谢酶活性的变化

在果实发育成熟过程中,不同钙素水平欧李果实中NADP-ME 活性的变化趋势基本一致,均呈现先升高后降低再升高的趋势,从果实发育开始缓慢升高,均在硬核期达到最高值,之后快速下降,在硬熟期达到最低,完熟期又升高;NADP-ME活性在幼果期、硬核期和完熟期,高钙果实高于低钙果实,在着色膨大期和硬熟期,低钙果实高于高钙果实。不同钙素水平欧李果实中NAD-MDH 活性均呈先升高后降低的趋势,从果实发育开始缓慢升高,幼果期活性最低,从硬核期到硬熟期快速升高,在硬熟期达到最高值,之后小幅下降,整体上呈明显上升趋势;幼果期到果实膨大期高钙果实中NAD-MDH 活性略高于低钙果实,硬熟期和完熟期低钙果实中NAD-MDH 活性高于高钙果实(图4)。综上,不同钙素水平欧李果实中NADP-ME和NAD-MDH活性随着果实的成熟变化趋势一致,酶活性高低存在差异,NADP-ME 活性的变化趋势与NAD-MDH 的变化趋势相反。

图4 欧李果实发育过程中有机酸代谢酶活性的变化
Fig.4 Changes in the activity of organic acid metabolising enzymes during the development of C.humilis fruits

2.5 欧李果实有机酸含量与其代谢酶活性的关系

两种钙素水平欧李果实中苹果酸含量与有机酸总量均呈极显著正相关,相关系数达到1.000,与柠檬酸含量均呈极显著负相关;柠檬酸含量与有机酸总量均呈显著或极显著负相关。两种钙素水平欧李果实中苹果酸、有机酸总量均与NADP-ME活性呈极显著负相关,与NAD-MDH活性呈极显著正相关;柠檬酸含量与NAD-MDH活性均呈极显著负相关,与NADH-ME活性均呈显著或极显著正相关。两种钙素水平果实中NADP-ME活性与NAD-MDH活性均呈极显著负相关(表1)。以上相关性分析表明,果实中NAD-MDH 正调控苹果酸含量,负调控柠檬酸含量;NADH-ME的调控效应与之正好相反,表现为负调控苹果酸含量,正调控柠檬酸含量。

表1 欧李果实有机酸含量与相关代谢酶活性的相关性
Table 1 Correlation between organic acid content and related metabolic enzyme activities in C.humilis fruits

注:“*”和“**”分别表示在p<0.05 和p<0.01 水平下显著和极显著相关。
Note:“*”and“**”indicate significant and highly significant correlations at the p<0.05 and p<0.01.

?

2.6 欧李果实钙积累与有机酸代谢的关系

两种钙素水平欧李果实中苹果酸含量、有机酸总量与水溶性钙含量均呈极显著正相关,与总钙含量及其他组分钙含量均呈不同程度的负相关,其中高钙果实中与磷酸钙和残渣钙含量的负相关性达到极显著水平,低钙果实中与总钙、磷酸钙和草酸钙含量的负相关性达到显著水平。两种钙素水平欧李果实中柠檬酸含量与水溶性钙含量均呈极显著负相关,与总钙及其他组分钙含量均呈显著或极显著正相关。两种钙素水平欧李果实中NAD-MDH 活性与水溶性钙含量均呈极显著正相关,与总钙和其他组分钙含量均呈显著或极显著负相关。高钙果实中NADP-ME 活性与水溶性钙含量呈显著负相关,而与总钙及其他组分钙含量的相关性不显著;低钙果实NADP-ME 活性与水溶性钙含量呈极显著负相关,而与总钙及其他组分钙含量均呈显著或极显著正相关(图5)。以上相关性分析表明,欧李果实中苹果酸会促进水溶性钙的积累,对其他组分钙有不同程度的抑制作用,进而影响到总钙的积累;柠檬酸会抑制水溶性钙的积累,但会促进果胶钙及其他组分钙的积累,进而提高总钙的含量。

图5 欧李果实钙含量与有机酸含量及其相关代谢酶活性的相关性
Fig.5 Correlation of calcium content with organic acids content and their related metabolic enzyme activities in C.humilis fruits

“*”和“**”分别表示在p<0.05 和p<0.01 水平下的相关性显著和极显著,彩色方块是相关性的热图,红色方块代表正相关,蓝色方块代表负相关。“*”and“**”indicate significant and highly significant correlations at the p<0.05 and p<0.01 levels, coloured squares are heatmap representations of correlations,with red squares representing positive correlations and blue squares representing negative correlations.

3 讨 论

3.1 欧李果实发育成熟过程中不同形态钙含量的变化

钙是植物生长发育的必需营养元素,对果实的品质具有重要作用,特别是在果实发育后期,钙含量直接影响果实品质以及采后的储藏和运输[24]。笔者在本试验中研究了高钙和低钙两种钙素水平欧李果实不同发育期总钙、水溶性钙、果胶钙、磷酸钙、草酸钙和残渣钙的含量。研究结果表明,不同钙素水平果实的钙素积累特性不同,但不同组分钙的变化趋势大致相同。欧李果实中总钙、果胶钙、磷酸钙和草酸钙含量均呈现先上升后下降的趋势,硬核期含量达到最高值,残渣钙含量呈现出持续下降的趋势,而水溶性钙含量均呈现先下降后上升的趋势,果实完熟期含量最高,这与前人的研究结果一致[25]。欧李果实钙积累主要发生在果实细胞分裂期和细胞膨大期两个阶段。幼果期到果实硬核期以果胶钙积累为主,不同钙素水平欧李果实硬核期果胶钙占总钙的比例均超过40%,这是因为只有存在大量的钙才能促使新生细胞快速增长、细胞间中胶层的发育,以及新生细胞壁的形成,因此在细胞分裂期果胶钙的积累量较高,从幼果期到硬核期表现为快速积累;随着果实的成熟,果实体积增大,蒸腾作用效率降低,细胞壁生长所需的果胶钙有限,果实对钙的吸收速度减慢,钙的相对含量开始下降[21];果实成熟期以水溶钙积累为主,水溶性钙占比从硬核期开始快速增加,到果实完熟期两个钙素水平欧李果实中占比均超过35%,果实细胞的迅速膨大是液泡迅速增大导致的,而钙主要以水溶性钙的形式在液泡中积累[26],所以随着果实的成熟,水溶性钙的积累明显高于其他形态钙。

水溶性钙和果胶钙为活性钙,活性钙组分对欧李钙吸收和积累的贡献最大[27]。在本试验中,两种钙素水平欧李果实完熟期活性钙在总钙中占比最大,分别为70.29%和68.30%,结果与之相吻合。不同钙素水平欧李果实完熟期活性钙组分的差异较大,高钙果实中两种活性钙组分的含量基本一致,水溶性钙只比果胶钙高5.19%;低钙果实中水溶性钙含量是果胶钙含量的2.08倍。可能是因为高钙果实在发育过程中对钙的吸收与积累能力更强,聚集在细胞壁上的钙更多与细胞壁上的果胶结合,从而积累了更多的果胶钙,增强了细胞壁和细胞膜的稳定性,用来维持果实的发育成熟。

3.2 欧李果实发育过程中有机酸代谢的变化

有机酸作为果实风味物质,能影响果实品质和商品价值[28]。在本试验中,随着果实的发育成熟,不同钙素水平欧李果实中有机酸含量均呈现先升高后降低的趋势。苹果酸和总有机酸含量的变化趋势基本一致,均在硬核期后迅速积累,到硬熟期达到最大值,完熟期则表现为下降;柠檬酸含量在幼果期迅速积累,硬核期达到最大值,之后逐渐下降。成熟期果实中有机酸含量逐渐下降,在很多果树上有同样的结果。田丽[29]的研究表明,在欧李果实发育前期,欧李有机酸含量逐渐增加,果实膨大期后迅速增多并达到最大值,成熟时有机酸含量有所减少;施泽彬等[30]在对翠冠梨和玉冠梨的研究中发现,在果实成熟过程中,不同品种果实有机酸含量的变化趋势不同,但在即将进入成熟期时,果实有机酸含量均表现为下降趋势;杨光凯等[31]对红宝石苹果和富士苹果的研究表明,果实中苹果酸含量的大量积累主要在果实发育前期,随着果实成熟,苹果酸含量逐渐降低。可能是因为部分有机酸与K+、Mg2+、Ca2+等结合生成盐,使得有机酸含量变少,有研究发现植物的液泡中含有大量的有机酸钙,如苹果酸钙、草酸钙和柠檬酸钙等[32];也可能是因为果实发育成熟时体积变大,水分增加,有机酸被稀释,浓度降低。

有机酸代谢是一个非常复杂的过程,由多个基因及其相关酶协同调控[33],还受环境因素及栽培品种的影响[34]。有研究表明果实生长发育过程中有机酸含量变化由NAD-MDH、NADP-ME、PEPC、CS 等多种代谢酶共同调控[35-36]。本试验结果表明,随着果实的发育成熟,不同钙素水平欧李果实中NADMDH 活性呈现先升高后降低的趋势,NADP-ME活性呈现升高-下降-升高的趋势,这与前人在油桃[37]、砂梨[38]果实中观察到的有机酸代谢酶活性变化相似。NAD-MDH 活性与苹果酸含量呈极显著正相关,而与柠檬酸含量呈负相关;NADP-ME活性与苹果酸含量呈极显著负相关,而与柠檬酸含量呈正相关,这与菠萝[39]、梨[40]中的研究结论相同。前人在对欧李有机酸代谢的研究结果表明,NAD-MDH 是促进欧李苹果酸积累的关键酶,而NADP-ME是促进欧李苹果酸降解的关键酶[18],本试验结论与之相一致。

3.3 欧李果实钙积累与有机酸代谢的关系

果实中钙的积累和吸收受到生理代谢调控和遗传因素的影响,钙作为渗透调节物质会在液泡中大量积累,有机酸会和液泡中的钙离子结合形成有机酸钙,如苹果酸钙、草酸钙、柠檬酸钙等[32]。在本试验中,两种钙素水平欧李果实中苹果酸含量、有机酸总量和NAD-MDH 活性与水溶性钙含量均呈极显著正相关,而与其他各组分钙及总钙含量均呈不同程度负相关;NAD-MDH活性升高,有利于苹果酸的积累,进而会增加有机酸总量,从而有利于水溶性钙的积累,但会抑制其他组分钙的形成,进而降低了果实中总钙含量。两种钙素水平欧李果实中柠檬酸含量与水溶性钙含量呈极显著负相关,与果胶钙及其他组分钙含量呈极显著正相关;柠檬酸含量增加时,水溶性钙含量降低,果胶钙及其他各组分钙含量增加,总钙含量升高。以上结果显示,在果实发育成熟过程中钙素积累与有机酸代谢有关,苹果酸合成增强有利于水溶性钙的积累,而柠檬酸有利于果胶钙的积累,有机酸含量及组成不同会影响欧李果实中的不同形态钙的组成及钙素积累。

4 结 论

综上所述,欧李果实中有机酸代谢与果实钙素积累密切相关。NAD-MDH 正调控苹果酸含量,负调控柠檬酸含量;NADP-ME负调控苹果酸含量,正调控柠檬酸含量。果实中苹果酸含量与水溶性钙含量呈极显著正相关,与其他各组分钙含量呈不同程度负相关;果实中柠檬酸含量与水溶性钙含量呈极显著负相关,与其他各组分钙及总钙含量呈显著正相关。在果实发育成熟过程中,随着NAD-MDH活性的上升,NADP-ME活性下降,苹果酸合成增强而降解减弱,引起苹果酸积累增多,柠檬酸含量减少,进而会促进水溶性钙的积累,而抑制其他组分钙的合成,总钙含量为降低,初步揭示了有机酸含量及组成的不同会影响欧李果实钙的积累及不同组分钙的转化,其具体调控机制有待进一步研究。

参考文献References:

[1] 师建华,曹军合,徐立军.欧李果实营养成分分析与评价[J].河北林业科技,2021(2):23-26.SHI Jianhua,CAO Junhe,XU Lijun. Evaluation and analysis of yield and nutritional content in Cerasus humilis[J]. The Journal of Hebei Forestry Science and Technology,2021(2):23-26.

[2] 曹慧琴,刘姝韵,王桂瑛,廖国周,白杰.欧李营养与开发利用[J].农产品加工,2015(24):70-72.CAO Huiqin,LIU Shuyun,WANG Guiying,LIAO Guozhou,BAI Jie.Nutritional composition and development of Prunus humilis Bunge[J].Farm Products Processing,2015(24):70-72.

[3] 李卫东,顾金瑞.果药兼用型欧李的保健功能与药理作用研究进展[J].中国现代中药,2017,19(9):1336-1340.LI Weidong,GU Jinrui. Research progress on healthy function and pharmacological effect in Cerasus humilis of fruit medicine dual-purpose type[J]. Modern Chinese Medicine,2017,19(9):1336-1340.

[4] LI W D,LI O,ZHANG A R,LI L,HAO J H,JIN J S,YIN S J.Genotypic diversity of phenolic compounds and antioxidant capacity of Chinese dwarf cherry [Cerasus humilis (Bge.) Sok.] in China[J].Scientia Horticulturae,2014,175:208-213.

[5] 张可欣,张士凯,王敏,丁政宇,张启月,吴澎.欧李深加工产品开发研究进展[J].食品工业科技,2021,42(22):442-448.ZHANG Kexin,ZHANG Shikai,WANG Min,DING Zhengyu,ZHANG Qiyue,WU Peng. Study and outlook of deep processing products of Prunus humilis[J]. Science and Technology of Food Industry,2021,42(22):442-448.

[6] 张美莉,邓秋才,杨海霞,张子仪.内蒙古欧李果肉和果仁中营养成分分析[J].氨基酸和生物资源,2007,29(4):18-20.ZHANG Meili,DENG Qiucai,YANG Haixia,ZHANG Ziyi.Study on nutrition components from fresh fruit and pip of Inner Mongolia Cerasus humilis (Bge.) Sok.[J].Amino Acids & Biotic Resources,2007,29(4):18-20.

[7] 刘星劼.不同种质欧李种仁质量比较研究[D].济南:山东中医药大学,2018.LIU Xingjie. Comparative study on the quality of Prunus humilis kernel from different germplasm[D].Jinan:Shandong University of Traditional Chinese Medicine,2018.

[8] 江冠宇,田晓菊,张惠玲.不同干燥方法对欧李叶袋泡茶的影响[J].食品工业,2022,43(6):116-121.JIANG Guanyu,TIAN Xiaoju,ZHANG Huiling. Effects of different drying methods on bag tea made from Cerasus humilis leaves[J].The Food Industry,2022,43(6):116-121.

[9] 张士凯,郗良卿,张启月,石敬一,吴澎.欧李开发及利用的研究进展[J].食品工业科技,2020,41(4):361-367.ZHANG Shikai,XI Liangqing,ZHANG Qiyue,SHI Jingyi,WU Peng. Research progress on the development and utilization of Cerasus humilis (Bge.) Sok.[J]. Science and Technology of Food Industry,2020,41(4):361-367.

[10] 胡小柯,李亚,严子柱,姚泽,李银科,姜生秀.中华钙果研究现状概述[J].中国农学通报,2021,37(4):56-61.HU Xiaoke,LI Ya,YAN Zizhu,YAO Ze,LI Yinke,JIANG Shengxiu. Research status of Cerasus humilis[J]. Chinese Agricultural Science Bulletin,2021,37(4):56-61.

[11] WHITE P J,BROADLEY M R. Calcium in plants[J].Annals of Botany,2003,92(4):487-511.

[12] 曾后清,张亚仙,汪尚,张夏俊,王慧中,杜立群.植物钙/钙调素介导的信号转导系统[J].植物学报,2016,51(5):705-723.ZENG Houqing,ZHANG Yaxian,WANG Shang,ZHANG Xiajun,WANG Huizhong,DU Liqun. Calcium/calmodulin-mediated signal transduction system in plants[J]. Chinese Bulletin of Botany,2016,51(5):705-723.

[13] 马建军,张立彬,刘玉艳,许雪峰,于凤鸣.野生欧李生长期组织器官中不同形态钙含量的变化及其相关性[J].园艺学报,2008,35(5):631-636.MA Jianjun,ZHANG Libin,LIU Yuyan,XU Xuefeng,YU Fengming. Variation of different forms of calcium contents and their correlation during the growth stage of Prunus humilis tissues[J].Acta Horticulturae Sinica,2008,35(5):631-636.

[14] 马建军,于凤鸣,张立彬,杜彬,任艳军,肖啸.野生欧李生长期各组织器官中不同形态钙的分配率变化[J]. 林业科学,2011,47(7):97-101.MA Jianjun,YU Fengming,ZHANG Libin,DU Bin,REN Yanjun,XIAO Xiao.Variation in different forms of calcium distribution rate in different tissues and organs of wild Cerasus humilis during growth stage[J]. Scientia Silvae Sinicae,2011,47(7):97-101.

[15] 宋雯佩.果实摄取钙的规律、途径及调控机理的研究[D].广州:华南农业大学,2018.SONG Wenpei. The study of fruit calcium uptake pattern,pathways and regulatory mechanisms[D]. Guangzhou:South China Agricultural University,2018.

[16] 刘雅兰,靳志飞,陈红.果梅果实发育过程中有机酸含量及相关代谢酶活性的变化特征[J].西北植物学报,2017,37(1):130-137.LIU Yalan,JIN Zhifei,CHEN Hong. Changes of the organic acid concentrations and the relative metabolic enzyme activities during the development of Prunus mume fruit[J].Acta Botanica Boreali-Occidentalia Sinica,2017,37(1):130-137.

[17] IKEGAYA A,TOYOIZUMI T,OHBA S,NAKAJIMA T,KAWATA T,ITO S,ARAI E. Effects of distribution of sugars and organic acids on the taste of strawberries[J]. Food Science&Nutrition,2019,7(7):2419-2426.

[18] 王鹏飞,曹琴,何永波,杜俊杰.欧李果实发育期糖和酸组分及其含量的动态变化特性[J]. 西北植物学报,2011,31(7):1411-1416.WANG Pengfei,CAO Qin,HE Yongbo,DU Junjie. Composition and dynamic changes of sugars and acids in Chinese dwarf cherry(Cerasus humilis Bunge)during fruit development[J].Acta Botanica Boreali- Occidentalia Sinica,2011,31(7):1411-1416.

[19] 叶丽琴,孙萌,张忠爽,刘海娇,顾金瑞,李卫东.不同发育阶段欧李果实糖酸变化规律研究及相关性分析[J].食品工业科技,2017,38(5):98-102.YE Liqin,SUN Meng,ZHANG Zhongshuang,LIU Haijiao,GU Jinrui,LI Weidong.Analysis on the changes and correlations of sugar and organic acid contents in Chinese dwarf cherry [Cerasus humilis (Bge.) Sok.] during different development stages[J].Science and Technology of Food Industry,2017,38(5):98-102.

[20] 张薇,邵郅胜,郭金丽.不同资源类型欧李果实钙素营养特征研究[J].北方园艺,2023(13):21-27.ZHANG Wei,SHAO Zhisheng,GUO Jinli. Study on the nutritional characteristics of calcium in Cerasus humilis of different resource types[J].Northern Horticulture,2023(13):21-27.

[21] 朱成.不同贮藏措施对欧李果实采后品质的影响[D].呼和浩特:内蒙古农业大学,2021.ZHU Cheng. Effects of different storage measures on postharvest quality of Cerasus humilis[D].Hohhot:Inner Mongolia Agricultural University,2021.

[22] OHTA Y,YAMAMOTO K,DEGUCHI M. Chemical fractionation of calcium in the fresh rice leaf blade and influences of deficiency or oversupply of calcium and age of leaf on the content of each calcium fraction:Chemical fractionation of calcium in some plant species (Part 1)[J]. Japanese Journal of Soil Science and Plant Nutrition,1970,41(1):19-26.

[23] 冀晓昊,张芮,毛志泉,匡林光,鹿明芳,王燕,张艳敏,陈学森.野生樱桃李实生后代果实性状变异分析及优异种质挖掘[J].园艺学报,2012,39(8):1551-1558.JI Xiaohao,ZHANG Rui,MAO Zhiquan,KUANG Linguang,LU Mingfang,WANG Yan,ZHANG Yanmin,CHEN Xuesen.The analysis of characteristic variations of the seedlings of Xinjiang wild myrobalan plum and excavation of the excellent germplasm resources[J].Acta Horticulturae Sinica,2012,39(8):1551-1558.

[24] HEPLER P K. Calcium:A central regulator of plant growth and development[J].The Plant Cell,2005,17(8):2142-2155.

[25] 马建军,于凤鸣,张立彬,杜彬,任艳军,肖啸.欧李果实发育中果肉钙和果胶含量变化的关系[J].河北农业大学学报,2011,34(6):36-39.MA Jianjun,YU Fengming,ZHANG Libin,DU Bin,REN Yanjun,XIAO Xiao. Relationship between calcium and pectin content in Cerasus humilis flesh during fruit development[J]. Journal of Hebei Agricultural University,2011,34(6):36-39.

[26] PERRING M A. The mineral composition of apples. Ⅺ.An extraction technique suitable for the rapid determination of calcium,but not potassium and magnesium,in the fruit[J].Journal of the Science of Food and Agriculture,1974,25(3):237-245.

[27] 马建军,张立彬,于凤鸣,许雪峰.野生欧李果实中不同形态钙的含量及分布[J].园艺学报,2007,34(3):755-759.MA Jianjun,ZHANG Libin,YU Fengming,XU Xuefeng. Contents and distribution of different forms of calcium in Prunus humilis[J].Acta Horticulturae Sinica,2007,34(3):755-759.

[28] GUO L Q,SHI D C,WANG D L. The key physiological response to alkali stress by the alkali-resistant halophyte Puccinellia tenuiflora is the accumulation of large quantities of organic acids and into the rhyzosphere[J]. Journal of Agronomy and Crop Science,2010,196(2):123-135.

[29] 田丽.欧李、郁李有机酸代谢及相关基因表达的研究[D].太谷:山西农业大学,2016.TIAN Li. Study on metabolism of organic acid and expression analysis of related genes in Cerasus humilis(Bge.)Sok and Cerasus japonica(Thumb.)[D].Taigu:Shanxi Agricultural University,2016.

[30] 施泽彬,戴美松,孙田林,张绍铃.翠冠与玉冠梨果实发育过程中色素、糖、酸累积特性研究[J].果树学报,2007,24(6):833-836.SHI Zebin,DAI Meisong,SUN Tianlin,ZHANG Shaoling.Comparative studies on the accumulation process of the pigments,sugar and acid in fruit of Cuiguan and Yuguan pear cultivars[J].Journal of Fruit Science,2007,24(6):833-836.

[31] 杨光凯,薛诗怡,李嘉祯,李汇斌,高燕,张小军,郝燕燕.红宝石苹果果实有机酸组分及苹果酸代谢酶活性分析[J].果树学报,2023,40(5):884-892.YANG Guangkai,XUE Shiyi,LI Jiazhen,LI Huibin,GAO Yan,ZHANG Xiaojun,HAO Yanyan.Analysis of organic acid components and malic acid metabolizing enzyme activity in Hongbaoshi apple fruits[J].Journal of Fruit Science,2023,40(5):884-892.

[32] HIRSCHI K D. The calcium conundrum. Both versatile nutrient and specific signal[J]. Plant Physiology,2004,136(1):2438-2442.

[33] 王建辉,杨鑫,龚晓源,余洁霖,韩冬梅,李凛,李翔,刘达玉,李京晶,唐江.两个柑橘品种果实有机酸相关基因的差异表达分析[J].农业生物技术学报,2023,31(4):718-729.WANG Jianhui,YANG Xin,GONG Xiaoyuan,YU Jielin,HAN Dongmei,LI Lin,LI Xiang,LIU Dayu,LI Jingjing,TANG Jiang.Analysis of differential expression genes related to organic acid in fruits of two Citrus cultivars[J]. Journal of Agricultural Biotechnology,2023,31(4):718-729.

[34] GÜNDÜZ K,OZDEMIR E. The effects of genotype and growing conditions on antioxidant capacity,phenolic compounds,organic acid and individual sugars of strawberry[J].Food Chemistry,2014,155:298-303.

[35] 王小红,陈红,董晓庆.‘蜂糖李’果实发育过程中有机酸含量变化及其与苹果酸代谢相关酶的关系[J].果树学报,2018,35(3):293-300.WANG Xiaohong,CHEN Hong,DONG Xiaoqing. Changes in organic acids content during‘Fengtang’plum (Prunus salicina)fruit development in relation to malic acid metabolism related enzymes[J].Journal of Fruit Science,2018,35(3):293-300.

[36] 徐爱红,徐臣善,刘丽霞,刘丽云.授粉品种对‘红富士’苹果果实有机酸积累和代谢关键酶活性的影响[J].植物生理学报,2020,56(9):1955-1962.XU Aihong,XU Chenshan,LIU Lixia,LIU Liyun. Effects of pollination varieties on characteristics of organic acid accumulation and activities of organic acid- metabolizing enzymes in‘Red Fuji’apple fruit[J].Plant Physiology Journal,2020,56(9):1955-1962.

[37] 赵永红,李宪利,姜泽盛,王长健,杨富林.设施油桃果实发育过程中有机酸代谢的研究[J]. 中国生态农业学报,2007,15(5):87-89.ZHAO Yonghong,LI Xianli,JIANG Zesheng,WANG Changjian,YANG Fulin. Organic acid metabolism in nectarine fruit development under protected cultivation[J]. Chinese Journal of Eco-Agriculture,2007,15(5):87-89.

[38] 霍月青,胡红菊,彭抒昂,陈启亮.砂梨品种资源有机酸含量及发育期变化[J].中国农业科学,2009,42(1):216-223.HUO Yueqing,HU Hongju,PENG Shu’ang,CHEN Qiliang.Contents and changes of organic acid in sand pears from different germplasm resources[J]. Scientia Agricultura Sinica,2009,42(1):216-223.

[39] 张秀梅,杜丽清,孙光明,弓德强,陈佳瑛,李伟才,谢江辉.菠萝果实发育过程中有机酸含量及相关代谢酶活性的变化[J].果树学报,2007,24(3):381-384.ZHANG Xiumei,DU Liqing,SUN Guangming,GONG Deqiang,CHEN Jiaying,LI Weicai,XIE Jianghui.Changes in organic acid concentrations and the relative enzyme activities during the development of Cayenne pineapple fruit[J]. Journal of Fruit Science,2007,24(3):381-384.

[40] 李甲明,杨志军,张绍铃,黄小三,曹玉芬,吴俊.不同梨品种果实有机酸含量变化与相关酶活性的研究[J].西北植物学报,2013,33(10):2024-2030.LI Jiaming,YANG Zhijun,ZHANG Shaoling,HUANG Xiaosan,CAO Yufen,WU Jun. Change of organic acid contents and related enzyme activities in different pear cultivars[J].Acta Botanica Boreali- Occidentalia Sinica,2013,33(10):2024-2030.

Analysis of changes and correlations between calciums and organic acids in fruits of Cerasus humilis during different development stages

ZHANG Li,ZHANG Wei,GUO Jinli*
(College of Horticulture and Plant Protection,Inner Mongolia Agricultural University,Hohhot 010010,Inner Mongolia,China)

Abstract:【Objective】Calcium is an important nutritional component in fruits,however,the regulatory mechanisms of calcium in fruits is still limited.This study investigated the changes of organic acids,related metabolic enzymes, and different forms of calcium during the development of the fruits of Cerasus humilis, and analyzed the correlations between the calcium and organic acids.The purpose is to reveal the relationship between calcium accumulation and organic acid metabolism,and provide a theoretical basis for investigating the regulation of calcium in fruits.【Methods】The high-calcium and low-calcium C. humilis fruits from Inner Mongolia were used as research materials.The samples were collected at different stages of fruit development, including the young fruit stage (S1), hard kernel stage (S2),coloring and enlargement stage (S3), hardening stage (S4), and fully ripe stage (S5). Each fruit sample was washed with distilled water and then rapidly frozen in liquid nitrogen, and stored at-80 ℃. The progressive extraction method was used to extract water-soluble calcium,pectin calcium,calcium phosphate,oxalate calcium,and residual calcium in the fruits.The content of these forms of calcium was determined using flame atomic absorption spectrophotometry.The content of malic acid and citric acid in the C. humilis fruits were measured using high-performance liquid chromatography. Additionally, the activities of malic enzyme(NADP-ME)and malate dehydrogenase(NAD-MDH)were determined.The correlation between the organic acid metabolism and calcium accumulation was analyzed. The tests were repeated three times, with three biological repeats each time.【Results】(1) During the development and maturation of C.humilis fruits,the water-soluble calcium content in high-calcium and low-calcium C.humilis fruits showed an initial decrease followed by an increase,indicating an overall upward trend.In contrast,the total calcium,pectin calcium,calcium phosphate,and oxalate calcium contents exhibited an initial increase followed by a decrease, indicating an overall downward trend. The residual calcium content showed a continuous decrease throughout the process. At the fully ripe stage of the fruits,the low-calcium fruits exhibited higher levels of water-soluble calcium.However,the other calcium components and total calcium content were higher in the high-calcium fruits.Among these components, the proportion of active calcium was the highest, accounting for 70.29% in the high-calcium fruits and 68.30% in the low-calcium fruits. (2) During the development and maturation of C. humilis fruits, the patterns of NAD-MDH activity, malic acid content, and total organic acid content were consistent in high-calcium and low-calcium C.humilis fruits.They showed an initial increase followed by a decrease, reaching their peak values at the hard ripening stage, indicating a significant overall upward trend. Notably, the activity or content of these three factors was higher in the low-calcium fruits. The NADP-ME activity exhibited an overall decreasing trend. The citric acid content showed an initial increase followed by a decrease, reaching its highest value at the hard kernel stage, indicating an overall downward trend.The high-calcium fruits had higher content of citric acid.The activity of NAD-MDH was significantly and positively correlated with the content of malic acid,and was significantly and negatively correlated with the content of citric acid. The activity of the NADP-ME was significantly and negatively correlated with the content of malic acid and was significantly and positively correlated with the content of citric acid.There was a highly significantly negative correlation between the activities of the NADP-ME and NAD-MDH.(3)The correlation analysis revealed significantly positive correlations between the activity of the NAD-MDH,malic acid content,content of total organic acid and content of water-soluble calcium in high-calcium and low-calcium C. humilis fruits. They exhibited varying degrees of negative correlations with other forms of calcium and total calcium content. The activity of NADP-ME and the content of citric acid showed a highly significantly negative correlation with watersoluble calcium content. In addition, they exhibited significant or highly significantly positive correlations with other forms of calcium and total calcium content.【Conclusion】The accumulation of calciums in C. humilis fruits during the development and maturation was closely related to the organic acid metabolism.The malic acid is the predominant organic acid in C.humilis fruits.As the activity of NADMDH increases and the activity of NADP-ME decreases,the synthesis of malic acid would be enhanced while its degradation would be reduced, leading to an increase in malic acid accumulation. This increase in the malic acid contributed to the increase in the water-soluble calcium, which would inhibit the synthesis of the other calcium components.The increase of the citric acid content tended to promote the accumulation of the non-water-soluble calcium components such as pectin calcium, calcium phosphate,and oxalate calcium.

Key words:Cerasus humilis fruit;Calcium;Organic acids;Correlation analysis

中图分类号:S662.3

文献标志码:A

文章编号:1009-9980(2024)03-0494-11

DOI:10.13925/j.cnki.gsxb.20230493

收稿日期:2023-11-28

接受日期:2024-01-18

基金项目:内蒙古自治区直属高校科技领军人才和创新团队建设专项(BR22-11-11);内蒙古自治区科技成果转化专项(2019CG067);内蒙古农业大学新品种选育专项(YZGC2017019)

作者简介:张莉,女,在读博士研究生,研究方向为寒旱区果树生理生态。E-mail:1943280340@qq.com

*通信作者Author for correspondence.E-mail:guojinli1111@163.com