铁是植物生长发育过程中重要的矿物营养元素之一[1],主要以Fe3+离子的形式存在于土壤中,被植物吸收利用的效率较低[2]。当葡萄植株体内铁含量较低时,新梢和幼叶均会出现失绿黄化;缺铁严重时,会导致叶片光合作用、呼吸作用、蒸腾作用均受到抑制[3],同化作用降低或停止,植株营养不良,树体生长缓慢,对葡萄的品质及产量都有极大的影响[1]。河西走廊作为我国重要的酿酒葡萄产区,近年来葡萄种植面积和葡萄酒产量不断增加。在产业发展的过程中,酿酒葡萄种植施肥以传统的大量元素肥料为主,忽视了微量元素的投入[4],且该区域以碱性土壤为主,其中的矿质元素被葡萄吸收的有效性较低,使原本总量就不足的各类元素很难满足树体和果实正常生长的营养需求,极易出现因缺铁造成的叶片黄化,从而制约酿酒葡萄产业的发展。
纳米粒子是指尺寸小于100 nm的材料[5]。纳米材料在植物科学中具有重要的应用,如在植物基因工程中,纳米材料被用作载体,将质粒和蛋白质输送到整株植物中。随着绿色农业的发展,传统肥料导致的环境污染以及生产成本的增加等问题已逐渐凸显[6]。而纳米肥料、纳米保鲜材料、纳米农药等的应用极大促进了农业发展和环境改良。纳米肥料是以纳米材料为基础,结合化工技术进而聚合成的全新肥料,包括结构肥料和控释肥料[7]。研究发现,镁元素的纳米材料能够促进种子萌发,促进玉米幼苗的生长和提高光合效率[8-9]。Itroutwar等[10]分别对纳米氧化锌处理过的小麦和水稻种子进行了田间研究,发现该物质不仅能提高作物产量,还能提高粮食营养品质,并有助于粮食生物强化。纳米四氧化三铁可以作为花生的有效铁源,能够促进植物生长,提高光合效率、抗氧化防御功能和植物铁含量[11]。
纳米零价铁(nanoscale zero-valent iron,NZVI)是把铁原子按照纳米级别逐一叠加形成的铁,具有相对比表面积大、反应活性高的特点,粒径一般维持在l~100 nm之间,具有纳米材料的特殊金属性能[12],还具有超强吸附能力,强还原性,极易被氧化,常被作为特殊的催化剂和还原剂。前人研究发现,纳米零价铁对植物的萌发和生长有明显的生物效应,不仅会刺激花生的生长,还会穿透花生种子增加水分的吸收[13]。张莹等[14]的研究结果表明,0.5 g·L-1纳米零价铁可以促进拟南芥根系的伸长,促进效率为150%~200%。由此可见,纳米材料在对种子活力的提升、植株生长及生理反应中都有积极的效果。目前在酿酒葡萄栽培方面的研究多集中于穴施、滴施、树干注射的方式来补充树体生长所需的营养元素,而对纳米零价铁促进其叶片荧光特性和树体生长发育方面的研究仍较少。
施铁肥改善果树黄化问题的研究多集中在苹果、鲜食葡萄、梨枣等果树上[15],对酿酒葡萄的研究较少,且施肥方式以穴施、滴施、树干注射为主。笔者在本研究中以纳米零价铁作为铁源,采用叶面喷施的方式进行葡萄植株补铁,旨在分析纳米零价铁的应用可能性,并找出针对葡萄生长最合适的纳米零价铁浓度,探究不同浓度铁肥喷施对河西走廊武威产区酿酒葡萄的叶片荧光特性和树体生长发育指标的提升效果,为科学施用纳米零价铁肥和改善果实品质提供科学依据。
试验于2021 年在甘肃省武威市依诺酒庄进行(东经102°82′26″,北纬37°18′06″),采用东西朝向的单臂篱架栽培方式,基地采用“深沟、浅栽、机械化”模式。园区土壤为中性到弱碱性沙壤土,年均降水量为247 mm,年均日照时数为2 876.9 h,年均气温7.1 ℃。在试验期间,灌水量及灌溉时间严格按照“武威酿造葡萄滴灌配水定额”进行,常规生产管理按照管理日历进行抹芽、绑缚、去卷须、除草等。供试园区土壤(0~60 cm 土层)理化性状为:pH 7.88、有机质含量(w,后同)6.37 mg·kg-1,速效氮含量87.23 mg·kg-1,速效磷含量20.35 mg·kg-1,速效钾含量108.32 mg·kg-1。土壤中(0~60 cm土层)矿质元素基本含量:全钙含量66.23 g·kg-1、全镁含量10.28 g·kg-1、全铁含量14.39 g·kg-1、全锰含量280.55 mg·kg-1、全铜含量8.05 mg·kg-1、全锌含量48.65 mg·kg-1。
试验采用随机区组设计,以4 年生黑比诺大田葡萄苗为试验材料。试验共设6 个处理:5 个不同浓度(ρ,后同)纳米铁肥喷施处理5 mg·L-1(T1)、10 mg·L-1(T2)、15 mg·L-1(T3)、20 mg·L-1(T4)、25 mg·L-1(T5),以喷施清水为对照(CK)。利用超声振动(100 W 40 kHz)将纳米零价铁颗粒(甘肃谷硕纳米农业科技有限责任公司生产)分散到去离子水中,均匀喷施在叶面上。每个处理选取长势良好、无病虫害、整齐一致的葡萄树54 株,试验设3 次重复,喷施时间6月18日(花后15 d)开始,每隔15 d喷1次,共施肥5次。
新梢基部粗度:采用游标卡尺测量。
节间长度:采用卷尺从基部向上第2~3 节的节间长度开始测量。
叶片SPAD 值测定:在每个处理带有标签的植株上随机选取15片功能叶,随机选取3个不同部位(上、中、下)于09:00—11:00 采用手持托普TYS-B便携式SPAD 叶绿素含量测定仪(浙江托普)(精度为±1.0 SPAD 单位)测量叶片SPAD 值,每个叶片测定3次。
叶面积:使用作物叶片形态测定仪TPYX-A(浙江聚能仪器有限公司),随机选取各处理功能叶附近的30片叶进行测定。
叶片荧光参数:选取葡萄功能叶附近的叶片,将叶片充分暗适应30 min后,用JUNIOR-PAM叶绿素荧光测定仪(Walz公司,德国)在同一片叶子上测定其光合系统Ⅱ(PSⅡ)的主要参数,获取的参数主要包括初始荧光(F0)、最大荧光(Fm)、最大光合效率(Fv/Fm)、光化学淬灭(qP)、非光化学淬灭(NPQ)、电子传递速率(ETR)、实际光化学效率(ΦPSⅡ)荧光参数,3次重复。
光合作用相关参数于晴天10:00 左右进行,每处理随机选取6个结果枝,选择果穗以上1~2节位的叶片,使用Li-6400 型光合仪(河南福科智能化科技有限公司)在自然光源下测定净光合速率(Pn)、胞间CO2浓度(Ci)、气孔导度(Gs)和蒸腾速率(Tr)。在喷施纳米零价铁当天测定新梢基部粗度、叶片SPAD值和叶面积,每隔15 d测定1次,共测定5次。
叶片SPAD 值动态变化:于花后31 d 至37 d 选择相同叶片并标记,连续测定叶片SPAD值。
采用Excel 2010 进行数据处理,采用Origin 2021 软件绘图,使用SPSS 20.0 对数据进行显著性分析,采用单因素方差分析(One Way ANOVA)进行方差分析和多重比较,显著性水平为p<0.05。
2.1.1 纳米零价铁对葡萄叶面积的影响 由表1可知,各处理叶面积均呈现增加的趋势。花后60 d时,各处理的叶面积由大到小依次为T5>T4>T3>T2>T1>CK,分别较CK 增加了28.94%、22.55%、16.47%、10.7%和5.21%;花后75 d 时,T5 处理的叶面积最大,T4 处理的次之。花后30 d 至75 d,各处理的葡萄叶面积均大于CK,说明喷施纳米零价铁有利于葡萄叶面积的增大。
表1 纳米零价铁对葡萄叶面积的影响
Table 1 Effect of NZVI on leaf area of grapecm2
注:同列数据后标注不同小写字母表示处理间存在显著差异(p<0.05)。下同。
Note:Different small letters after the same column data indicate significant difference(p<0.05).The same below.
?
2.1.2 纳米零价铁对葡萄叶片SPAD值的影响 表2结果表明,叶片SPAD值呈现先加速增长后降低的趋势。花后30 d时,T3的SPAD值最大,与CK呈显著差异;花后45 d 时,T5 的SPAD 达到最大,较CK(41.97)显著提高了15.96%,而较T1 显著提高了10.04%;花后60 d时,T5的叶片SPAD值为50.50,较CK 显著提高了16.89%;花后75 d,各处理的叶片SPAD 值均显著高于CK;结果表明喷施纳米零价铁有利于增加葡萄叶片叶绿素相对含量。
表2 纳米零价铁对葡萄叶片SPAD 值的影响
Table 2 Effect of NZVI on SPAD value of grape leaves
?
2.1.3 纳米零价铁对葡萄叶片SPAD值动态变化的影响 进一步分析纳米零价铁对葡萄叶片SPAD值动态变化的影响,结果显示在喷施纳米零价铁的7 d内,叶片SPAD 值呈现逐渐增长的趋势,各处理较CK 均有明显的增长(表3)。花后31 d 时,T5 的SPAD 值最大,为45.32,各处理与CK 均无显著差异;花后32 d 时,各处理SPAD 值由大到小依次为T5>T4>T3>T1>CK>T2。花后35 d,T4 处理达到最大值50.78,较CK 显著提高了16.28%。花后37 d,T5 叶片SPAD 值为52.36,较CK 显著提高了22.14%。以上结果表明喷施纳米零价铁有利于短期内葡萄叶片叶绿素相对含量的快速增加。
表3 纳米零价铁对葡萄叶片SPAD 值动态变化的影响
Table 3 Effect of NZVI on dynamic change of SPAD value of grape leaves
?
2.1.4 纳米零价铁对葡萄新梢节间长度和粗度的影响 由表4可知,喷施纳米零价铁有利于葡萄新梢节间长度的增加,花后30 d,T2 处理新梢节间长度最大,为41.27 mm。花后45 d,T5处理新梢节间长度最大,为49.73 mm。花后60 d,各处理由大到小依次为T5(55.70 mm)>T2(52.33 mm)>T3(51.17 mm)>T4(49.73 mm)>CK(49.30 mm)>T1(48.80 mm)。花后75 d,各处理节间长均大于CK,T5和T2处理与CK 差异显著。花后90 d,各处理增量减小,T5 较CK显著增加了16.66%,较花后15 d增加了47.75%。
表4 纳米零价铁对葡萄新梢节间长度的影响
Table 4 Effects of NZVI on internode length of grape new shootsmm
?
由表5 可知,各处理枝条的基部粗度呈不同程度的增长趋势。花后45 d 时,T5 的基部粗度最大,为14.00 mm,T4 次之,为13.20 mm,分别较CK(12.97 mm)增加了7.94%和1.77%。花后60 d时,基部粗度由大到小依次为T5>T4>T3>CK(13.27 mm)>T2>T1;花后75 d 时,T5 处理的基部粗度最大,为14.33 mm,T1 的最小,为12.43 mm。花后90 d 时,T5 的基部粗度最大,为14.47 mm,T4 次之,且T1 比CK 小0.93 mm。以上结果表明,喷施纳米零价铁,有利于葡萄枝条基部粗度的增加,但差异不显著。
表5 纳米零价铁对葡萄新梢基部粗度的影响
Table 5 Effects of NZVI on base thickness of grape new shootsmm
?
2.2.1 纳米零价铁对葡萄叶片初始荧光(F0)和实际光化学效率的影响 分析叶片初始荧光(F0)的变化,结果发现,各处理叶片的初始荧光随着葡萄的生长发育呈先降低后升高的趋势,在花后60 d 或75 d达到最低(图1-A)。花后30 d,各处理初始荧光值在516.00~563.67 之间,各处理与CK 无显著差异。花后45 d,各处理间初始荧光由大到小依次为T1>T2>T3>T5>T4,较CK分别降低了2.17%、2.23%、10.09%、14.85%和14.5%,其中T1、T2 与CK 无显著差异,T3、T4、T5 与CK 呈显著差异。花后60 d,CK的初始荧光值最大,为472.67,T5 最小,为289.00。花后75 d,各处理的初始荧光值由大到小依次为CK(467.67)>T4(336.70)>T3(336.67)>T5(331.67)>
图1 纳米零价铁对葡萄叶片初始荧光和实际光化学效率的影响
Fig.1 Effect of NZVI on initial fluorescence and actual photochemical efficiency of grape leaves
不同小写字母表示不同处理在同一时期存在显著差异(p<0.05)。下同。
Different small letters represent significant difference among different treatments at the same period(p<0.05).The same below.
T1(291.33)>T2(243.67),各处理与CK 呈显著差异。由此可知,纳米零价铁处理可不同程度地降低葡萄叶片内的初始荧光。
此外,由图1-B可知,喷施适宜浓度的纳米零价铁肥可不同程度地提高花后60~90 d 葡萄叶片的实际光化学效率。花后30 d,T4 处理的效果最好;花后45 d,T1 和T2 处理的实际光化学效率低于CK,T4 处理显著高于CK。花后60 d,各处理实际光化学效率均高于CK,分别较CK(0.43)增加了4.65%、11.63%、13.95%、48.84%和37.21%。花后75 d,各处理由大到小依次为T4>T5>T3>T2>T1>CK。花后90 d,T4处理的最大荧光实际光化学效率最大,为0.52,比CK(0.37)显著增加了40.54%。
2.2.2 纳米零价铁对葡萄叶片PSⅡ最大光化学效率(Fv/Fm)的影响 由图2-A 可知,除T4 和T5 处理外,其他各处理叶片的PSⅡ最大光化学效率(Fv/Fm)随葡萄的生长发育呈先升后降的趋势。花后30 d,T3、T4和T5的Fv/Fm均高于CK,分别较CK(0.60)提高了1.78%、35.71%和32.14%,而其他处理Fv/Fm均低于CK;花后45 d,T3、T4、T5 的Fv/Fm均显著高于CK,花后60 d,各处理的Fv/Fm均显著高于CK;花后90 d,T4 处理的Fv/Fm最大,T2、T3、T4、T5 均显著高于CK,T1处理显著低于CK。
图2 纳米零价铁对葡萄叶片PSⅡ最大光化学效率和电子传递速率的影响
Fig.2 Effect of NZVI on the maximum photochemical efficiency and electron transfer rate of grape leaf PSⅡ
叶面喷施纳米零价铁均能不同程度地提高花后60~90 d葡萄叶片电子传递速率(图2-B)。花后30 d,各处理的电子传递速率由大到小依次为T1>T2>T4>T3>T5,其中T1 和T2 高于CK,T3、T4、T5 均低于CK。花后60 d,各处理电子传递效率增长迅速,增长率分别为CK(27.44%)、T1(106.31%)、T2(64.76%)、T3(86.84%)、T4(139.8%)、T5(207.43%)。花后75 d,各处理电子传递效率均达到最大值,且T5 最大,为52.73,比CK(27.87)显著提高89.2%。花后90 d,T2、T3、T4处理均显著高于CK、T1、T5处理。
2.2.3 纳米零价铁对葡萄叶片光化学淬灭系数(qP)和非光化学淬灭系数(qN)的影响 由图3-A可知,喷施纳米零价铁能够不同程度地提高花后45 d 叶片光化学淬灭系数,其中以T5 处理的效果最佳。花后30 d,各处理叶片光化学淬灭系数均高于CK。花后45 d,T5 处理的qP 最大,为0.8,较CK显著提高了48.15%;T4 处理次之,为0.74,比CK 显著提高了25.24%。花后60 d,T1、T2 和T3 处理的qP 均高于CK,分别比CK 提高了2.90%、11.59%和5.80%。花后75 d 和90 d,各处理的qP 由大到小依次为T2>T3>T1>T4>T5,均与CK差异不显著。
图3 纳米零价铁对葡萄叶片光化学淬灭系数和非光化学淬灭系数的影响
Fig.3 Effect of NZVI on the photochemical quenching coefficients and non photochemical quenching coefficients of grape leaves
图3 -B 表明,叶片非光化学淬灭系数随着葡萄的生长发育呈先升后降的趋势。花后30 d,T1处理的叶片非光化学淬灭系数最高,为0.66,其余各处理在0.48~0.57之间。花后45 d,各处理均高于CK,分别比CK 提高了9.38%、14.06%、21.88%、25.00%、28.13%,均有利于葡萄叶片qN的提高,以T5处理最佳。花后60 d,T2、T3 处理的qN 较CK 分别降低了5.48%、4.05%。花后75 d,各处理由大到小依次为T4(0.94)>T1(0.87)=T5(0.87)>CK(0.84)>T3(0.81)>T2(0.8)。花后90 d,各处理叶片非光化学淬灭系数相比于花后75 d 开始下降,各处理与CK差异不显著。
2.3.1 纳米零价铁对葡萄叶片净光合速率和气孔导度的影响 由图4-A 可知,喷施纳米零价铁能够不同程度地提高叶片的净光合速率。花后30 d,T2、T3、T4、T5 处理均高于CK,以T5 处理最高。花后45 d,各处理净光合速率均大于CK,由大到小依次为T5>T4>T3>T2>T1,分别较CK 提高35.13%、34.39%、24.37%、21.41%、5.38%。花后60 d,T5处理最高,为14.39 μmol·m-2·s-1。花后75~90 d,各处理均显著高于CK,以T5处理最高。
图4 纳米零价铁对葡萄叶片净光合速率和气孔导度的影响
Fig.4 Effect of NZVI on the net photosynthetic rate and stomatal conductance of grape leaves
通过分析葡萄植株叶片气孔导度的变化发现,叶面喷施纳米零价铁可以不同程度地提高葡萄叶片的气孔导度(图4-B)。花后30 d,各处理的气孔导度在0.07~0.09之间。花后45 d,各处理气孔导度均无明显变化。花后60 d,CK、T1、T2气孔导度增加,增长率分别为16.67%、28.57%、12.5%。花后75 d,各处理气孔导度均出现明显下降,CK、T1、T2、T3、T4、T5 比花后60 d 分别下降133.3%、125.0%、125.0%、80.0%、60.0%、80.0%。花后90 d,气孔导度降低到生育期最低值,在0.03~0.04之间,各处理与CK差异不显著。
2.3.2 纳米零价铁对葡萄叶片胞间CO2浓度和蒸腾速率的影响 由图5-A 可知,花后30 d,各处理叶片的胞间CO2浓度均小于CK,但差异不显著。花后45 d,各处理均大于CK,T1、T2、T3、T4、T5 较CK分别增长了0.98%、6.48%、11.06%、9.39%、14.56%。花后60 d,以T4 处理最大。花后75 d,各处理叶片的胞间CO2浓度均达到最大值,各处理与CK 差异不显著,且T2 最大,为386 μmol·mol-1,比CK 高7.62%。
图5 纳米零价铁对葡萄叶片胞间CO2浓度和蒸腾速率的影响
Fig.5 Effect of NZVI on intercellular CO2 concentration and transpiration rate in grape leaves
图5 -B 结果显示,花后30 d,各处理的蒸腾速率由高到低依次为T4>T5>T3>T2>T1。花后45 d,各处理变化较小,T4 处理叶片蒸腾速率达到生长期最大值,为5.08 mol·m-2·s-1,较CK 显著提高45.56%。花后60 d,各处理间无显著差异。花后75 d,各处理叶片蒸腾速率出现明显下降,其中T3较CK降低了1.17%。花后90 d,各处理均高于CK,其中T4 和T5 处理较CK 显著提高66.67%和71.93%。
通过对黑比诺葡萄新梢和叶片生长及光合特性共13 项指标进行主成分分析,结果如表6 所示。共提取出2 个主成分,各个主成分的特征值均大于1,且这2 个主成分的累积方差贡献率为90.63%,说明酿酒葡萄黑比诺的2个主成分总体上可以反映出各指标的大部分信息。对黑比诺葡萄新梢和叶片生长及光合特性进行综合评价,得出综合评价方程,结果如表6 所示,黑比诺葡萄的综合得分排名由高到低依次为T5>T4>T3>T2>T1>CK,根据得分高、处理效果好的原则,各处理表现为:T5 处理效果最佳,T4 次之,说明叶面喷施纳米零价铁质量浓度为25 mg·L-1(T5)效果最佳。
表6 不同处理对黑比诺葡萄新梢和叶片生长及光合特性的主成分得分表
Table 6 Principal component scores of different treatments on growth and photosynthetic characteristics of new shoots and leaves of Pinot Noir grapes
?
铁作为一种必需的微量元素,在植物的生长发育过程中发挥着重要的生理作用,如促进其生长发育、光合作用以及叶绿素的合成[16]。目前,纳米零价铁在植物中被广泛研究,喷施纳米零价铁在植物中的促进作用主要集中在以下几个方面:改善土壤环境、促进根系生长、增强植物免疫力、促进植物光合作用、促进植物营养吸收。其中,路轲[17]研究发现,在适当的浓度下,纳米零价铁能够促进植物叶片的叶面积增加。Rokonuzzaman等[18]也发现,在喷施适宜浓度的纳米零价铁后,会对植物的生长发育产生积极的作用。在本研究中,花后30 d 至75 d 期间,经过纳米零价铁处理的葡萄植株叶面积明显大于对照(CK),这说明纳米零价铁的喷施有助于增大葡萄叶片的表面积。此外,纳米零价铁的喷施还促使葡萄枝条基部变粗和节间伸长,其中以T5(25 mg·L-1)处理效果最佳。这一研究结果与前人的研究结果一致。
植物体中有大约90%的干物质积累都是由光合作用产生的[19],且叶绿素在光合作用中起着非常关键的作用,它的含量能够反映出植株对外部光照的适应性和光合作用的强度,高的叶绿素含量有助于维持高的光合速度,从而提高植株的光合速率[20-21]。前人研究发现,喷施纳米零价铁对植物的光合作用有明显的促进作用[22]。高圆圆[23]研究了纳米零价铁对小麦作物的影响,结果表明,开始阶段纳米零价铁对小麦的发芽率、植株生长和叶绿素含量均无影响,经过5 d的水溶性培养后,小麦的抗氧化酶活性显著增强,明显促进了小麦的生长。在本研究中,与对照相比,各处理均显著增加了花后45~90 d 葡萄叶片的SPAD 值。此外,连续喷施纳米零价铁对葡萄叶片SPAD 值日变化也有影响,喷施7 d 内各处理SPAD增量明显,增速较快,尤其T5(25 mg·L-1)处理效果最佳。
植物体内的叶绿素荧光参数可以用来指示植物体内光合产物的吸收、转化和生理状态的变化。这些变化不仅会影响碳循环的动态平衡,还会对植物的生长发育起到重要的作用[24-26]。叶绿素荧光被广泛用于指示光合细胞对环境胁迫的响应[27],能够反映光系统对光能的吸收和传递能力[28-30]。在叶绿素荧光参数中,Fv/Fm(PSⅡ最大光能转换效率)值越大,表示PSⅡ光能转化效率越高,其PSⅡ活性越强[31]。实际光化学效率指的是在叶片吸收的光能中,用于光合电子转移的能量占比高低。实际光化学效率通常意味着高光合效率,具体包含了高效的光子吸收和电子转移[32],用于暗反应中碳同化的能量。PSⅡ功能降低,实际光化学效率也随之下降。光合电子传递效率(ETR)主要反映了实际光照条件下的表观电子传递效率[33]。qP 是光合作用导致的光化学淬灭系数,它反映了PSⅡ天线色素在光合电子转移过程中所吸收的光能所占的比例[34]。NPQ指的是PSⅡ天然色素吸收的不能用于光合电子转移,而以热能的形式耗散掉的光能部分,它反映了光系统对过剩光能的耗散能力[35]。本研究中,不同时期叶面喷施不同浓度纳米零价铁肥均可不同程度提高叶片实际光化学效率(花后60~90 d)、光化学淬灭系数(花后30~45 d)、电子传递速率(花后60~90 d),说明叶面喷施纳米零价铁肥可增强黑比诺酿酒葡萄的光合活性,提高其叶片PSⅡ光能转化效率和光能利用率,降低通过非光化学途径的能量耗散,最终增加积累的光合产物。
光合作用不仅受叶片叶绿素含量的影响,也受气孔因素的影响,通过增加葡萄叶片的气孔密度和开度,减少叶片的气孔阻力,从而增加叶片的气孔导度和净光合速率,而且蒸腾速率的改变与气孔的改变存在着一定的联系[36]。前人研究表明,叶片中铁元素的含量与净光合速率和蒸腾速率存在相关性[37]。气孔是植物叶片与外界气体进行交换的主要组织结构,控制着CO2的进出以及植物叶片的蒸腾作用,从而影响植物的光合速率[38]。与此同时,植物的蒸腾作用是植物体内水分循环的重要过程之一,而植物体内的铁含量对蒸腾作用也有一定影响。因此,增加土壤中的可溶性铁含量可能会提高植物的蒸腾速率[39]。本研究结果表明,叶面喷施适宜质量浓度(25 mg·L-1)纳米零价铁有助于提高葡萄叶片的蒸腾速率。缺铁还会导致叶片失绿和叶片光合作用效率下降,影响叶片的功能[40]。而纳米零价铁颗粒具有较大的比表面积,能够更好地与土壤接触,增加土壤中的可溶性铁含量,能提高植物对铁的吸收能力,从而影响植物的光合作用[41]。作为植物微量元素供应源,纳米零价铁促进了光合作用过程中所需的营养元素供应,提高植物的养分吸收能力,从而提高净光合速率。此外,纳米零价铁还能增加叶绿素含量[42],促进氮的吸收和利用,提升光能的吸收和利用效率,进而提高净光合速率[43]。本研究结果与前人研究结果基本一致。
喷施适宜浓度的纳米零价铁肥能显著提升植株叶片光合荧光参数、叶绿素相对含量、新梢基部粗度、节间长度等,对净光合速率、蒸腾速率的提高有促进作用,以25 mg·L-1(T5)质量浓度处理效果最佳。
[1] LIU Z G,FADIJI T,YANG J,LI Z G,TCHUENBOU-MAGAIA F.Impact of mechanical stimulation on the life cycle of horticultural plant[J]. Horticultural Plant Journal,2023,9(3):381-394.
[2] 赵文,王利娜,刘伟锋,魏喜喜,刘丰鸣,黄瑶,孙佳,万胜,李建贵,张国林.南疆枣园土壤产铁载体细菌的群落结构[J].经济林研究,2022,40(3):109-117.ZHAO Wen,WANG Lina,LIU Weifeng,WEI Xixi,LIU Fengming,HUANG Yao,SUN Jia,WAN Sheng,LI Jiangui,ZHANG Guolin. Community structure of soil siderophores bacteria in jujube orchards in southern Xinjiang[J]. Non-wood Forest Research,2022,40(3):109-117.
[3] FACCO D B,TRENTIN E,DRESCHER G L,HAMMERSCHMITT R K,CERETTA C A,DA SILVA L S,BRUNETTO G,FERREIRA P A A. Chemical speciation of copper and manganese in solution of a copper-contaminated soil and young grapevine growth with amendment application[J]. Pedosphere,2023,33(3):496-507.
[4] ZHAO F X,CHEN S W,PERL A,DAI R,XU H Y,MA H Q.The establishment of an Agrobacterium-mediated transformation platform for the non-embryogenic calli of Vitis vinifera L.[J].Agricultural Sciences in China,2011,10(5):686-694.
[5] SADABADI H,ALLAHKARAM S R,KORDIJAZI A,AKBARZADEH O,ROHATGI P K. Structural characterization of LaCoO3 perovskite nanoparticles synthesized by sol-gel autocombustion method[J].Engineering Reports,2021,3(6):e12335.
[6] HUANG Y X,LI Y R,LIU Y S. Optimizing field management to promote the ecologicalization of agriculture in loess hilly-gully region,China[J]. Journal of Geographical Sciences,2023,33(5):1055-1074.
[7] 刘少泉,刘智,迟永伟,孙权,王锐,周喜荣.纳米肥料助剂与氮肥配施对白菜生长、产量、品质及土壤酶活性的影响[J].河南农业大学学报,2020,54(4):589-596.LIU Shaoquan,LIU Zhi,CHI Yongwei,SUN Quan,WANG Rui,ZHOU Xirong. Effects of the mixed application of nanofertilizer additives and nitrogen fertilizer on the growth,yield,quality and soil enzyme activity of Chinese cabbage[J]. Journal of Henan Agricultural University,2020,54(4):589-596.
[8] SHARMA A,SHARMA R,THAKUR R C,SINGH L.An overview of deep eutectic solvents:Alternative for organic electrolytes,aqueous systems & ionic liquids for electrochemical energy storage[J].Journal of Energy Chemistry,2023,82:592-626.
[9] SHINDE S,PARALIKAR P,INGLE A P,RAI M.Promotion of seed germination and seedling growth of Zea mays by magnesium hydroxide nanoparticles synthesized by the filtrate from Aspergillus niger[J]. Arabian Journal of Chemistry,2020,13(1):3172-3182.
[10] ITROUTWAR P D,GOVINDARAJU K,TAMILSELVAN S,KANNAN M,RAJA K,SUBRAMANIAN K S.Seaweed-based biogenic ZnO nanoparticles for improving agro-morphological characteristics of rice (Oryza sativa L.)[J]. Journal of Plant Growth Regulation,2020,39(2):717-728.
[11] 韩喜国,杨波,于德彬,徐长洪,孟凡钢,邱强,赵婧,张鸣浩,闫晓艳,张伟.石灰性缺铁土壤不同铁效率大豆品种产量及相关性状对Fe-EDDHA 肥的响应[J].中国油料作物学报,2022,44(6):1329-1336.HAN Xiguo,YANG Bo,YU Debin,XU Changhong,MENG Fangang,QIU Qiang,ZHAO Jing,ZHANG Minghao,YAN Xiaoyan,ZHANG Wei. Response of yield and related traits of soybean varieties with different iron efficiency to Fe-EDDHA fertilizer in calcareous iron-deficient soils[J]. Chinese Journal of Oil Crop Sciences,2022,44(6):1329-1336.
[12] 金旭,刘方,杜嬛,华超,公旭中,张秀芹,汪滨.纳米纤维负载型纳米零价铁基材料在环境修复中的应用研究进展[J].纺织学报,2022,43(3):201-209.JIN Xu,LIU Fang,DU Xuan,HUA Chao,GONG Xuzhong,ZHANG Xiuqin,WANG Bin. Research progress in nanofiber supported nano zero-valent-iron based materials in environmental remediation[J].Journal of Textile Research,2022,43(3):201-209.
[13] 马晓琳,何恩静,肖翔.纳米材料的非毒性环境效应研究进展[J].生态毒理学报,2021,16(1):15-27.MA Xiaolin,HE Enjing,XIAO Xiang. Research progress on non-toxic environmental effects of nanomaterials[J].Asian Journal of Ecotoxicology,2021,16(1):15-27.
[14] 张莹,陈光才,刘泓.纳米颗粒的土壤环境行为及其生态毒性研究进展[J].江苏农业科学,2018,46(13):8-12.ZHANG Ying,CHEN Guangcai,LIU Hong. Research progress on soil environmental behavior and ecological toxicity of nanoparticles[J]. Jiangsu Agricultural Sciences,2018,46(13):8-12.
[15] 张丽,古超峰,王锐.叶面补铁对贺兰山东麓酿酒葡萄生理调节及品质提升的影响[J].中国土壤与肥料,2021(6):233-238.ZHANG Li,GU Chaofeng,WANG Rui. Effects of foliar iron supplement on physiological regulation and quality improvement of wine grapes in eastern Helan Mountains[J].Soil and Fertilizer Sciences in China,2021(6):233-238.
[16] 张恒,陈锐帆,林嘉蓓,邓小梅,奚如春.微量元素在林木中的应用研究进展[J].南京林业大学学报(自然科学版),2022,46(5):229-239.ZHANG Heng,CHEN Ruifan,LIN Jiabei,DENG Xiaomei,XI Ruchun. A review on the application of microelements in forests[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2022,46(5):229-239.
[17] 路轲.喷施不同纳米材料对水稻幼苗生长和磷吸收的影响[D].北京:中国农业科学院,2020.LU Ke. Effects of spraying different nanomaterials on growth and phosphorus uptake of rice seedlings[D]. Beijing:Chinese Academy of Agricultural Sciences,2020.
[18] ROKONUZZAMAN M,LI W C,MAN Y B,TSANG Y F,YE Z H. Arsenic accumulation in rice:Sources,human health impact and probable mitigation approaches[J].Rice Science,2022,29(4):309-327.
[19] COOLEDGE E C,CHADWICK D R,SMITH L M J,LEAKE J R,JONES D L.Agronomic and environmental benefits of reintroducing herb-and legume-rich multispecies leys into arable rotations:A review[J]. Frontiers of Agricultural Science and Engineering,2022,9(2):245-271.
[20] 刘兆新,刘妍,刘婷如,何美娟,姚远,杨坚群,甄晓宇,栗鑫鑫,杨东清,李向东.控释复合肥对麦套花生光系统Ⅱ性能及产量和品质的调控效应[J].作物学报,2017,43(11):1667-1676.LIU Zhaoxin,LIU Yan,LIU Tingru,HE Meijuan,YAO Yuan,YANG Jianqun,ZHEN Xiaoyu,LI Xinxin,YANG Dongqing,LI Xiangdong. Effect of controlled-release compound fertilized on photosystem Ⅱperformance,yield and quality of intercropped peanut with wheat[J]. Acta Agronomica Sinica,2017,43(11):1667-1676.
[21] 陆志峰,鲁剑巍,潘勇辉,鲁飘飘,李小坤,丛日环,任涛.钾素调控植物光合作用的生理机制[J]. 植物生理学报,2016,52(12):1773-1784.LU Zhifeng,LU Jianwei,PANYonghui,LU Piaopiao,LI Xiaokun,CONG Rihuan,REN Tao. Physiological mechanisms in potassium regulation of plant photosynthesis[J].Plant Physiology Journal,2016,52(12):1773-1784.
[22] SOLIEMANZADEH A,FEKRI M. Effects of green iron nanoparticles on iron changes and phytoavailability in a calcareous soil[J].Pedosphere,2021,31(5):761-770.
[23] 高园园.三种纳米材料对小麦种子萌发的影响[J].东莞理工学院学报,2021,28(3):128-132.GAO Yuanyuan. The effects of three nanomaterials on wheat seed germination[J]. Journal of Dongguan University of Technology,2021,28(3):128-132.
[24] 徐兴利,金则新,何维明,王兴龙,车秀霞.不同增温处理对夏蜡梅光合特性和叶绿素荧光参数的影响[J].生态学报,2012,32(20):6343-6353.XU Xingli,JIN Zexin,HE Weiming,WANG Xinglong,CHE Xiuxia. Effects of different day/night warming on the photosynthetic characteristics and chlorophyll fluorescence parameters of Sinocalycanthus chinensis seedlings[J]. Acta Ecologica Sinica,2012,32(20):6343-6353.
[25] 王义婧,李岩,徐胜,何兴元,陈玮,吴娴.高浓度臭氧对美国薄荷(Monarda didyma L.)叶片光合及抗性生理特征的影响[J].生态学杂志,2019,38(3):696-703.WANG Yijing,LI Yan,XU Sheng,HE Xingyuan,CHEN Wei,WU Xian.Effects of elevated ozone concentrations on photosynthetic and resistant physiological characteristics of Monarda didyma L. leaves[J]. Chinese Journal of Ecology,2019,38(3):696-703.
[26] 齐晓媛,王文莉,胡少卿,刘梦雨,郑成淑,孙宪芝.外源褪黑素对高温胁迫下菊花光合和生理特性的影响[J].应用生态学报,2021,32(7):2496-2504.QI Xiaoyuan,WANG Wenli,HU Shaoqing,LIU Mengyu,ZHENG Chengshu,SUN Xianzhi.Effects of exogenous melatonin on photosynthesis and physiological characteristics of chrysanthemum seedlings under high temperature stress[J]. Chinese Journal of Applied Ecology,2021,32(7):2496-2504.
[27] 马红喜,刘俐君,苏永峰,张德恩,袁引燕,鲁晓燕.基于转录组测序筛选新疆野苹果组培苗应答冻害光合特性相关基因[J].果树学报,2022,39(9):1529-1539.MA Hongxi,LIU Lijun,SU Yongfeng,ZHANG Deen,YUAN Yinyan,LU Xiaoyan. Screening of freezing stress-responsive genes related to photosynthesis in in vitro seedlings of Malus sieversii via RNA-seq[J]. Journal of Fruit Science,2022,39(9):1529-1539.
[28] 石嘉琦,刘宇庆,王艳玲,杨再强.施氮对高温胁迫下黄瓜果期荧光特性的影响[J].华北农学报,2022,37(2):84-95.SHI Jiaqi,LIU Yuqing,WANG Yanling,YANG Zaiqiang. Effects of nitrogen application on fluorescence characteristics of cucumber in fruit growth stage under high temperature stress[J].Acta Agriculturae Boreali-Sinica,2022,37(2):84-95.
[29] 逯久幸,苗润田,王司琦,赵鹏飞,张开明,李永华.低温胁迫下秋菊叶片光系统特性分析[J].植物生理学报,2022,58(2):425-434.LU Jiuxing,MIAO Runtian,WANG Siqi,ZHAO Pengfei,ZHANG Kaiming,LI Yonghua. Analysis of photosystem features in autumn chrysanthemum leaves under low temperature stress[J].Plant Physiology Journal,2022,58(2):425-434.
[30] 王泳超,张颖蕾,闫东良,何灵芝,李卓,燕博文,邵瑞鑫,郭家萌,杨青华.干旱胁迫下γ-氨基丁酸保护玉米幼苗光合系统的生理响应[J].草业学报,2020,29(6):191-203.WANG Yongchao,ZHANG Yinglei,YAN Dongliang,HE Lingzhi,LI Zhuo,YAN Bowen,SHAO Ruixin,GUO Jiameng,YANG Qinghua. Physiological role of γ-aminobutyric acid in protecting the photosynthetic system of maize seedlings under drought stress[J]. Acta Prataculturae Sinica,2020,29(6):191-203.
[31] 王晓芳,相昆,孙岩,崔冬冬,亓雪龙,王来平,翟衡,李勃.叶面肥对‘巨峰’葡萄光氧化胁迫的缓解效应[J].果树学报,2017,34(3):312-320.WANG Xiaofang,XIANG Kun,SUN Yan,CUI Dongdong,QI Xuelong,WANG Laiping,ZHAI Heng,LI Bo.Protective effects of foliar fertilizer on‘Kyoho’grape under photooxidation[J].Journal of Fruit Science,2017,34(3):312-320.
[32] 蔡倩,白一光.果粮间作对仁用杏生长及叶绿素荧光参数的影响[J].农业科技与装备,2020(6):1-4.CAI Qian,BAI Yiguang. Effect of fruit-grain intercropping on growth and chlorophyll fluorescence parameters of kernel-apricot[J].Agricultural Science &Technology and Equipment,2020(6):1-4.
[33] XU Y X,ZHANG J,WAN Z Y,HUANG S X,DI H C,HE Y,JIN S H. Physiological and transcriptome analyses provide new insights into the mechanism mediating the enhanced tolerance of melatonin-treated rhododendron plants to heat stress[J]. Journal of Integrative Agriculture,2023,22(8):2397-2411.
[34] 赵昕,宋瑞清,阎秀峰.接种AM 真菌对喜树幼苗生长及光合特性的影响[J].植物生态学报,2009,33(4):783-790.ZHAO Xin,SONG Ruiqing,YAN Xiufeng. Effects of arbuscular mycorrhizal fungal inoculation on growth and photosynthesis of Camptotheca acuminata seedlings[J]. Chinese Journal of Plant Ecology,2009,33(4):783-790.
[35] 王建华,任士福,史宝胜,刘炳响,周玉丽.遮荫对连翘光合特性和叶绿素荧光参数的影响[J].生态学报,2011,31(7):1811-1817.WANG Jianhua,REN Shifu,SHI Baosheng,LIU Bingxiang,ZHOU Yuli.Effects of shades on the photosynthetic characteristics and chlorophyll fluorescence parameters of Forsythia suspensa[J].Acta Ecologica Sinica,2011,31(7):1811-1817.
[36] 田钰君,许云飞,郭延平.叶面喷施钾肥对无花果光合生理和叶绿素荧光特性的影响[J].西北农林科技大学学报(自然科学版),2023,51(7):126-132.TIAN Yujun,XU Yunfei,GUO Yanping. Effects of foliar potassium application on photosynthetic physiology and chlorophyll fluorescence characteristics of Ficus carica L.[J]. Journal of Northwest A&F University(Natural Science Edition),2023,51(7):126-132.
[37] 张嘉宇,焦晓聪,宋小明,丁崌平,柏萍,李建明.水汽压差与钾素互作对高温下番茄营养吸收与光合特性的影响[J].干旱地区农业研究,2020,38(6):30-38.ZHANG Jiayu,JIAO Xiaocong,SONG Xiaoming,DING Juping,BAI Ping,LI Jianming. Effect of VPD and potassium interactions on nutrient uptake and photosynthetic properties of tomato under high temperature[J].Agricultural Research in the Arid Areas,2020,38(6):30-38.
[38] WANG S,WANG X D,SHI X B,WANG B L,ZHENG X C,WANG H B,LIU F Z. Red and blue lights significantly affect photosynthetic properties and ultrastructure of mesophyll cells in senescing grape leaves[J].Horticultural Plant Journal,2016,2(2):82-90.
[39] XIN M,QIN Z W,YANG J,ZHOU X Y,WANG L. Functional analysis of the nitrogen metabolism-related gene CsGS1 in cucumber[J].Journal of Integrative Agriculture,2021,20(6):1515-1524.
[40] 曾甜,李春兰,宋金龙,周奥特,吴玉霞,何天明.缺铁处理对不同梨品系叶片生长及光合特性的影响[J]. 山东农业科学,2019,51(10):91-95.ZENG Tian,LI Chunlan,SONG Jinlong,ZHOU Aote,WU Yuxia,HE Tianming.Effects of iron deficiency on leaf growth and photosynthetic characteristics of different pear varieties (lines)[J].Shandong Agricultural Sciences,2019,51(10):91-95.
[41] 王维大,林薇,李玉梅,张连科,韩剑宏.黑炭负载零价铁对复合污染土壤中铜和铬的稳定化效果及生物有效性影响[J].环境工程学报,2019,13(4):944-954.WANG Weida,LIN Wei,LI Yumei,ZHANG Lianke,HAN Jianhong.Effect of zero-valent iron loaded black carbon on the stabilization effects and bioavilability of copper and chromium in combined contaminated soil[J]. Chinese Journal of Environmental Engineering,2019,13(4):944-954.
[42] AMEN T W M,ELJAMAL O,KHALIL A M E,MATSUNAGA N. Wastewater degradation by iron/copper nanoparticles and the microorganism growth rate[J]. Journal of Environmental Sciences,2018,74:19-31.
[43] CHEN L M,ZHAO D B,HAN G Z,YANG F,GONG Z T,SONG X D,LI D C,ZHANG G L. Iron loss of paddy soil in China and its environmental implications[J]. Science China Earth Sciences,2022,65(7):1277-1291.
Effects of nano zero-valent iron on the growth and photosynthetic characteristics of the new shoots and leaves of Pinot Noir in Wuwei production area