30个杨梅品种果实品质分析与综合评价

赵 双1,2,黄颖宏1,3,郄红丽1,3*

1江苏省太湖常绿果树技术推广中心,江苏苏州 215107;2苏州农业职业技术学院,江苏苏州 215008;3江苏省农业种质资源保护与利用平台,南京 210014)

摘 要:【目的】评价不同杨梅品种果实品质的差异,建立杨梅果实品质综合评价体系。【方法】以30个杨梅品种为试验材料,对果实外观品质、内在品质和矿质元素指标进行测定和分析,并利用主成分分析法对30个杨梅品种果实品质进行综合评价。【结果】30个不同杨梅品种的果实各个品质指标之间存在较大差异,部分内在品质指标和矿质元素指标存在显著差异。综合相关性分析和主成分分析筛选出可溶性固形物(TSS)、可滴定酸、抗坏血酸(AsA)、苹果酸、总酚和硒(Se)矿质元素含量作为杨梅果实品质性状评价的核心指标。【结论】采用相关性分析和主成分分析综合评价方法可为优良杨梅品种筛选提供参考依据。

关键词:杨梅;果实品质;主成分分析;综合评价

杨梅(Morella rubra Lour.)属于杨梅科杨梅属常绿乔木,在长江流域以南广泛栽培,是我国南方特有的水果之一[1-2]。杨梅果实4—7 月成熟,颜色多样,富含丰富的糖、酸、维生素等营养物质,且含有丰富的杨梅苷、类黄酮等抗氧化类物质,兼具药用、食用价值,深受消费者喜爱[3-4]。杨梅栽培品种面积最大的是浙江省,其次是江苏和福建[5]。近年来江苏杨梅产业发展迅速,成为提高农民收入的一条重要途径[6]

果实品质是影响果实价值的关键因素,由外观品质和内在品质组成。另外,矿质元素对果实品质有着重要的影响[7-8]。果实品质性状的评价是筛选优异品种的重要依据。目前,有关杨梅果实品质性状评价报道较少,且对江苏地区杨梅传统品种和引进品种的果实品质的综合评价未见报道。因此,笔者以30个杨梅品种为样本,对杨梅果实品质的相关指标进行测定分析,并进行果实的综合评价,旨在为高效、科学评价杨梅果实品质、选育和推广优良杨梅品种提供理论依据。

1 材料和方法

1.1 试验材料

30 个杨梅品种均是2023 年从国家果梅杨梅种质资源圃获得。每个品种均随机选择3 株杨梅植株,采集大小均一的成熟果实进行果实品质的测定,取其中一部分果实相同部位的果肉,并将其分为3 次重复,在液氮中快速冷冻后置于-80 ℃冰箱保存,用于果实内在品质的测定。

1.2 试验方法

使用电子天平进行杨梅果实单果质量和果核质量的称量,可食率/%=(单果质量-果核质量)/单果质量×100。使用游标卡尺测定杨梅果实的纵径和横径,果形指数=果实纵径/果实横径。使用数显水果硬度计GY-4 测定杨梅果实硬度,使用ATAGO 数显测糖仪PAL-1测定杨梅果实中可溶性固形物(TSS)含量。根据制造商的说明书,分别使用蔗糖含量试剂盒、果糖含量试剂盒和葡萄糖含量试剂盒测定杨梅果实的蔗糖、果糖和葡萄糖含量(试剂盒均购自苏州科铭生物技术有限公司)。使用NaOH 标准液滴定法测定杨梅果实的可滴定酸含量[9]。根据制造商的说明书,分别使用抗坏血酸(AsA)含量测试盒、柠檬酸试剂盒、花色苷试剂盒、类黄酮试剂盒、总酚试剂盒和氨基酸(AA)含量测试盒测定杨梅果实中AsA、柠檬酸、花色苷、类黄酮、总酚和氨基酸含量(试剂盒均购自苏州科铭生物技术有限公司)[10]。使用Rigol L3000 高效液相色谱仪测定杨梅果实中苹果酸含量。杨梅果实中4 种矿质营养元素钙(Ca)、铁(Fe)、锌(Zn)、硒(Se)含量按照GB 5009.268—2016《食品安全国家标准食品》方法测定[8]

1.3 数据分析

使用Excel 2019 统计软件进行数据统计与整理;使用Windows 版本17.0 的SPSS Statistics(SPSS Inc.,Chicago,IL)进行统计分析、相关性分析以及主成分分析。

2 结果与分析

2.1 不同杨梅品种果实外观品质分析

如表1所示,紫晶的单果质量最大,平均单果质量为16.97 g;常熟早红单果质量最小,平均单果质量为6.30 g。果形指数在0.92~1.06 之间,可食率分布在83%~94%之间,表明果形指数和可食率的变异系数较小,分别为4.08%和3.13%。硬度是反映杨梅果实口感和商品价值的重要指标,其中螳螂子的果实硬度较大,而王二的果实硬度较小,变异程度较高,变异系数为32.64%。

表1 不同杨梅品种外观品质比较
Table 1 Comparison of appearance quality of different bayberry varieties

?

2.2 不同杨梅品种果实内在品质分析

果实的内在品质方面,不同杨梅品种之间存在着较为丰富的变异。由表2 可知,可溶性固形物和可滴定酸含量是影响果实风味的重要因素,30个杨梅品种中可溶性固形物含量(w,后同)的变化范围为7.87%~15.27%,可滴定酸含量的变化范围为1.05%~1.72%,变异程度不高,其中,小黑头的可溶性固形物含量最高,树叶种的可溶性固形物含量最低;木叶梅的可滴定酸含量最高,早熟1 号、荔枝头和乌梅种的可滴定酸含量最低。葡萄糖、蔗糖和果糖是果实中主要的可溶性糖[11],其中,杨梅果实中蔗糖含量最多,其次是果糖和葡萄糖。与可溶性固形物、可滴定酸含量一样,不同杨梅品种果实蔗糖和果糖含量的变异程度也不高,变异系数分别为18.19%和14.88%;葡萄糖含量的变异程度处在中等水平,变异系数为29.78%。柠檬酸和苹果酸是果实可食用组织中最丰富的有机酸[11],不同杨梅品种间苹果酸含量差异较大,柠檬酸含量差异较小,其中,王二苹果酸含量最高,为762.27 μg·g-1,大叶早杨梅苹果酸含量最低,为46.41 μg·g-1,柠檬酸含量在39.54~56.88 μmol·g-1之间。氨基酸是果实中重要的品质成分,不同杨梅品种间氨基酸含量的变异程度较高,变异系数为77.37%,圆叶尖刺早红的氨基酸含量最高,为1 686.19 μg·g-1,王二的含量最低,为129.15 μg·g-1

表2 不同杨梅品种果实内在品质指标比较
Table 2 Comparison of fruit internal quality indexes of different bayberry varieties

?

果实中含有功能性营养物质,对人体具有保健功能,包括AsA、类黄酮、花色苷等酚类物质[12-14]。30 个杨梅品种中AsA 含量的分布范围为302.41~693.09 μg·g-1;花色苷含量的分布范围为3.64~1 296.42 μg·g-1,表明不同杨梅品种间花色苷的变异系数较高;类黄酮和总酚含量的分布范围分别为5.42~18.26 mg·g-1和9.29~21.02 mg·g-1

2.3 不同杨梅品种果实矿质营养品质分析

矿质元素作为果实营养的重要组成部分,对果实内在品质有着重要的影响。如表3所示,矿质元素含量在30个杨梅品种中存在一定差异。果实的矿质元素变异系数在20.518%~50.562%之间,差异较大,其中Se含量变异系数较大,Ca、Fe和Zn含量的变异系数较小。

表3 不同杨梅品种果实中矿质营养元素指标比较
Table 3 Comparison of fruit mineral nutrient element indexes in different bayberry varieties

?

2.4 不同杨梅品种果实品质指标的相关性分析

为了明确杨梅果实品质各个指标之间的关系,对30 个杨梅品种的20 项果实品质指标进行相关性分析。如表4所示,单果质量与苹果酸含量呈极显著正相关,与果实中Fe 元素和Zn 元素含量呈显著负相关。果形指数与AsA 含量呈显著正相关。可食率与可滴定酸含量呈显著负相关。果实硬度与葡萄糖含量呈显著正相关,与Ca含量呈显著负相关。可溶性固形物含量与葡萄糖、果糖和蔗糖含量呈极显著正相关,表明葡萄糖、果糖和蔗糖含量显著影响可溶性固形物含量。AsA含量与柠檬酸和花色苷含量呈极显著正相关。柠檬酸含量与花色苷含量呈极显著正相关。总酚含量与苹果酸和花色苷含量呈显著正相关,与类黄酮含量呈极显著正相关。Ca含量与果实硬度和蔗糖含量呈显著负相关,与可溶性固形物含量呈极显著负相关。Fe含量与单果质量和蔗糖、类黄酮以及总酚含量呈显著负相关,与AsA、柠檬酸以及花色苷含量呈极显著负相关。Zn 含量与单果质量、可溶性固形物以及花色苷含量呈显著负相关。另外,Zn含量与Fe含量呈显著负相关。以上分析结果表明,杨梅品种的各项品质指标间存在一定的相关性,且有些指标高度相关,因此,可以对高度相关的指标进行筛选,从而简化评价指标体系。

表4 杨梅品质指标间的相关性分析
Table 4 Correlation analysis between quality indexes of bayberry

?

2.5 不同杨梅品种果实指标的主成分分析

依据以上分析结果,剔除变异程度较小的果实品质指标,对30 个不同杨梅品种的17 个性状,采用主成分分析法对17 个指标标准化后进行降维处理(表5)。以主成分特征值大于1 为标准,共提取到6个主成分,主成分1 贡献率达25.155%,决定第1 主成分大小的主要是柠檬酸、AsA和花色苷含量;主成分2 贡献率为20.085%,决定第2 主成分大小的主要是可溶性固形物和果糖含量;主成分3贡献率为13.048%,决定第3主成分大小的主要是类黄酮和总酚含量;主成分4 贡献率为8.483%,决定第4主成分大小的主要是苹果酸含量;主成分5贡献率为6.835%,决定第5主成分大小的主要是可滴定酸含量;主成分6 贡献率为6.409%,决定第6 主成分大小的主要是Se 矿质元素含量。第1 和第3 主成分主要代表果实功能性物质,第2、4、5主成分代表果实的风味,第6主成分主要代表果实矿质营养。

表5 杨梅果实品质指标的主成分旋转后载荷矩阵、特征值、贡献率和累积贡献率
Table 5 The principal component rotation load matrix,eigenvalues,variance contribution,and cumulative contribution rates of bayberry fruit quality index

?

结合主成分分析和相关性分析结果对果实品质的核心评价指标进行筛选。在第1 主成分中,AsA 含量与柠檬酸和花色苷含量呈极显著正相关,相关性系数较高,分别为0.81 和0.79(表4),且在第1 个主成分中的权重最高,因此从第1个主成分中选择AsA作为评价指标。在第2个主成分中可溶性固形物含量与果糖含量呈极显著正相关,相关系数较高,为0.66(表4),且果糖属于可溶性糖类,因此可以选择可溶性固形物含量作为评价指标。在第3个主成分中总酚含量与类黄酮含量呈极显著正相关,相关系数较高,为0.89,且总酚含量在第3个主成分中的权重最高,因此选择总酚含量作为评价指标。在第4和第5个主成分中分别是苹果酸和可滴定酸含量的权重高,且与其他风味指标相关性较低,因此从第4和第5个主成分中分别选择苹果酸和可滴定酸含量作为评价指标。另外,第6个主成分中是Se矿质元素含量的权重高,因此选择Se含量作为果实矿质元素的评价指标。

2.6 不同杨梅品种果实品质的综合评价

将杨梅果实品质指标数值依次设为X1X2X3,…,X17,使用SPSS软件对杨梅果实的各个品质指标进行标准化。根据表6中的特征向量与各个相对应指标的标准化数据乘积再相加,可以得出6 个主成分的得分表达式如下:F1=0.164 X1+0.208 X2+0.137 X3+ 0.060 X4+0.119 X5+0.260 X6+0.352 X7+0.188 X8+0.334 X9-0.148 X10+0.395 X11+0.221 X12+0.226 X13-0.030 X14-0.402 X15-0.337 X16-0.021 X17F2=-0.150 X1+0.379 X2+0.005 X3+0.431 X4+0.371 X5+0.371 X6-0.071 X7-0.189 X8-0.036 X9-0.166 X10-0.060 X11-0.335 X12-0.349 X13-0.213 X14+0.025 X15-0.030X16+0.135 X17F3 =-0.368 X1-0.125 X2+0.193 X3-0.034 X4-0.187 X5-0.072 X6+0.367 X7-0.333 X8+0.309 X9-0.317 X10+0.170 X11-0.126 X12-0.141 X13+0.411 X14+0.122 X15+0.163 X16+0.234 X17F4 =-0.393 X1+0.148 X2+0.685 X3-0.206 X4+0.171 X5+0.043 X6-0.110 X7+0.159 X8-0.007 X9+0.109 X10+0.050 X11+0.173 X12+0.120 X13-0.261 X14+0.111 X15+0.305 X16-0.109 X17F5 =-0.315 X1+0.086 X2-0.189 X3+ 0.345 X4-0.146 X5+0.055 X6-0.078 X7-0.450 X8+0.123 X9+0.438 X10+0.007 X11+0.335 X12+0.389 X13-0.091 X14-0.016 X15-0.024 X16+ 0.162 X17;F6 = 0.101 X1-0.281 X2-0.032 X3-0.017 X4+0.299 X5+0.058 X6-0.122 X7+0.168 X8-0.070 X9-0.249 X10-0.056 X11+0.234 X12+0.191 X13-0.068 X14+0.078 X15+0.096 X16+0.770 X17,以主成分方差贡献率作为权数,建立果实品质的综合评价方程:F 综=0.252 F1+0.201 F2+0.13 F3+0.085 F4+0.068 F5+0.064 F6,根据以上综合评价方程可以计算出30个杨梅品种果实品质的综合得分,如表7所示,得分由高到低分别是常熟早红、木叶梅、小黑头、大叶细蒂、小叶细蒂、早熟1号、西山早熟、洞庭8号、紫晶、王二、蚂蚁种、螳螂子、早红、风仙红、乌梅种、荔枝头、香杨梅、短柄甜山、早佳、桃红、石家种、西山粉红、叶一、东山浪荡子、硬浪荡子、树叶种、马山乌梅、圆叶尖刺早红、大叶早杨梅、西山白杨梅。综合得分越高,表明该杨梅品种的综合品质越好。

表6 杨梅品种主成分分析得分
Table 6 Principal component analysis ranking of bayberry varieties

?

3 讨 论

果实的大小等外观品质,糖、酸等内在品质,以及果实中的矿质营养元素共同影响了果实的综合品质,果实品质的好坏决定了其在市场上的竞争力[15-17]。主成分分析是将多个指标通过线性变换选出较少的综合因子来代表众多的因子。目前,主成分分析法是常用的果品评价方法,已广泛应用于多种水果品质的综合评价[18-19]。魏烈权等[18]通过主成分分析,筛选出了评价优质酿酒葡萄品种的参考指标。赵琼玲等[19]通过总糖、总酸含量等10项指标来评价21 份余甘子果实品质,通过主成分分析表明,果实横径及总酚、总酸和维生素C 含量可以作为余甘子果实品质的关键指标。

笔者通过单果质量、可溶性固形物和可滴定酸含量等20项指标评价30个杨梅果实的品质特性,发现杨梅果实品质指标间存在着较为丰富的变异,且存在一定的相关性,主成分分析表明,影响果实品质的主要因素是柠檬酸、AsA、花色苷、可溶性固形物、果糖、类黄酮、总酚、苹果酸、可滴定酸和Se 矿质元素含量。结合相关性分析和主成分分析结果,可简化果实品质评价指标。主成分分析法中只涉及理化指标对品质综合评价的影响,具有一定的局限性,在今后的杨梅品种果实品质评价工作中,可采用多种评价方法对杨梅果实品质指标进行不同权重的赋值,进行更完整的综合评价,满足消费者多样化的果品需求。

4 结 论

笔者在本研究中通过差异分析、相关性分析和主成分分析3种分析方法对30个杨梅品种果实品质进行综合评价,筛选出可溶性固形物、可滴定酸、抗坏血酸、苹果酸、总酚和Se 矿质元素含量作为杨梅果实品质性状评价的核心指标,并对30个杨梅品种综合品质的优劣进行综合得分排序,为消费者选择品质优良的杨梅品种提供了参考依据。

参考文献References:

[1] 梁森苗. 杨梅栽培实用技术[M]. 北京:中国农业出版社,2019:2.LIANG Senmiao. Practical techniques for bayberry cultivation[M].Beijing:China Agriculture Press,2019:2.

[2] 朱奕凡,王妍,汪国云,周超超,焦云,甘可欣,孙德利,朱长青,贾惠娟,高中山.不同杨梅品种果实游离氨基酸组成分析[J].浙江大学学报(农业与生命科学版),2021,47(6):736-742.ZHU Yifan,WANG Yan,WANG Guoyun,ZHOU Chaochao,JIAO Yun,GAN Kexin,SUN Deli,ZHU Changqing,JIA Huijuan,GAO Zhongshan.Analysis of free amino acid composition in fruits of different bayberry (Morella rubra) varieties[J]. Journal of Zhejiang University (Agriculture and Life Sciences),2021,47(6):736-742.

[3] 李伟,郜海燕,陈杭君,吴伟杰,房祥军.基于主成分分析的不同品种杨梅果实综合品质评价[J]. 中国食品学报,2017,17(6):161-171.LI Wei,GAO Haiyan,CHEN Hangjun,WU Weijie,FANG Xiangjun.Evaluation of comprehensive quality of different varieties of bayberry based on principal components analysis[J].Journal of Chinese Institute of Food Science and Technology,2017,17(6):161-171.

[4] 张淑文,梁森苗,郑锡良,任海英,朱婷婷,戚行江.杨梅优株果实品质的主成分分析及综合评价[J].果树学报,2018,35(8):977-986.ZHANG Shuwen,LIANG Senmiao,ZHENG Xiliang,REN Haiying,ZHU Tingting,QI Xingjiang. Principal component analysis and comprehensive evaluation of fruit quality in some advanced selections of Chinese bayberry[J].Journal of Fruit Science,2018,35(8):977-986.

[5] 陈慧,唐威,费艳.杨梅种质资源遗传多样性研究进展[J].现代园艺,2016(3):5-7.CHEN Hui,TANG Wei,FEI Yan. Progress on genetic diversity of bayberry germplasm resources[J]. Contemporary Horticulture,2016(3):5-7.

[6] 黄颖宏,郄红丽,王鹏凯.8 个优良杨梅品种在江苏苏州引种表现[J].安徽农业科学,2020,48(1):55-56.HUANG Yinghong,QIE Hongli,WANG Pengkai. Introduction performance of eight excellent Myrica rubra varieties in Suzhou,Jiangsu Province[J].Journal of Anhui Agricultural Sciences,2020,48(1):55-56.

[7] 郭清云,陈哲,吴凤芝,王祥和,范鸿雁,冯学杰,胡福初.5 份榴莲蜜种质果实品质的主成分分析及综合评价[J].中国南方果树,2022,51(1):106-111.GUO Qingyun,CHEN Zhe,WU Fengzhi,WANG Xianghe,FAN Hongyan,FENG Xuejie,HU Fuchu. Principal component analysis and comprehensive evaluation of the fruit quality of five cempedak germplasm[J]. South China Fruits,2022,51(1):106-111.

[8] 马玉娥,李静,朱宁,朱靖蓉,刘河疆.基于灰色关联度及因子分析法的新疆葡萄矿质营养评价[J].陕西林业科技,2023,51(2):1-5.MA Yu’e,LI Jing,ZHU Ning,ZHU Jingrong,LIU Hejiang.Grey correlation degree and factor analysis of grape mineral nutrient elements in Xinjiang[J].Shaanxi Forest Science and Technology,2023,51(2):1-5.

[9] 王学奎.植物生理生化实验原理和技术[M].3 版.北京:高等教育出版社,2015.WANG Xuekui.Principles and techniques of plant physiological biochemical experiment[M]. 3nd ed. Beijing:Higher Education Press,2015.

[10] 孙佩光,程志号,孙长君,吴琼,郭素霞,郭刚,李洪立.16 份火龙果种质资源果实营养品质分析[J].分子植物育种,2022,20(19):6585-6592.SUN Peiguang,CHENG Zhihao,SUN Changjun,WU Qiong,GUO Suxia,GUO Gang,LI Hongli.Analysis of fruit nutritional quality of 16 pitaya germplasm resources[J]. Molecular Plant Breeding,2022,20(19):6585-6592.

[11] 赵永红,李宪利.果实中糖酸积累机理研究进展[J].农业科技通讯,2009(8):110-112.ZHAO Yonghong,LI Xianli.Progress on the mechanism of sugar-acid accumulation in fruits[J]. Bulletin of Agricultural Science and Technology,2009(8):110-112.

[12] 陈卫芳,袁伟玲,刘志雄,严承欢,陈磊夫,张文格.植物抗坏血酸合成调控研究进展[J].植物生理学报,2023,59(3):481-489.CHEN Weifang,YUAN Weiling,LIU Zhixiong,YAN Chenghuan,CHEN Leifu,ZHANG Wenge.Research progress on regulation of ascorbic acid synthesis in plant[J]. Plant Physiology Journal,2023,59(3):481-489.

[13] 司诚,杨世鹏,孙祝,张广楠,钟启文.基于转录组和代谢组解析香瓜茄果实类黄酮代谢差异[J].华北农学报,2023,38(1):53-62.SI Cheng,YANG Shipeng,SUN Zhu,ZHANG Guangnan,ZHONG Qiwen.Analysis of flavonoid metabolism in different cultivated pepino fruits based on transcriptome and metabolome[J].Acta Agriculturae Boreali-Sinica,2023,38(1):53-62.

[14] 赵益梅,刘伟强,崔萍,张晓煜,夏永秀,刘旭.贺兰山东麓‘马瑟兰’葡萄果实花色苷和原花色素特性分析[J].西北植物学报,2023,43(10):1683-1693.ZHAO Yimei,LIU Weiqiang,CUI Ping,ZHANG Xiaoyu,XIA Yongxiu,LIU Xu. Analysis of anthocyanin and proanthocyanidin characteristics of Marselan wine grapes in the eastern foot of Helan Mountain[J]. Acta Botanica Boreali-Occidentalia Sinica,2023,43(10):1683-1693.

[15] 林媚,吴韶辉.浙江省12 个柑橘品种果实品质分析与评价[J].浙江农业科学,2019,60(6):963-966.LIN Mei,WU Shaohui.Analysis and evaluation on fruit quality of 12 citrus varieties[J].Journal of Zhejiang Agricultural Sciences,2019,60(6):963-966.

[16] 王思威,孙海滨,常虹,钟声,赵俊生,王潇楠.基于主成分分析综合评价白糖罂荔枝果实品质[J].果树学报,2022,39(4):610-620.WANG Siwei,SUN Haibin,CHANG Hong,ZHONG Sheng,ZHAO Junsheng,WANG Xiaonan. Comprehensive evaluation of fruit quality of Baitangying litchi based on principal component analysis[J].Journal of Fruit Science,2022,39(4):610-620.

[17] 朴哲虎,石岩,程金良,刘冰雁,杨林先,李雄.苹果梨果实矿质元素含量与品质的相关性分析[J]. 安徽农业科学,2018,46(20):159-161.PIAO Zhehu,SHI Yan,CHENG Jinliang,LIU Bingyan,YANG Linxian,LI Xiong. Correlation analysis of mineral element content and quality of apple pear fruit[J]. Journal of Anhui Agricultural Sciences,2018,46(20):159-161.

[18] 魏烈权,卢世雄,马宗桓,郭锐,毛娟.基于主成分分析法的嘉峪关10 种酿酒葡萄品种品质评价[J]. 甘肃农业大学学报,2020,55(3):90-96.WEI Liequan,LU Shixiong,MA Zonghuan,GUO Rui,MAO Juan. Quality evaluation of 10 wine grape varieties in Jiayuguan based on principal component analysis[J]. Journal of Gansu Agricultural University,2020,55(3):90-96.

[19] 赵琼玲,韩学琴,沙毓沧,罗会英,钱坤建,邓红山,金杰.21 份余甘子果实品质性状的分析和评价[J]. 中国热带农业,2021(6):27-32.ZHAO Qiongling,HAN Xueqin,SHA Yucang,LUO Huiying,QIAN Kunjian,DENG Hongshan,JIN Jie. Analysis and evaluation of the fruit quality characters of 21 Phyllanthus emblica L.[J].China Tropical Agriculture,2021(6):27-32.

Fruit quality analysis and comprehensive evaluation of 30 bayberry varieties

ZHAO Shuang1,2,HUANG Yinghong1,3,QI Hongli1,3*

(1Jiangsu Taihu Evergreen Fruit Tree Technology Promotion Center,Suzhou 215107,Jiangsu,China;2Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, Jiangsu, China;3The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm,Nanjing 210014,Jiangsu,China)

Abstract:【Objective】There are differences in fruit quality among different bayberry varieties. Understanding fruit quality traits can provide valuable information and evaluation tools for breeding and developimg excellent bayberry varieties. Therefore, the purpose of this study was to explore the comprehensive quality traits and their differences of bayberry fruit,and to establish an efficient evaluation system for the quality of bayberry fruit.【Methods】In order to explore the fruit quality traits, the fruits of 30 bayberry varieties were collected in this study,and 20 indexes such as average weight,fruit shape index, edible rate, fruit hardness, total soluble solids content, titratable acid, glucose, sucrose, fructose,ascorbic acid(AsA),malic acid,citric acid,amino acid(AA),proanthocyanidin,flavonoid,total phenol,calcium (Ca), iron (Fe), zinc (Zn) and selenium (Se) were measured.The fruit quality of different bayberry varieties was analyzed and evaluated by using SPSS17.0 statistical software for coefficient of variation analysis, correlation analysis, principal component analysis and comprehensive score ranking.【Results】There were significant differences in the fruit quality indexes among 30 bayberry varieties,and the coefficient of variation ranged from 3.13% to 78.94%.The fruit shape index was between 0.92 and 1.06, and the edible rate was between 83% and 94%, indicating that the coefficient of variation of fruit shape index and edible rate was small. In terms of fruit internal quality, the content of sucrose in bayberry fruit was the highest, followed by fructose and glucose.Among the organic acids, the content of malic acid varied greatly among different bayberry varieties, but the content of citric acid varied little.In terms of functional nutrients in fruits,the coefficient of variation of proanthocyanidins among different bayberry varieties was relatively high,and the coefficient of variation of AsA,flavonoids and total phenols was medium. Correlation analysis showed that there was a certain correlation between the quality indexes of different bayberry varieties, and some indexes were even highly correlated.Average fruit weight was significantly and positively correlated with malic acid,and significantly and negatively correlated with Fe and Zn contents in fruits. There was a significant positive correlation between fruit shape index and AsA content.There was a significant negative correlation between edible rate and titratable acid. Fruit hardness was significantly and positively correlated with glucose and significantly and negatively correlated with Ca contents. There was a significant correlation between glucose, sucrose,fructose and soluble solids.There was a significant positive correlation between AsA and citric acid and proanthocyanidin content.There was a significant positive correlation between citric acid and proanthocyanidin content. Total phenols were significantly and positively correlated with malic acid and proanthocyanidins,and extremely significantly and positively correlated with flavonoids content.In addition,the mineral elements in the fruit were significantly or extremely significantly and negatively correlated with some fruit nutrient elements.The principal component analysis of 17 traits of 30 different bayberry varieties was carried out by eliminating the sensory indexes with less variation,such as shape index,edible rate and fruit hardness. Six principal components with eigenvalues greater than 1 were extracted,and the cumulative contribution rate was 80.017%.The contribution rate of principal component 1 was 25.155%,and the first principal component was mainly determined by citric acid,AsA and proanthocyanidin. The contribution rate of principal component 2 was 20.085%, and the second principal component was mainly determined by soluble solids content and fructose. The contribution rate of principal component 3 was 13.048%,and the main components determining the size of the third principal component were flavonoids and total phenols. The contribution rate of principal component 4 was 8.483%,and the main factor determining the size of the fourth principal component was malic acid.The contribution rate of principal component 5 was 6.835%, and the main factor determining the size of the fifth principal component was titratable acid. The contribution rate of principal component 6 was 6.409%,and it was mainly Se mineral element that determined the size of the sixth principal component. The first and third principal components could mainly represent fruit function, the second, fourth and fifth principal components could represent fruit flavor,and the sixth principal component mainly could represent fruit mineral nutrition.Soluble solids content,titratable acid,ascorbic acid(AsA),malic acid,total phenols and Se mineral element were selected as the core indicators for the evaluation of fruit quality traits of bayberry by comprehensive correlation analysis and principal component analysis.By principal component analysis, Changshuzaohong, Muyemei, Xiaoheitou, Dayexidi, Xiaoyexidi, Zaoshuyihao and Xishanzaoshu got the higher scores.【Conclusion】Through the comprehensive analysis of the fruit quality of 30 bayberry varieties, the conclusions are as follows: soluble solids content, titratable acid,AsA,malic acid,total phenols and Se mineral element can be used as the core indicators for the quality evaluation of bayberry.Correlation analysis and principal component analysis can be used to provide a reference basis for the screening of excellent bayberry varieties.

Key words:Bayberry;Fruit quality;Principal component analysis;Comprehensive evaluation

中图分类号:S667.6

文献标志码:A

文章编号:1009-9980(2024)03-0392-11

DOI:10.13925/j.cnki.gsxb.20230483

收稿日期:2023-11-16

接受日期:2024-01-04

基金项目:江苏省种业振兴“揭榜挂帅”项目(JBGS[2021]019);江苏省现代农业(特色果树)产业技术体系枇杷杨梅创新团队(JATS[2023]359);苏州市农业科技创新重点项目(SNG2022008)

作者简介:赵双,女,讲师,研究方向为果树生理生态。E-mail:zhsh812972738@126.com

*通信作者Author for correspondence.E-mail:75864268@qq.com