据FAO 统计,2021 年全球桃树种植面积为150.47万hm2,产量为2 499.44万t,我国桃树种植面积达82.50 万hm2,产量达到1 601.65 万t,在全球比重分别为54.83%、64.08%,均位列全球第一,我国桃产业总产值近千亿元,是助推乡村产业兴旺、农民生活富裕的重要经济支柱[1]。树形结构影响桃果实产量、品质及经济效益,是制定栽培管理措施的重要因素[2-3]。桃树常见的树形有自然开心形、主干形、Y字形等,生产中存在修剪操作复杂、树体高大、内膛光照不良、结果部位外移等问题,无法满足生产者的需求。如何选择合适的树形,改善和提高树冠内层光分布,是科研工作者普遍关注的问题,因此有必要对高光效、省力化、轻简宜机树形进行探索研究[4-5]。
中农早珍珠是从秋红珠的实生后代中选育出的早熟油桃新品种,平均单果质量72.9 g,可溶性固形物含量14.1%,风味浓甜,深受消费者喜爱[6]。笔者以促早栽培的中农早珍珠为研究对象,通过研究主干形、水平中心干多直立主枝形[7]、对向V形[8]、水平中心干多对向V形[9]4种树形对树体冠层结构、光合作用和果实品质等指标的影响,筛选设施促早栽培中农早珍珠适宜的高光效省力化树形,为高效优质栽培提供理论依据。
试验于2023 年1—6 月在中国农业科学院果树研究所砬山试验基地进行。供试品种为4 年生容器栽培桃中农早珍珠,容器栽培选用圆形塑料种植盆,高28 cm,直径43 cm,试材摆放深度为23 cm,于2021 年上半年完成树形培养,树形采用主干形(A)、水平中心干多直立主枝形(B)、对向V 形(C)、水平中心干多对向V 形(D),树形示意图见图1。
图1 各树形示意图
Fig.1 Diagram of each tree shape
A.主干形;B.水平中心干多直立主枝形(1.主干;2.主枝;3.水平中心干;4.结果枝);C.对向V 形;D.水平中心干多对向V 形。下同。
A.Trunk shape;B.Horizontal center stem with many erect main branches(1.Trunk 2.Main branch 3.Horizontal central stem 4.Bearing branch);C.Opposite V shape;D.Horizontal center stem with multiple groups of opposite V shape.The same below.
试验设置4种树形行株距均为2 m×1 m,南北行向,单株小区,3 次重复。A 树高2 m,定干高度(第一结果枝距种植盆内地上部分与地下部分交界处)40 cm,东西冠幅175 cm,南北冠幅100 cm。B 树高2.5 m,定干高度65 cm,东西冠幅140 cm,直立主枝间距50 cm,行向留结果枝。C树高1.5 m,定干高度90 cm,东西冠幅200 cm,南北冠幅140 cm,两主干枝夹角为90°~100°。D树高1.5 m,定干高度80 cm,东西冠幅190 cm,南北冠幅130 cm,两主干枝夹角为90°~100°。
选取长势基本一致的树体作为试材,应用冠层分格方法[10-11],结合不同树形具体的树体结构参数,将A 树冠垂直方向上划分为下层(距地面小于0.8 m)、中层(距地面0.8~1.3 m)、上层(距地面大于1.3 m),在水平方向上东西距主干距离划分为0.3 m、0.6 m、0.9 m,南北距主干距离划分为0.2 m、0.4 m、0.6 m。将B树冠垂直方向上划分为下层(距地面小于1.3 m)、中层(距地面1.3~1.9 m)、上层(距地面大于1.9 m),在水平方向上东西距主干距离划分为0.3 m、0.6 m、0.9 m,南北距主干距离划分为0.25 m、0.50 m、0.75 m。将C 树冠垂直方向上划分为下层(距地面小于1.1 m)、中层(距地面1.1~1.3 m)、上层(距地面大于1.3 m),在水平方向上东西距主干距离划分为0.3 m、0.6 m、0.9 m,南北距主干距离划分为0.2 m、0.4 m、0.6 m。将D树冠垂直方向上划分为下层(距地面小于1.0 m)、中层(距地面1.0~1.2 m)、上层(距地面大于1.2 m),在水平方向上东西距主干距离划分为0.3 m、0.6 m、0.9 m,南北距主干距离划分为0.2 m、0.4 m、0.6 m。
1.3.1 冠层指标测定 应用冠层分格法,于叶幕形成期,选择典型的晴天,用TSE-1332 型数字式照度计,测定树冠内不同层次、不同方位的相对光照度值,在距地面2.5 m、距墙体3 m、行间无遮挡的地方测量空白值,连续测定3 d,每次的测量时间为10:00、14:00,以测量数据平均值作为不同层次不同部位的相对光照度值[12]。统计树冠不同层次方格空间的相对光照度。
在叶幕稳定期,选择阴天或者傍晚,利用冠层/半球影像分析系统(scanopy analysis with fish-eye imaging)测定各树形冠层的总孔隙度、开度、叶面积指数和叶幕光能截获率[冠层总辐射(total over per day,PPFD,mol·m-2·d-1)和叶幕下总辐射(total under per day,PPFD,mol·m-2·d-1)的差值与冠层总辐射的比值][13]。
1.3.2 光合性能测定 2023 年5 月中旬,选择典型的晴天,06:30 至18:30 每隔3 h 进行1 次田间测定,选取试材东南方向、外围枝条的成熟叶片,使用CIRAS-2光合仪测定叶片的净光合速率(Pn)。不同树形叶片一天光合的净积累量计算方法:用origin 求曲线积分面积。
1.3.3 果实品质指标测定 在果实成熟期从各个处理每株树的3 层各随机均匀摘选果形端正、无病虫害的10 个果实,带回实验室测定果实品质。采用BL-500S型电子天平称量单果质量;采用CR-400手持色差计测定阴阳果面色差;采用折光仪(PAL-1,日本)测定可溶性固形物含量;采用全自动电位滴定仪(905,瑞士万通公司)测定可滴定酸含量;采用物性分析仪(TA.HD.Plus,英国)测定果肉硬度;采用钼蓝比色法测定果实维生素C 含量。3 次重复,计算平均值。
采用固相微萃取结合气相质谱联用仪测定香气组分和含量,具体方法参照Ji 等[14]的报道。称取200 g样品进行匀浆,称取5 g匀浆于20 mL气相顶空瓶中,加入1 g 氯化钠和5 μL 2-辛醇(0.812 g·L-1),压盖器密封,-80 ℃保存待测。样品瓶40 ℃水浴恒温平衡10 min,将Supelco 50/30 μm PDMS/CAR/DVB 固相微萃取头插入样品瓶顶空部分,40 ℃水浴30 min 萃取香气组分;Agilent 7890A-5975C 气相色谱-质谱联用仪测定香气组分。数据分析使用系统自带的色谱工作站,积分参数为初始面积截除10 000,初始峰宽0.1,肩峰检测OFF,初始阈值5.0;谱库选择NIST11标准谱库;采用2-辛醇内标法对香气成分进行定量分析。
采用Excel 2021 软件整理试验数据,采用SPSS 26.0 软件对数据进行单因素方差分析及主成分分析,采用Excel 2021软件及Matlab软件绘图。
2.1.1 相对光照度立体分布 不同树形处理下,中农早珍珠油桃树体冠层光照分布存在较大差异。从图2 可以看出,A、B 冠层内相对光照度分布总趋势是由外到内、由上到下递减,C、D 树体上、下层相对光照度分布较均匀,中层的相对光照度分布由外到内递增。
图2 不同树形的相对光照度分布
Fig.2 Relative light intensity distribution of different tree shapes
EW.东西距离;SN.南北距离;H.高度。颜色标尺代表相对光照度(%)。
EW.East-west distance;SN.South-north distance;H.Height.The color scale represents the relative light intensity(%).
统计各树体冠层不同区域相对光照度,由表1可知,平均相对光照度由高到低的树形依次是C(62.70%)、D(61.67%)、B(60.78%)、A(56.54%)。相对光照度低于40%的冠层区域属于低光效区域[12]。C、D 的低光效区比例显著低于A、B 的低光效区比例,且与A 相比分别降低了10.75、6.10 个百分点。在所有处理中,C 相对光照度大于40%的区域占比最大,为77.73%,显著高于其他3个树形。
表1 不同树形处理树体不同相对光照度区域占总冠层空间的比例
Table 1 The ratio of relative light intensity to total canopy space among different tree shapes
注:同列不同小写字母表示处理间差异显著(p<0.05)。下同。
Note:Different small letters in the same column indicate significant difference at 0.05 level.The same below.
?
2.1.2 冠层特征参数 从表2 可以看出,总孔隙度与开度呈正相关,A、B 的总孔隙度与开度显著高于C、D,其中,B 的总孔隙度、开度均为最大,分别是36.21%、38.09%;D 最小,分别是11.10%、11.43%。叶面积指数与总孔隙度和开度趋势相反,C、D 的叶面积指数显著高于A、B。数据表明,树体叶面积指数越大,结构越紧凑,光能截获率越高,C、D 的光能截获率高于其他两种树形,分别为92.70%、90.83%。
表2 不同树形冠层特性比较
Table 2 Comparison of canopy characteristics in different tree shapes
?
由图3、图4、图5 可知,4 种树形的净光合速率日变化均呈单峰曲线。在树体上、中层,C、D的净光合速率在一天中的大部分时间段均高于A、B。在树体下层,4 种树形的净光合速率在12:30 时达到峰值,此时净光合速率由高到低依次为C>D>B>A,分别为20.65、18.38、15.95、15.60 μmol·m-2·s-1。由表3可知,整体上看,C树形叶片一天光合的净积累量显著高于其他3种树形,为1 768.97 mmol·m-2。
表3 不同树形叶片一天光合的净积累量
Table 3 Net photosynthetic accumulation of leaves of different tree shapes in one day
?
图3 不同树形上层净光合速率日变化曲线
Fig.3 Diurnal variation of net photosynthetic rate in upper layers of different tree shapes
图4 不同树形中层净光合速率日变化曲线
Fig.4 Diurnal variation of net photosynthetic rate in middle layers of different tree shapes
图5 不同树形下层净光合速率日变化曲线
Fig.5 Diurnal variation of net photosynthetic rate in lower layers of different tree shapes
4 种树形的果实产量比较接近,其中B、D 树形的果实产量略高于A树形的果实产量(表4)。由图6 可知,在树体上层、中层、下层,C 的单果质量均显著高于其他树形(D 树形下层除外),B、C 两种树形不同部位果实的单果质量自上而下呈现略微下降的趋势,A、D两种树形均以中层的单果质量最小。A、B 两种树形果实的果肉硬度显著高于C、D。由图7可知,C在上、中层的可溶性固形物含量显著高于其他树形,D 在下层的可溶性固形物含量显著高于其他树形。C 在上、中层的可滴定酸含量显著高于其他树形(A 树形上层除外),在下层,A、D、B 的可滴定酸含量较接近,均显著高于C树形。由图8可知,4 种树形的上层果实维生素C 含量差异显著,A 最高,D最低;在树体总体中,B、C、A、D的维生素C含量依次降低。
表4 不同树形中农早珍珠果实产量的差异
Table 4 The difference of fruit yield of Zhongnong Zaozhenzhu in different tree shapes
?
图6 不同树形对桃单果质量和果肉硬度的影响
Fig.6 Effects of different tree shapes on fruit mass and flesh firmness of peach
不同小写字母代表同一部位不同树形间的差异显著(p<0.05)。U. 上层;M. 中层;L. 下层;T. 树整体。下同。
Different small letters indicate significant difference in the same part of different tree shapes at 0.05 level.U.Upper layer;M.Middle layer;L.Lower layer;T.Total tree.The same below.
图7 不同树形对桃可溶性固形物含量和可滴定酸含量的影响
Fig.7 Effects of different tree shapes on soluble solid content and titration acid content of peach
图8 不同树形对桃维生素C 含量的影响
Fig.8 Effects of different tree shapes on vitamin C content in peach
由表5 可以看出,不同树形处理之间的果面亮度L*无显著差异。在树体上层、下层中,各处理之间的红绿色差a*无显著差异,在中层,B、C、D、A 的红绿色差a*逐渐下降。在树体上层、下层中,各处理之间的黄蓝色差b*无显著差异,在中层,C、D、B、A 的黄蓝色差b*逐渐上升。在不同树形处理中,C 的果实色彩饱和度C*最低。在树体上层、下层中,各处理之间的果实色调角H°无显著差异,在中层,A 的果实色调角H°显著高于其他树形。从树整体来看,4种树形的果面亮度L*、黄蓝色差b*、果实色调角H°无显著差异,B和C树形的红绿色差a*、果实色彩饱和度C*呈显著差异。
表5 不同树形对桃果面色泽参数的影响
Table 5 Effects of different tree shapes on the skin color parameters of peach fruit
?
由表6可以看出,中农早珍珠桃香气物质主要是一些醇类、萜类、醛类、酯类、内酯类、酮类物质。A树形果实的醛类物质含量分别是C、D 的8.4 倍、4.3倍,B 树形果实的醛类物质含量分别是C、D 的11.5倍、5.8倍。数据表明,A、B未检测到内酯类物质,C树形果实的内酯类物质含量(w,后同)最高,为52.42 ng·g-1。C 树形果实的酯类物质含量分别是A、B的8.6倍、10.1 倍,D 树形果实的酯类物质含量分别是A、B的4.7倍、5.5倍。芳樟醇为桃果实的主要呈味物质之一,它具有花香型香气特性。A、B未检测到芳樟醇,C、D树形果实的芳樟醇含量分别为60.89、74.86 ng·g-1。苯甲醛具有苦味,C、D 树形果实的苯甲醛含量比主干形分别减少了48%、69%。γ-癸内酯和δ-癸内酯是桃果实中最重要的内酯,它们能赋予桃果实强烈的果香气息,A、B 未检测到这2 种内酯类物质。乙酸己酯是桃果实香气的主要贡献成分,C树形果实的乙酸己酯含量最高,为928.77 ng·g-1。
表6 不同树形对果实香气物质含量的影响
Table 6 Effects of different tree shapes on aroma substances content of fruit(ng·g-1)
注:ND 代表没有检测到。Note:ND means not detected.
?
主成分分析是通过降维的方式,将多个变量简化为少数的几个综合变量,使现有的几个少数综合变量可以直接反映原来变量的信息[15]。对4种树形的11 个指标进行主成分分析(表7),提取了3 个主成分,累积方差贡献率达87.759%,对应的方差贡献率分别为61.899%、16.269%、9.591%,基本能够代表所有指标的绝大部分信息。
表7 各因子载荷矩阵及主成分分析结果
Table 7 Loading matrix of each component and results of principal components analysis
?
将原始数据标准化,将各主成分相应的因子得分乘以相应方差的算术平方根,计算出综合评价得分值,各得分值与相应特征值的方差贡献率的乘积累加,得出不同树形的综合评价指数[16]。如表8 所示,综合树体相对光照度、冠层特征参数、果实品质几个方面的因素,得出4种树形的优劣顺序依次为:C、D、A、B。
表8 各处理的综合评价指数值
Table 8 Comprehensive evaluation index value of each treatment
?
适宜的树体结构有利于冠层透光率的提高,树冠内的光照分布状况会直接影响果实品质,果实品质的提高是获得最大经济效益的关键,是果树栽植和整形的出发点和落脚点[10,17]。笔者比较了4 种树形不同层次的相对光照度和果实品质,C、D、B、A的平均相对光照度依次降低,C、D 的低光效区比例显著低于A、B的低光效区比例。在树体上、中、下3层中,除D树形下层外,C的单果质量均显著高于其他树形,B、C 两种树形不同部位果实的单果质量自上而下呈现略微下降的趋势,与相对光照度呈正相关,说明光照度会影响树体的光合能力以及光合产物向果实的运转分配,进而影响单果质量,这与刘丽等[2]在中油20号桃上的研究结果一致。研究表明,果实品质与光照度有关,光照度高,光照分布均匀,叶片可以更好地进行光合作用,一定程度上促进优质果的生产[18-19]。果实品质受土壤养分、当地气候条件、果园地理位置等多种因素影响[20],笔者仅对不同树形果实品质进行了初步研究,还需进一步探索。
总孔隙度、开度、叶面积指数是表征植被冠层结构的重要参数,与光能截获及利用、果实产量和品质的形成等过程密切相关[13,21]。总孔隙度与开度呈正相关,二者对光能截获率存在直接影响,叶面积指数越大,树体结构越紧凑,光能截获率越高,光能浪费越少。在本研究中,C和D的总孔隙度、开度显著低于其他树形,叶面积指数均高于其他树形,两者的光能截获率均高于90%,且高于A、B 的光能截获率。C、D为单层叶幕,未出现树体郁闭现象。
香气作为重要的次生代谢产物,赋予了果实独特的风味品质,是果实重要的内在品质特征之一[22]。本研究中检测到的香气物质主要是醇类、萜类、醛类、酮类、酯类和内酯类物质[23-25],乙酸己酯是桃果实香气的主要贡献成分,C 树形果实的乙酸己酯含量最高。C、D 均提高了果实中酯类和内酯类物质的含量,降低了醇类物质的含量,促进了果实香气由清香型向果香型转变。以上结果表明,通过整形修剪这一栽培管理措施影响树体透光情况及光能分布、果实的生长发育,可以间接影响果实香气物质成分与含量[26-28]。
C 冠层平均相对光照度最高,有效光照区域所占比例最高,光能截获率最高,叶片一天光合的净积累量最高。C、D两种树形的果香型挥发物酯类、内酯类物质含量较高,检测到的具有花香型香气特性的芳樟醇含量较高。C 综合得分最高,果实品质整体较好,是比较适宜促早栽培模式下中农早珍珠桃的优良树形。
[1] 徐磊,陈超.中国桃产业经济分析与发展趋势[J].果树学报,2023,40(1):133-143.XU Lei,CHEN Chao. Economic situation and development countermeasures of Chinese peach industry[J]. Journal of Fruit Science,2023,40(1):133-143.
[2] 刘丽,李秋利,高登涛,魏志峰,石彩云,王志强,刘军伟.树形对桃树生长、产量和品质的影响[J].果树学报,2022,39(1):36-46.LIU Li,LI Qiuli,GAO Dengtao,WEI Zhifeng,SHI Caiyun,WANG Zhiqiang,LIU Junwei.Effects of tree shapes on growth,yield and quality of peach[J]. Journal of Fruit Science,2022,39(1):36-46.
[3] 王安柱,张芳芳,韩明玉,田海成,田玉命,赵彩平.主干形桃树对光截获能力和果实产量品质的影响[J].果树学报,2009,26(1):86-89.WANG Anzhu,ZHANG Fangfang,HAN Mingyu,TIAN Haicheng,TIAN Yuming,ZHAO Caiping. Effects of the central leader tree form on the light interception ability,fruit yield and quality of peach[J].Journal of Fruit Science,2009,26(1):86-89.
[4] 牛茹萱,赵秀梅,王晨冰,张帆,张雪冰,王发林.桃不同树形的冠层特征及对果实产量、品质的影响[J].果树学报,2019,36(12):1667-1674.NIU Ruxuan,ZHAO Xiumei,WANG Chenbing,ZHANG Fan,ZHANG Xuebing,WANG Falin. Effects of canopy characteristics on fruit yield and quality with different training systems in nectarines[J].Journal of Fruit Science,2019,36(12):1667-1674.
[5] 黄国嫣,唐宗福,彭雅婷,王艳,李文祥.不同树形对‘丽江雪桃’光合作用强度及果实品质的影响[J].天津农业科学,2015,21(4):103-106.HUANG Guoyan,TANG Zongfu,PENG Yating,WANG Yan,LI Wenxiang. Effects of different tree shapes on photosynthesis and fruit quality of‘Lijiang Snow Peach’[J].Tianjin Agricultural Sciences,2015,21(4):103-106.
[6] 王莹莹,刘立常,刘志伍,郑晓翠,王孝娣.早熟油桃新品种‘中农早珍珠’[J].园艺学报,2021,48(4):839-840.WANG Yingying,LIU Lichang,LIU Zhiwu,ZHENG Xiaocui,WANG Xiaodi.A new early ripening nectarine cultivar‘Zhongnong Zaozhenzhu’[J]. Acta Horticulturae Sinica,2021,48(4):839-840.
[7] 王孝娣,王海波,刘凤之,王莹莹.一种利用水平中心干多直立主枝树形栽培桃的方法:CN112806204A[P].2021-05-18[2023-07- 25]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=CN112806204A&DbName=SCPD2021.WANG Xiaodi,WANG Haibo,LIU Fengzhi,WANG Yingying.Method for cultivating peaches by using tree form with multiple horizontal central trunks and upright main branches :CN112806204A[P]. 2021-05-18[2023-07-25]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=CN112806204A&DbName=SCPD2021.
[8] 王孝娣,王海波,刘凤之,郑晓翠,宋杨. 一种高干Y 形双主干树形栽培桃的方法:CN108094029B[P]. 2019-09-17[2023- 07- 25]. https://kns.cnki.net/kcms/detail/detail.aspx?File-Name=CN108094029B&DbName=SCPD2019.WANG Xiaodi,WANG Haibo,LIU Fengzhi,ZHENG Xiaocui,SONG Yang. Method for culturing peach trees in high Yshaped dual-trunk tree shape:CN108094029B[P]. 2019-09-17[2023- 07- 25]. https://kns.cnki.net/kcms/detail/detail.aspx?File-Name=CN108094029B&DbName=SCPD2019.
[9] 王孝娣,王海波,刘凤之,王莹莹.一种桃树的整形修剪方法:CN111492881A[P]. 2020-08-07[2023-07-25]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=CN111492881A&DbName=SCPD2020.WANG Xiaodi,WANG Haibo,LIU Fengzhi,WANG Yingying.Peach tree shaping and pruning method:CN111492881A[P].2020-08-07[2023-07-25]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=CN111492881A&DbName=SCPD2020.
[10] 魏钦平,鲁韧强,张显川,王小伟,高照全,刘军.富士苹果高干开心形光照分布与产量品质的关系研究[J].园艺学报,2004,31(3):291-296.WEI Qinping,LU Renqiang,ZHANG Xianchuan,WANG Xiaowei,GAO Zhaoquan,LIU Jun. Relationships between distribution of relative light intensity and yield and quality in different tree canopy shapes for‘Fuji’apple[J].Acta Horticulturae Sinica,2004,31(3):291-296.
[11] ROBINSON T L,LAKSO A N,REN Z B. Modifying apple tree canopies for improved production efficiency[J]. HortScience,1991,26(8):1005-1012.
[12] 李民吉,张强,李兴亮,周贝贝,高木旺,杨雨璋,周佳,张军科,魏钦平.矮化中间砧‘宫藤富士’苹果栽植密度对树体生长、冠层光照和果实产量的影响[J]. 园艺学报,2020,47(3):421-431.LI Minji,ZHANG Qiang,LI Xingliang,ZHOU Beibei,GAO Muwang,YANG Yuzhang,ZHOU Jia,ZHANG Junke,WEI Qinping. Effect of different planting densities on growth,distribution of light in the canopy and yield of‘Fuji’apple trees on dwarfing interstocks[J].Acta Horticulturae Sinica,2020,47(3):421-431.
[13] 史祥宾,刘凤之,程存刚,王孝娣,冀晓昊,王宝亮,郑晓翠,王海波.设施葡萄不同新梢间距处理对冠层光环境及果实品质的影响[J].园艺学报,2018,45(3):436-446.SHI Xiangbin,LIU Fengzhi,CHENG Cungang,WANG Xiaodi,JI Xiaohao,WANG Baoliang,ZHENG Xiaocui,WANG Haibo.Effects of different new shoots spacing on canopy light environment and fruit quality of grapevine under protected cultivation[J].Acta Horticulturae Sinica,2018,45(3):436-446.
[14] JI X H,WANG B L,WANG X D,SHI X B,LIU P P,LIU F Z,WANG H B. Effects of different color paper bags on aroma development of Kyoho grape berries[J]. Journal of Integrative Agriculture,2019,18(1):70-82.
[15] 宋贺,何维,刘祚祚,李瑞婷,吴杰,廖天,姜燕.基于主成分分析综合评价“热农1 号”余甘子果实品质[J].食品工业科技,2023,44(8):318-325.SONG He,HE Wei,LIU Zuozuo,LI Ruiting,WU Jie,LIAO Tian,JIANG Yan. Comprehensive evaluation of“Renong No.1”Phyllanthus emblica L.quality based on principal component analysis[J]. Science and Technology of Food Industry,2023,44(8):318-325.
[16] 刘丙花,王开芳,王小芳,梁静,白瑞亮,解小锋,孙蕾.基于主成分分析的蓝莓果实质地品质评价[J]. 核农学报,2019,33(5):927-935.LIU Binghua,WANG Kaifang,WANG Xiaofang,LIANG Jing,BAI Ruiliang,XIE Xiaofeng,SUN Lei.Evaluation of fruit texture quality of blueberry based on principal component analysis[J].Journal of Nuclear Agricultural Sciences,2019,33(5):927-935.
[17] HAMADZIRIPI E T,THERON K I,MULLER M,STEYN W J.Apple compositional and peel color differences resulting from canopy microclimate affect consumer preference for eating quality and appearance[J].HortScience,2014,49(3):384-392.
[18] 龚鹏,杨波,辛玉宝,张平,张强,李金明,杨伟.扁桃不同树形光合特性及产量的比较研究[J].新疆农业科学,2008,45(3):479-483.GONG Peng,YANG Bo,XIN Yubao,ZHANG Ping,ZHANG Qiang,LI Jinming,YANG Wei.Comparative research on photosynthetic,characteristics and yield of different tree figures of almond[J].Xinjiang Agricultural Sciences,2008,45(3):479-483.
[19] 陈久红,马建江,李永丰,位杰,王岩,黄国辉.香梨不同树形冠层结构、光合特性及产量品质的比较[J]. 河南农业科学,2021,50(8):113-123.CHEN Jiuhong,MA Jianjiang,LI Yongfeng,WEI Jie,WANG Yan,HUANG Guohui. Comparison of canopy structure,photosynthetic characteristics,yield and quality of Korla fragrant pear with different tree shapes[J]. Journal of Henan Agricultural Sciences,2021,50(8):113-123.
[20] 何凤梨,王飞,魏钦平,王小伟,张强.桃树冠层相对光照分布与果实产量品质关系的研究[J].中国农业科学,2008,41(2):502-507.HE Fengli,WANG Fei,WEI Qinping,WANG Xiaowei,ZHANG Qiang. Relationship between distribution of relative light intensity in canopy and yield and quality of peach fruit[J].Scientia Agricultura Sinica,2008,41(2):502-507.
[21] 牛茹萱,王晨冰,赵秀梅,王发林,王鸿.非耕地日光温室油桃根域限制对冠层特征及果实品质的影响[J].果树学报,2017,34(1):26-32.NIU Ruxuan,WANG Chenbing,ZHAO Xiumei,WANG Falin,WANG Hong. Effects of root restriction on canopy characteristics and fruit quality of greenhouse-grown nectarine in non-arable land[J].Journal of Fruit Science,2017,34(1):26-32.
[22] 王庆华,王磊,吴文江,郭家选,沈元月,吴国良.果实香气物质的合成及其激素调控研究进展[J/OL]. 分子植物育种,2021:1- 11. [2023- 06- 12]. http://kns.cnki.net/kcms/detail/46.1068.S.20211029.1846.006.html.WANG Qinghua,WANG Lei,WU Wenjiang,GUO Jiaxuan,SHEN Yuanyue,WU Guoliang.Advances in aroma compounds biosynthesis and hormone regulation of fruit[J/OL]. Molecular Plant Breeding,2021:1-11.[2023-06-12].http://kns.cnki.net/kcms/detail/46.1068.S.20211029.1846.006.html.
[23] WANG Y J,YANG C X,LI S H,YANG L,WANG Y N,ZHAO J B,JIANG Q.Volatile characteristics of 50 peaches and nectarines evaluated by HP-SPME with GC-MS[J]. Food Chemistry,2009,116(1):356-364.
[24] AUBERT C,MILHET C.Distribution of the volatile compounds in the different parts of a white-fleshed peach(Prunus persica L.Batsch)[J].Food Chemistry,2007,102(1):375-384.
[25] 席万鹏,郁松林,周志钦. 桃果实香气物质生物合成研究进展[J].园艺学报,2013,40(9):1679-1690.XI Wanpeng,YU Songlin,ZHOU Zhiqin. Advances in aroma compounds biosynthesis of peach fruit[J].Acta Horticulturae Sinica,2013,40(9):1679-1690.
[26] 王贵章,王贵禧,梁丽松,马庆华.桃果实芳香挥发物及其生物合成研究进展[J].食品科学,2014,35(17):278-284.WANG Guizhang,WANG Guixi,LIANG Lisong,MA Qinghua.Recent progress in research on the composition and synthesis of aroma volatiles in peach fruits[J]. Food Science,2014,35(17):278-284.
[27] 李志宇,都振江,王俊芳,张将,刘洪勇,王世平,王恒振.摘叶对赤霞珠葡萄及所酿葡萄酒品质的影响[J].核农学报,2018,32(11):2178-2186.LI Zhiyu,DU Zhenjiang,WANG Junfang,ZHANG Jiang,LIU Hongyong,WANG Shiping,WANG Hengzhen.Effect of leaf removing on grape berry and their wine quality of Carbernet Sauvignon[J]. Journal of Nuclear Agricultural Sciences,2018,32(11):2178-2186.
[28] 张洋,孙伟,房玉林,鞠延仑.树形对酿酒葡萄产量和品质的影响[J].中外葡萄与葡萄酒,2023(3):40-45.ZHANG Yang,SUN Wei,FANG Yulin,JU Yanlun.Effect of different tree shape on yield and quality of wine grape[J]. Sino-Overseas Grapevine&Wine,2023(3):40-45.
Effects of tree shape on canopy structure, photosynthetic characteristics and fruit quality of early cultivated nectarine