猕猴桃(Actinidia chinensis Planch.)隶属猕猴桃科(Actinidiaceae)猕猴桃属(Actinidia Lindl.),是一种原产于我国的藤本果树。猕猴桃属植物全世界有54个种,21个变种,共75个分类单元;其中,我国有52 个种,泛意上猕猴桃是我国的特有属,我国蕴藏着丰富的猕猴桃种质资源。猕猴桃果实因具有独特的风味,富含多种维生素、有机酸、膳食纤维、多糖、矿物质元素及多种人体必需的氨基酸等营养成分而深受国内外消费者喜爱[1]。自2009 年起,我国猕猴桃种植面积和产量连续10 a(年)稳居世界第一,根据联合国粮农组织(FAO)统计数据,至2019年我国猕猴桃收获面积为18.26 万hm2,年产量219.7 万t,分别占全球的67.9%和50.5%[2]。
淀粉是植物光合作用固定碳而形成的主要碳水化合物,在植物生长发育过程中具有重要的生物学作用。淀粉作为主要的储存型代谢物,广泛存在于植物不同器官中,为植物生长发育提供必要的能量[3]。研究表明,植物叶片产生的光合同化产物大部分是以蔗糖或/和山梨醇的形式存在,经韧皮部长途运输后卸载到正在生长发育的果实内,然后在有关酶的作用下进行一系列的代谢或跨膜运输,最终以淀粉、蔗糖/山梨醇、果糖或葡萄糖等形式在果实内积累[4]。猕猴桃果实属于淀粉积累型水果,在生长发育过程中,光合产物被积累并转化为淀粉[5]。在猕猴桃果实积累淀粉之前,果实中的碳水化合物供应有限,首先需要满足细胞分裂活动而不能进行贮藏性物质淀粉的累积[6];待果实发育前期完成体积和质量增加后才开始进行淀粉的积累和转化;但果实一旦开始成熟,淀粉又降解成糖。采摘后的猕猴桃果实不能再从母体获得养料和水分,也不能再获取叶片光合作用合成的碳水化合物,于是鲜活的果实必须通过呼吸作用消耗体内贮藏的淀粉或糖等碳水化合物,进行一系列的生理生化变化,产生能量以维持生命的延续。已有多项研究报道了不同猕猴桃品种的果实发育与淀粉积累规律[7-9],即在果实早期发育阶段几乎没有淀粉的积累,直到完成细胞分裂才开始积累淀粉,然后在商业采收之前淀粉含量达到峰值,约为果实干质量的40%[7]。在采后的贮藏过程中,几乎所有淀粉降解并转化为糖,果实甜度增加并达到可食用状态,软熟后的猕猴桃果实中含糖量通常高达10%[8-9]。Richardson 等[9]构建了一个基于BBCH(biologische bundesanstalt,bundessortenamt und chemische industrie)系统的猕猴桃果实生长发育模型,表明淀粉从BBCH73 期开始(开花后4 d)在果实中积累,直到BBCH84期(开花后190 d)时达到最大值,之后被迅速分解并转化成相似浓度的蔗糖、葡萄糖和果糖。
猕猴桃淀粉代谢与果实风味品质和耐贮性紧密相关。猕猴桃果实采收之前淀粉合成与积累越多,果实软熟后的总糖含量就越高,风味品质就越好。然而猕猴桃又属于非典型的呼吸跃变型果实,具有生理后熟属性,采后易软化腐烂,不耐贮藏[10]。在果实后熟过程中,淀粉和果胶不断降解,果实质地变软,硬度下降,甜度升高,果实变得美味可食。所以,调控淀粉降解可以控制果实软化速率,从而影响果实贮藏期和货架期。近十年来,随着猕猴桃基因组的测序完成[11],猕猴桃淀粉代谢研究已从传统的淀粉积累模式及其代谢酶活性的变化等研究逐步转移到重要基因挖掘与分子调控机制研究,其中在淀粉降解方面取得重要进展,但是目前关于猕猴桃淀粉代谢研究进展的整理与归纳鲜有报道。因此,笔者在本文中将重点从猕猴桃果实淀粉的理化性质、植物淀粉代谢途径以及猕猴桃果实淀粉代谢分子机制等三个方面,并结合淀粉与猕猴桃果实风味品质、成熟软化的关系,就国内外相关研究进展进行综述,为未来创制优质高淀粉耐贮藏猕猴桃新材料或选育新品种,或建立即食供应的快速后熟技术体系提供理论支撑。
淀粉是贮藏器官中最丰富的碳水化合物,分子式为(C6H10O5)n,由葡萄糖分子聚缩而成,以分子结构不同分为直链淀粉和支链淀粉[12]。直链淀粉是线性的,葡萄糖基单位以α-1,4-糖苷键连接。支链淀粉的骨架通过α-1,4-糖苷键连接呈线性,而葡聚糖链通过α-1,6-糖苷键呈高度分支[13]。Bertoft 等[14]研究了17种不同支链蛋白的内部单位链组成,并将其分为4类,猕猴桃支链淀粉则属于第4类,即在各种支链淀粉中短链数量最少,长链数量最多[15]。相对于其他玉米、谷物等普通淀粉,猕猴桃淀粉不仅具有很高的峰值黏度、最终黏度和挫折黏度,而且富含大量的钾、钙、镁等矿物元素,其中钾含量是普通淀粉的3~30倍[16-17]。
淀粉以颗粒状态(即淀粉粒)存在,在猕猴桃果实生长发育过程中呈现动态变化。猕猴桃果实采收时淀粉含量(w,后同)通常处于最高水平,果肉中的淀粉主要为支链淀粉,占比80%,且支链淀粉分子质量较小[15,18]。研究表明不同猕猴桃品种(包括Hayward、Gold3、Gold9 和Hort16A)果实中的淀粉具有相对一致的颗粒形态,淀粉分子径向有序排列使其具有准晶体结构,即淀粉粒[16-18]。淀粉粒在猕猴桃果实生长发育过程中,不仅表现为粒径大小的动态变化,还涉及淀粉粒结构的变化。伴随猕猴桃果实生长发育,淀粉粒平均粒径从3~4 μm 增加至10~12 μm,然后在成熟果实中又下降到6~8 μm[19]。在淀粉粒增大的同时,支链淀粉的内部和外部结构保持相似,表明猕猴桃淀粉粒从中心到外围的分子结构是均匀排列的[20]。扫描电镜结果表明,刚采收的未成熟猕猴桃果实内紧密排列着5~10 μm 大小的淀粉粒,其边缘轮廓清晰且完整,有利于果实质地的保持;随着猕猴桃软熟,淀粉粒变得皱褶和粗糙,并最终消失,细胞间隙增大[21]。
淀粉在质体中合成,形成淀粉体。在高等植物中,淀粉可在光合细胞的质体或非光合细胞的质体中合成。Possingham等[22]发现猕猴桃外果皮的叶绿体具有明确的基粒和类似于菠菜的基粒间膜系统,因此有可能通过光合作用形成淀粉。而Hallett等[18]发现猕猴桃果心的质体不含基粒堆,没有光合作用形成淀粉的潜力。合成的淀粉在质体中贮藏起来,形成淀粉体,又称造粉体,是一种异养型质体,具有双层膜结构和遗传物质[23]。随着猕猴桃果实成熟,淀粉体质膜发生降解,其包裹的淀粉粒分散并降解,淀粉逐渐降解为可溶性糖[24];同时淀粉体分化为有色体[25],但是关于猕猴桃果实淀粉体的起源和最终命运还尚未定论。前人研究发现在猕猴桃果实冷藏开始时,淀粉粒从果实各组织内的叶绿体中散落出来,并且随着冷藏时间延长,叶绿体数量减少,淀粉粒水解[26]。这说明淀粉体有可能起源于叶绿体[24]。
猕猴桃果实不同组织中的淀粉存在结构或含量方面的差异。猕猴桃果实有时会出现“硬心”现象,即果肉已经软化,但是果心仍然是硬的,严重时强烈影响果实的食用。其外在原因是果心的软化速率慢于果肉。Burdon等[27]发现Hayward猕猴桃果实不同组织的软化速率不同,果肉硬度变化曲线呈S 型下降,果心硬度则近似线性降低,果心的软化速率滞后于果肉,从而出现“硬心”现象。其生理原因可能与不同组织中的淀粉结构或含量不同有关[28]。前人研究报道Hayward猕猴桃果皮和果心组织中的生物组成、淀粉浓度和细胞器是不同的,外果皮中的淀粉粒大于果心中的淀粉粒,且随着果实软化而减小,但果心中的淀粉粒密度高于外果皮,因此果心淀粉浓度也更高[18]。如果这些淀粉粒密度和含量按照相同的速率降解,那么果心的淀粉含量就可能高于果肉,从而导致果心硬度高于果肉。然而在中华猕猴桃黄肉品种(包括Gold3、Gold9 和Hort16A)中出现了相反的报道,其外果皮总淀粉含量(38.6%~51.8%)略高于果心总淀粉含量(34.6%~40.7%),但是不同品种间理化性质和组成上的差异相对较小,表明淀粉可能不是影响不同品种猕猴桃贮藏期和货架期的关键因素[29]。
淀粉合成途径分为在光合组织叶绿体中进行的瞬时淀粉合成和在非光合组织淀粉体中完成的储藏淀粉合成。瞬时淀粉合成是指通过卡尔文循环固定CO2,并形成3-磷酸甘油酸(3-phosphoglycerate,3-PGA),转化为磷酸丙糖(triosephosphates,TP),通过丙糖-磷酸易位体,转运至胞液中,或在叶绿体中转变成6-磷酸果糖(fructose-6-phosphate,F6P),再先后转变成6-磷酸葡萄糖(glucose-6-phosphate,G6P)和1-磷酸葡萄糖(glucose-1-phosphate,G1P)。G1P 在ADP-葡萄糖焦磷酸化酶(ADP-glucose pyrophosphorylase,AGPase)作用下形成腺苷二磷酸葡萄糖(ADP-glucose,ADPG)之后,在淀粉合成酶(starch synthase,SS)、分支酶(branching enzyme,BE)和脱支酶(debranching enzymes,DBE)的作用下合成直链淀粉和支链淀粉。储藏淀粉的合成是将叶片光合作用固定的碳水化合物以蔗糖的形式运输到淀粉合成器官,转化为G1P 后进入淀粉体内,同样先后经过AGPase、SS、SBE和DBE酶的作用形成直链淀粉和支链淀粉[30]。
淀粉生物合成涉及一系列酶的参与。ADP-葡萄糖焦磷酸化酶(AGPase)被认为是高等植物淀粉生物合成中第一个起调节作用的关键酶,负责催化葡萄糖-1-磷酸(Glu-1-P)与ATP反应,生成腺苷二磷酸葡萄糖(ADPG),ADPG 正是淀粉合成的主要底物,此反应也是淀粉合成过程中第一个限速步骤[31-32]。AGPase 是由2 个大亚基(AGP-L)和2 个小亚基(AGP-S)组成的异型四聚体;根据细胞定位,AGPL 和AGPS 的同工酶可分为胞质型和质体型[33]。最近一些研究表明,在玉米中模拟AGPase磷酸化的突变可增强AGPase 的活性,而去磷酸化降低了AGPase 的活性,表明磷酸化可能是淀粉生物合成过程中AGPase 活性调节的一种机制[34-36]。淀粉合成酶(SS)通过将ADPG 的葡萄糖基转移到α-1,4-葡萄糖的非还原性末端,从而催化淀粉合成。SS分为两大类,一类负责支链淀粉的合成,包括SSⅠ、SSⅡ、SS Ⅲ和SSⅣ,前三者通常负责支链淀粉合成过程中α-葡聚糖链的伸长,而SS Ⅳ则参与淀粉颗粒的起始[37-38]。单个SSⅠ、SSⅡ或SS Ⅲ亚型的缺失会导致支链淀粉精细结构的特征性变化[31]。研究发现,MeSSⅡ-RNAi基因沉默使木薯的贮藏根中支链淀粉含量减少,但直链淀粉含量增加,导致淀粉理化性质的改变,并且还降低了MeSSⅠ、MeSBEⅠ等与淀粉颗粒结合的能力[39]。在拟南芥中发现一种保守的淀粉合成酶5(SS5)能够调节拟南芥叶绿体中形成的淀粉颗粒数量,SS5 基因突变减少了拟南芥叶绿体中的淀粉粒数量,但是支链淀粉结构不受影响,这表明SS5在叶绿体中直接启动或以其他方式控制淀粉颗粒数量的过程中发挥作用,而不是在支链淀粉生物合成中发挥作用[40]。另一类则负责直链淀粉的合成,包括淀粉粒结合态淀粉合成酶(granulebound starch synthase,GBSS),其与淀粉粒结合特异性地延长直链淀粉,存在GBSSⅠ和GBSSⅡ两种同工异构酶形式。谷物中的GBSSⅠ由Waxy 基因编码[41],在淀粉颗粒表面磷酸化后以低聚物的形式控制直链淀粉的合成[42]。利用CRISPR/Cas9基因编辑技术突变水稻胚乳中的Waxy 基因导致GBSSⅡ的上调,并降低了种子中GBSS的活性,但并未完全消除[43]。GBSSⅠ是种子、胚乳等贮藏器官中直链淀粉的关键酶,而GBSSⅡ是根、茎、叶等营养器官中直链淀粉的关键酶[44]。淀粉分支酶(SBE)是一种葡萄糖基转移酶,是淀粉生物合成过程中的一个关键酶,它首先催化内部α-1,4-糖苷键水解,继而将断链连接到C-6羟基上形成α-1,6分支点,形成分支结。根据所断裂链的长度不同,SBE可分为SBEⅠ(SBE B)和SBEⅡ(SBE A)2 类;在单子叶植物中,SBEⅡ又包括SBEⅡa 和SBEⅡb。截至目前,对SBE 酶及其基因的研究较为清楚[31,45]。淀粉去分支酶(DBEs)能水解α-1,6-糖苷键并纠正淀粉合成中的错误分支,以确保支链淀粉的有序合成[13]。植物中有2 种DBE,包括异淀粉酶(isoamylase,ISO)和极限糊精酶(pullulanase,PUL,也叫R酶),均能水解α-1,6-糖苷键。
淀粉降解也需要一系列酶的协同参与。首先,通过葡聚糖水激酶(glucan water dikinase,GWD)或磷酸葡聚糖水激酶(phosphoglucan water dikinase,PWD)的可逆葡聚糖磷酸化破坏完整淀粉粒结构,将线性的糖苷链暴露出来,同时增强淀粉粒的可溶性以便淀粉水解酶靠近底物,有利于β-淀粉酶进行水解[46]。GWD 和PWD 分别对C6 和C3 位置的葡糖基单元进行磷酸化[47-49],但是PWD 对支链淀粉的作用需要GWD 的预先作用,表明PWD 活性取决于GWD添加的C6磷酸基团的存在,或C6磷酸引起的葡聚糖结构变化[50]。其次,淀粉上的磷酸基会阻碍淀粉降解酶沿着葡聚糖链移动[51],限制麦芽糖和低聚寡糖从淀粉粒中释放出来,因此需要磷酸葡聚糖磷酸酶(phosphoglucan phosphatase,SEX)去除这些磷酸基团。目前,在拟南芥中鉴定到3 个编码SEX酶的基因,即STARCH EXCESS4(SEX4)、LIKESTARCH-EXCESS FOUR-1(LSF1)和LIKE-STARCHEXCESS FOUR-2(LSF2)[52-54],但其中LSF1不会使葡聚糖去磷酸化,LSF1突变体的淀粉过量表型是由颗粒表面BAM1和BAM3活性降低引起的,LSF1可能与淀粉颗粒表面的β-淀粉酶结合,从而促进淀粉的降解[55]。最近还发现LSF1-苹果酸脱氢酶复合物也发挥着支架作用,可招募β-淀粉酶促进淀粉降解[56]。最后,在α-淀粉酶(α-amylase,AMY)和β-淀粉酶(β-amylase,BAM)的水解作用下完成葡聚糖的降解,转化为葡萄糖单体[57]。α-淀粉酶是一种内切酶,特异地切断α-1,4-糖苷键,生成各种线性和分支的寡糖。研究发现,谷物的淀粉降解需要α-淀粉酶的不同异构体协同作用,例如在小麦中过表达AMY2基因可导致发育叶片和收获籽粒中总α-淀粉酶活性升高2.0~437.6倍[58]。β-淀粉酶是从暴露的非还原链末端切断α-1,4-糖苷键释放麦芽糖的外作用酶[59],通过对转基因马铃薯的实验确定了叶绿体β-淀粉酶活性对短暂淀粉降解的重要性[60]。在拟南芥中,BAM酶蛋白由9个基因编码,其中AtBAM4是淀粉降解的调节因子,影响淀粉降解途径中的其他酶活性,其同工异构体AtBAM9可能具有激活淀粉降解的作用,AtBAM4突变体表现为淀粉过量积累,而At-BAM9在野生型中的过量表达则降低了叶片中的淀粉含量[61]。但β-淀粉酶不能水解α-1,6-分支点或直接作用于其附近,因此,支链淀粉的完全降解还需要通过脱支酶(DBE)活性水解分支点。
猕猴桃果实淀粉代谢是一个复杂的动态过程,其特征是淀粉同时合成和降解。在以BBCH系统描述的Hort16A猕猴桃果实发育过程中[9],果实干物质含量在坐果期(BBCH70)较高,然后在快速生长的第一个时期内迅速下降,在开花后45 d时(BBCH73)达到最低;随后干物质快速增加,直到BBCH89时为止。鉴于淀粉是干物质的主要成分,而猕猴桃果实恰好于BBCH73 开始积累淀粉,表明此阶段内淀粉可能正在同时发生合成和降解。BBCH73时期正是果实从细胞分裂期走向细胞膨大期的转折阶段,Woolley等[62]发现,猕猴桃受精后6周内为细胞分裂时期,快速增加的细胞对碳水化合物有需求压力,这一时期是果实碳素营养的关键期。故推测,干物质在快速生长时期中的迅速下降可能是由于此时猕猴桃果实细胞分裂急需营养,待果实生长进入细胞膨大阶段时,才能开始进行淀粉的净累积。Nardozza等[63]的研究结果也支持这种观点,他们发现猕猴桃果实中的淀粉含量和糖含量在细胞分裂期内下降,然后在细胞膨大期内又开始上升;与此同时BAM9基因(编码β-淀粉酶)表现出与淀粉含量相反的趋势,即在细胞分裂期达到最高值,随后逐渐下降。Wegrzyn 等[64]在分析猕猴桃果实发育和采后成熟过程中α-淀粉酶活性时发现,随着果实发育α-淀粉酶活性和淀粉含量均在持续升高;而在采后成熟过程中,α-淀粉酶活性却降低,淀粉开始降解,可溶性固形物含量上升。与之结果相似的是,Bonghi 等[65]在分析猕猴桃成熟期间总淀粉酶活性变化时发现,在果实收获时淀粉酶活性最高,而在储存期间淀粉酶活性下降。这些结果表明猕猴桃果实发育阶段净淀粉积累可能是淀粉合成速率大于降解速率引起的,而在采后成熟过程中淀粉降解的速率随着猕猴桃成熟进程的推进而升高,于是发生淀粉净降解,到果实成熟时,几乎所有淀粉都已转化为可溶性糖[66]。值得注意的是,淀粉净积累到净降解的过程中存在一个淀粉无净变化的可变时间段,这期间内可溶性固形物积累速率的最初升高发生在淀粉净降解之前,所以可溶性固形物含量的上升不一定是淀粉降解的结果,也可能是未转化为淀粉的可溶性碳水化合物输入到果实内的直接结果;同时,这个可变时间段容易受到环境条件的影响,尤其是低温[9,67]。可溶性固形物积累速率的升高通常被认为是淀粉降解引起的变化,但Burdon[68]提出可能有两种机制导致可溶性固形物积累速率的快速升高:一种是淀粉停止积累时仍有碳水化合物进入果实,另一种是低温诱导的淀粉分解。因此,即使具有相同可溶性固形物含量的果实也可能因为生理状态不同而具有不同的贮藏潜力。
淀粉合成积累与猕猴桃果实风味品质紧密相关。糖类是水果中最重要的能量底物,主要由淀粉转化而来;在水果成熟过程中,可溶性糖的积累在很大程度上决定了水果的甜味和风味[69]。猕猴桃通常在生理成熟时采收,此时的淀粉含量达到最大值,采后随果实成熟,淀粉降解为糖,果实甜度增加,有机酸不断减少,形成独特的风味[66,70]。因此,猕猴桃果实采前积累的淀粉含量是决定果实口感风味形成的关键因素[71-72]。干物质主要由可溶性固体(主要是糖)和不溶性固体(主要为结构性碳水化合物和淀粉)组成,采收时的干物质与果实软熟后的糖含量以及风味品质密切相关[73-74]。而采收时的淀粉含量可达干物质的40%~70%,因此干物质可以作为猕猴桃碳水化合物总量的指标,很大程度上也反映了猕猴桃果实积累的淀粉含量。研究表明,消费者在食用高干物质含量的水果时更有可能体验到优质的口感风味,正如同消费者更喜欢高干物质水平的猕猴桃果实一样,因为高干物质水平意味着更多的淀粉水解成糖,果实软熟后更甜[71-72,75]。
猕猴桃果实淀粉合成与相关酶的活性密切相关。研究表明,在淀粉生物合成途径中大多数酶活性在细胞分裂时高于后期阶段,ADP-葡萄糖焦磷酸化酶(AGPase)被认为是猕猴桃淀粉积累的关键酶,葡萄糖水平和中性转化酶(NI)活性的降低标志着向淀粉净积累过渡[63]。同期另一篇研究报道也表明NI、酸性转化酶(AI)和蔗糖磷酸合成酶(SPS)活性的差异可能是果实淀粉积累高低、干物质和可溶性糖含量不同的重要原因[76]。低温贮藏可延缓猕猴桃果实软化成熟及糖度增加,与淀粉酶、AI、NI、SPS和SS 活性的降低有关[77]。环剥处理在调控果树促花保果、增产提质等方面具有良好效果。研究发现环剥处理提高了果实发育期内AGPase 的活性,同时调节SPS、SS、AI、NI等相关酶活性水平影响糖代谢的进程[78]。然而截至目前,关于猕猴桃果实中淀粉合成相关遗传背景与分子机制鲜有报道,仅Nardozza等[63]利用淀粉积累极端差异的猕猴桃基因型材料发现了一个编码AGPase 酶大亚基的基因(APL4),可能是调控淀粉合成积累的关键候选基因,但还缺乏充分有力的证据。所以,下一步的研究应该聚焦在猕猴桃果实淀粉合成积累关键基因的挖掘及其调控网络机制的解析上。
淀粉降解在猕猴桃果实软化中起着重要作用。猕猴桃果实采摘后的成熟与衰老是果实发育的最后阶段,也是极其重要的生理生化过程,涉及到呼吸作用、乙烯合成、淀粉降解、增糖降酸、颜色转变、芳香物质合成、质地变软等过程及其一系列相关酶活性的变化[79]。软化是猕猴桃果实采后成熟衰老的典型特征,其外在表现是果实硬度下降、质地变软[80]。大量研究表明,猕猴桃果实软化主要与淀粉降解及细胞壁(主要为果胶)降解有关[81-83]。淀粉作为细胞内容物以淀粉粒的形式存在于果肉和果心组织内,维持细胞膨压,对细胞起着支撑作用。一旦果实进入成熟过程,淀粉逐渐降解,支撑作用也随之消失,果实硬度就急速下降[83-84]。所以对于淀粉含量较高的水果种类而言,淀粉降解是果实软化的重要因素之一。
至于淀粉降解发生在猕猴桃果实软化哪个阶段还有待进一步研究。根据果实硬度曲线,猕猴桃果实软化过程被划分为4 个阶段:起始阶段—快速软化阶段—可食用阶段—过熟阶段,其中淀粉降解发生在起始阶段和快速软化阶段早期,而同时果胶降解也主要发生快速软化阶段[81,85]。由于采样时间和硬度检测频率的影响,不是所有猕猴桃果实硬度曲线均表现出4 个软化阶段[68],不过较多学者认为淀粉降解主要发生在果实快速软化阶段。王贵禧等[86-88]研究表明,猕猴桃果实软化进程可分为硬度速降期和硬度缓降期等2 个阶段,其中因淀粉酶活性快速上升而引起的淀粉快速降解是硬度速降的主要原因。然而,在众多有关猕猴桃果实软化的研究中,淀粉降解常和果胶降解交织在一起,很难明确谁在快速软化阶段发挥更重要的作用。
淀粉降解受到乙烯的调控。乙烯作为最简单的植物激素,在呼吸跃变型果实的成熟衰老过程中发挥重要作用[89]。猕猴桃果实本身产生的乙烯含量极低,但是对外源乙烯却又非常敏感,极低体积分数(0.1 μL·L-1)的乙烯仍会促进猕猴桃果实软化和淀粉降解[90-91]。因此,乙烯处理也常用来作为催熟猕猴桃果实、消除果实个体成熟度差异的技术手段,广泛应用在商业催熟上[92],这也说明淀粉降解受到乙烯的调控。Hu 等[93]利用猕猴桃基因组序列从Hayward猕猴桃中分离鉴定了17个淀粉降解相关基因,其中AdAMY1、AdAGL3 和AdBAM3.1/3L/9 等基因的表达显著受到乙烯处理的诱导,同时受到气调贮藏的抑制,其表达量与淀粉降解高度正相关,表明这些基因极可能参与了淀粉降解。随后,陈景丹等[94]的研究也证实了AcBAM3是猕猴桃果实采后淀粉降解的关键基因。最近,2 个重要转录因子AdDof3 和AcbHLH137 被相继鉴定出来,它们分别调控Ad-BAM3L 和AcBAM3 靶基因的表达,从而促进淀粉降解;不过AcbHLH137 与AcBAM3 的具体调控机制还有待于进一步验证[95-96]。淀粉降解除了加速猕猴桃果实软化之外,还可能与果实醇类异味产生有关[97]。相比Hayward猕猴桃,Bruno猕猴桃果实在常温贮藏过程中更易发生乙醇积累并产生异味,这与Bruno 拥有更高活性的淀粉磷酸化酶、β-淀粉酶、UDP-葡萄糖焦磷酸化酶、蔗糖合酶和转化酶有关,这些酶会加速淀粉降解和可溶性糖积累,为乙醇发酵提供充足的底物[97]。
淀粉降解还受到低温的诱导。前人研究表明果实可溶性固形物含量的快速上升可能与低温诱导的淀粉降解或光合产物持续输入有关[68]。秋季采收之前的低温环境,尤其是夜间低温会促进Hayward 果实可溶性固形物积累速率的快速升高,与淀粉降解紧密相关[98]。随后在Hort16A 果实中发现8~12 ℃的贮藏温度使可溶性固形物含量相比14 ℃或16 ℃处理上升更快,这说明可溶性固形物含量的上升可能与低温诱导的淀粉降解有关[99]。最近多篇研究报告表明,在猕猴桃果实中还存在不依赖于乙烯调控的第二种成熟调控途径:即低温调控果实成熟途径[100-102]。相比22 ℃常温贮藏,5 ℃贮藏处理使得Kosui 猕猴桃果实软化更快,可溶性固形物和总糖增加发生更早,同时还没有检测到乙烯的产生。果实的快速软化疑与淀粉降解酶基因(Acβ-AMY1、Ac-INV3-1)、细胞壁修饰酶基因(AcPG、AcEXP1)的表达量增加有关;但是低温诱导的软熟果实缺乏乙烯诱导产生的主要芳香物质[101]。在Rainbow Red猕猴桃果实中也发现了类似的规律,5 ℃和10 ℃贮藏使得果实比15 ℃和22 ℃贮藏软化更快,与淀粉降解和细胞壁降解相关基因的表达量增加有关[103]。还发现一些NAC(NAC2,NAC4,NAC5,NAC6)和MADS(MADS1,MADS2)等转录因子可能参与了低温诱导的果实成熟过程[103-104],但这些转录因子仅是根据基因表达量的变化而做出的推测,还缺乏更多详实充分的分子实验证据。除了β-淀粉酶基因(BAM3.2,BAM3L)参与低温诱导的淀粉降解之外,陈璐等[105]利用不同温度的猕猴桃采后果实转录组测序分析还发现淀粉磷酸化酶基因(PHS2,PHS2.1)特异响应5 ℃或10 ℃低温从而间接参与淀粉降解。另外,长链非编码RNA通过调控淀粉和蔗糖代谢以及细胞壁修饰途径相关基因的表达,从而在猕猴桃低温贮藏成熟软化过程中也发挥着重要的调控作用[106]。基于低温可诱导猕猴桃果实快速软化的规律,目前在商业上已出现通过低温诱导制备即食猕猴桃的采后商品化操作,但处理的规模较小,大部分还处于探索阶段。
猕猴桃因独特的风味和丰富的营养价值日益受到消费者的关注和喜爱。淀粉代谢与猕猴桃果实风味品质及果实软化紧密相关,强烈影响猕猴桃软熟后的口感风味和贮藏性能。关于猕猴桃淀粉代谢的研究主要集中在猕猴桃生长发育过程中淀粉含量、组成、结构和酶活性的动态变化,以及果实采后成熟软化过程中淀粉降解途径的分子机制解析方面。目前在猕猴桃果实淀粉降解分子研究方面取得较大的进展,包括淀粉降解途径相关基因的挖掘以及少数重要转录调控因子的功能鉴定,但是在其淀粉合成与积累的分子调控方面还缺乏实质性的突破,过多停留在淀粉合成相关酶活性水平研究方面。同时,依赖于低温诱导的果实软熟途径为制备即食猕猴桃提供了新的技术手段,但是需要注意如何避免芳香物质的缺失。因此在未来的研究中,应该继续深入研究淀粉降解与果实软化、风味形成的分子调理网络机制,同时加强淀粉合成途径关键基因的挖掘及其分子调控机制的解析,对创制优质高淀粉猕猴桃新材料、新品种或控制果实软化成熟用于制备即食猕猴桃具有重要意义。
[1] 黄宏文.猕猴桃驯化改良百年启示及天然居群遗传渐渗的基因发掘[J].植物学报,2009,44(2):127-142.HUANG Hongwen.History of 100 years of domestication and improvement of kiwifruit and gene discovery from genetic introgressed populations in the wild[J].Chinese Bulletin of Botany,2009,44(2):127-142.
[2] 钟彩虹,黄文俊,李大卫,张琼,李黎.世界猕猴桃产业发展及鲜果贸易动态分析[J].中国果树,2021(7):101-108.ZHONG Caihong,HUANG Wenjun,LI Dawei,ZHANG Qiong,LI Li.Dynamic analysis of global kiwifruit industry development and fresh fruit trade[J].China Fruits,2021(7):101-108.
[3] STITT M,ZEEMAN S C.Starch turnover:pathways,regulation and role in growth[J].Current Opinion in Plant Biology,2012,15(3):282-292.
[4] 吕英民,张大鹏.果实发育过程中糖的积累[J].植物生理学通讯,2000,36(3):258-265.LÜ Yingmin,ZHANG Dapeng.Accumulation of sugars in developing fruits[J].Plant Physiology Communications,2000,36(3):258-265.
[5] MACRAE E A,REDGWELL R J.Partitioning of14C-photosynthate in developing kiwifruit[J].Scientia Horticulturae,1990,44(1/2):83-95.
[6] 方金豹,黄宏文,李绍华.CPPU 对猕猴桃果实发育过程中糖、酸含量变化的影响[J].果树学报,2002,19(4):235-239.FANG Jinbao,HUANG Hongwen,LI Shaohua.Influence of CPPU on kiwifruit sugar content and titratable acidity during fruit development[J].Journal of Fruit Science,2002,19(4):235-239.
[7] RICHARDSON A C,MCANENEY K J,DAWSON T E.Carbohydrate dynamics in kiwifruit[J].Journal of Horticultural Science,1997,72(6):907-917.
[8] BEEVER D J,HOPKIRK G.Fruit development and fruit physiology[M]//BEEVER D J.Kiwifruit:Science and Management,Auckland:Ray Richards publishers,1990:97-126.
[9] RICHARDSON A C,BOLDINGH H L,MCATEE P A,GUNASEELAN K,LUO Z,ATKINSON R G,DAVID K M,BURDON J N,SCHAFFER R J.Fruit development of the diploid kiwifruit,Actinidia chinensis‘Hort16A’[J].BMC Plant Biology,2011,11(1):182.
[10] 孟文俊,王增池.猕猴桃鲜果采后贮藏保鲜研究进展[J].现代农村科技,2020(4):107-109.MENG Wenjun,WANG Zengchi.Progress of post-harvest storage and preservation of kiwifruit fresh fruit[J].Modern Rural Science and Technology,2020(4):107-109.
[11] HUANG S X,DING J,DENG D J,TANG W,SUN H H,LIU D Y,ZHANG L,NIU X L,ZHANG X,MENG M,YU J D,LIU J,HAN Y,SHI W,ZHANG D F,CAO S Q,WEI Z J,CUI Y L,XIA Y H,ZENG H P,BAO K,LIN L,MIN Y,ZHANG H,MIAO M,TANG X F,ZHU Y Y,SUI Y,LI G W,SUN H J,YUE J Y,SUN J Q,LIU F F,ZHOU L Q,LEI L,ZHENG X Q,LIU M,HUANG L,SONG J,XU C H,LI J W,YE K Y,ZHONG S L,LU B R,HE G H,XIAO F M,WANG H L,ZHENG H K,FEI Z J,LIU Y S.Draft genome of the kiwifruit Actinidia chinensis[J].Nature Communications,2013,4:2640.
[12] MARTIN C,SMITH A M.Starch biosynthesis[J].The Plant Cell,1995,7(7):971-985.
[13] BALL S,GUAN H P,JAMES M,MYERS A,KEELING P,MOUILLE G,BULÉON A,COLONNA P,PREISS J.From glycogen to amylopectin:A model for the biogenesis of the plant starch granule[J].Cell,1996,86(3):349-352.
[14] BERTOFT E,PIYACHOMKWAN K,CHATAKANONDA P,SRIROTH K.Internal unit chain composition in amylopectins[J].Carbohydrate Polymers,2008,74(3):527-543.
[15] LI D X,ZHU F.Characterization of polymer chain fractions of kiwifruit starch[J].Food Chemistry,2018,240:579-587.
[16] LAN T,WANG J Q,LEI Y S,LEI J,SUN X Y,MA T T.A new source of starchy flour:Physicochemical and nutritional properties of starchy kiwifruit flour[J].Food Chemistry,2024,435:137627.
[17] STEVENSON D G,JOHNSON S R,JANE J L,INGLETT G E.Chemical and physical properties of kiwifruit (Actinidia deliciosa)starch[J].Starch-Stärke,2006,58(7):323-329.
[18] HALLETT I C,WEGRZYN T F,MACRAE E A.Starch degradation in kiwifruit:In vivo and in vitro ultrastructural studies[J].International Journal of Plant Sciences,1995,156(4):471-480.
[19] SUGIMOTO Y,YAMAMOTO M,ABE K,FUWA H.Developmental changes in the properties of kiwi fruit starches(Actinidia chinensis Planch.)[J].Journal of the Japanese Society of Starch Science,1988,35(1):1-10.
[20] LI D X,ZHU F.Starch structure in developing kiwifruit[J].International Journal of Biological Macromolecules,2018,120:1306-1314.
[21] WANG H,WANG J,MUJUMDAR A S,JIN X W,LIU Z L,ZHANG Y,XIAO H W.Effects of postharvest ripening on physicochemical properties,microstructure,cell wall polysaccharides contents (pectin,hemicellulose,cellulose) and nanostructure of kiwifruit (Actinidia deliciosa)[J].Food Hydrocolloids,2021,118:106808.
[22] POSSINGHAM J V,COOTE M,HAWKER J S.The plastids and pigments of fresh and dried Chinese gooseberries (Actinidia chinensis)[J].Annals of Botany,1980,45(5):529-533.
[23] WISE R R.The diversity of plastid form and function[M]//WISE R R,HOOBER K J.The Structure and Function of Plastids.Dordrecht:Springer,2007,23:3-26.
[24] 祝曼.非光合质体参与猕猴桃果实淀粉降解和柑橘果皮挥发性物质积累的调控机制[D].武汉:华中农业大学,2021.ZHU Man.Regulatory mechanisms of non-photosynthetic plastids involved in starch degradation in kiwifruit and volatile compounds accumulation in citrus peel[D].Wuhan:Huazhong Agricultural University,2021.
[25] 林加嘉.成熟猕猴桃果实淀粉体分离及其蛋白质组学研究[D].武汉:华中农业大学,2019.LIN Jiajia.The study of amyloplast isolation and their comparative proteomics analysis in mature kiwifruit[D].Wuhan:Huazhong Agricultural University,2019.
[26] 郭学民,王贵禧,高荣孚.猕猴桃冷藏期不同组织区光合色素、叶绿体细胞学及其光合放氧的变化[J].林业科学,2010,46(4):64-69.GUO Xuemin,WANG Guixi,GAO Rongfu.Changes of photosynthetic pigments,chloroplast cytology and its photosynthetic oxygen evolution in different tissue zone of kiwifruit during cold storage period[J].Scientia Silvae Sinicae,2010,46(4):64-69.
[27] BURDON J,PIDAKALA P,MARTIN P,BILLING D.Softening of‘Hayward’kiwifruit on the vine and in storage:The effects of temperature[J].Scientia Horticulturae,2017,220:176-182.
[28] MACRAE E,BOWEN J,STEC M.Maturation of kiwifruit (Actinidia deliciosa cv.Hayward)from two orchards:Differences in composition of the tissue zones[J].Journal of the Science of Food and Agriculture,1989,47(4):401-416.
[29] LI D X,ZHU F.Physicochemical properties of kiwifruit starch[J].Food Chemistry,2017,220:129-136.
[30] 朱晔荣,刘苗苗,李亚辉,宋姗姗,白艳玲,王勇.植物淀粉生物合成调节机制的研究进展[J].植物生理学报,2013,49(12):1319-1325.ZHU Yerong,LIU Miaomiao,LI Yahui,SONG Shanshan,BAI Yanling,WANG Yong.Research advance in regulation mechanism of starch synthesis in plants[J].Plant Physiology Journal,2013,49(12):1319-1325.
[31] PFISTER B,ZEEMAN S C.Formation of starch in plant cells[J].Cellular and Molecular Life Sciences,2016,73(14):2781-2807.
[32] KANG G Z,LIU G Q,PENG X Q,WEI L T,WANG C Y,ZHU Y J,MA Y,JIANG Y M,GUO T C.Increasing the starch content and grain weight of common wheat by overexpression of the cytosolic AGPase large subunit gene[J].Plant Physiology and Biochemistry,2013,73:93-98.
[33] SARIPALLI G,GUPTA P K.AGPase:Its role in crop productivity with emphasis on heat tolerance in cereals[J].Theoretical and Applied Genetics,2015,128(10):1893-1916.
[34] YU G W,SHOAIB N,YANG Y,LIU L,MUGHAL N,MOU Y W,HUANG Y B.Effect of phosphorylation sites mutations on the subcellular localization and activity of AGPase Bt2 subunit:Implications for improved starch biosynthesis in maize[J].Agronomy,2023,13(8):2119.
[35] YU G W,MOU Y W,SHOAIB N,HE X W,LIU L,DI R Z,MUGHAL N,ZHANG N,HUANG Y B.Serine 31 phosphorylation-driven regulation of AGPase activity:potential implications for enhanced starch yields in crops[J].International Journal of Molecular Sciences,2023,24(20):15283.
[36] YU G W,LV Y N,SHEN L Y,WANG Y B,QING Y,WU N,LI Y P,HUANG H H,ZHANG N,LIU Y H,HU Y F,LIU H M,ZHANG J J,HUANG Y B.The proteomic analysis of maize endosperm protein enriched by Phos-tagtm reveals the phosphorylation of brittle-2 subunit of ADP-glc pyrophosphorylase in starch biosynthesis process[J].International Journal of Molecular Sciences,2019,20(4):986.
[37] JEON J S,RYOO N,HAHN T R,WALIA H,NAKAMURA Y.Starch biosynthesis in cereal endosperm[J].Plant Physiology and Biochemistry,2010,48(6):383-392.
[38] ABT M R,ZEEMAN S C.Evolutionary innovations in starch metabolism[J].Current Opinion in Plant Biology,2020,55:109-117.
[39] HE S T,HAO X M,WANG S S,ZHOU W Z,MA Q X,LU X L,CHEN L N,ZHANG P.Starch synthase Ⅱplays a crucial role in starch biosynthesis and the formation of multienzyme complexes in cassava storage roots[J].Journal of Experimental Botany,2022,73(8):2540-2557.
[40] ABT M R,PFISTER B,SHARMA M,EICKE S,BÜRGY L,NEALE I,SEUNG D,ZEEMAN S C.STARCH SYNTHASE5,a noncanonical starch synthase-like protein,promotes starch granule initiation in Arabidopsis[J].The Plant Cell,2020,32(8):2543-2565.
[41] SHURE M,WESSLER S,FEDOROFF N.Molecular identification and isolation of the Waxy locus in maize[J].Cell,1983,35(1):225-233.
[42] LIU D R,HUANG W X,CAI X L.Oligomerization of rice granule-bound starch synthase 1 modulates its activity regulation[J].Plant Science,2013,210:141-150.
[43] PÉREZ L,SOTO E,FARRÉ G,JUANOS J,VILLORBINA G,BASSIE L,MEDINA V,SERRATO A J,SAHRAWY M,ROJAS J A,ROMAGOSA I,MUÑOZ P,ZHU C F,CHRISTOU P.CRISPR/Cas9 mutations in the rice Waxy/GBSSI gene induce allele-specific and zygosity-dependent feedback effects on endosperm starch biosynthesis[J].Plant Cell Reports,2019,38(3):417-433.
[44] 苗红霞,孙佩光,张凯星,金志强,徐碧玉.植物颗粒结合淀粉合成酶(GBSS)基因的表达调控机制研究进展[J].生物技术通报,2016,32(3):18-23.MIAO Hongxia,SUN Peiguang,ZHANG Kaixing,JIN Zhiqiang,XU Biyu.Research progress on expression regulation mechanism of genes encoding granule-bound starch synthase in plants[J].Biotechnology Bulletin,2016,32(3):18-23.
[45] MACNEILL G J,MEHRPOUYAN S,MINOW M A A,PATTERSON J A,TETLOW I J,EMES M J.Starch as a source,starch as a sink:The bifunctional role of starch in carbon allocation[J].Journal of Experimental Botany,2017,68(16):4433-4453.
[46] SILVER D M,KÖTTING O,MOORHEAD G B G.Phosphoglucan phosphatase function sheds light on starch degradation[J].Trends in Plant Science,2014,19(7):471-478.
[47] RITTE G,HEYDENREICH M,MAHLOW S,HAEBEL S,KÖTTING O,STEUP M.Phosphorylation of C6-and C3-positions of glucosyl residues in starch is catalysed by distinct dikinases[J].FEBS Letters,2006,580(20):4872-4876.
[48] KÖTTING O,PUSCH K,TIESSEN A,GEIGENBERGER P,STEUP M,RITTE G.Identification of a novel enzyme required for starch metabolism in Arabidopsis leaves:The phosphoglucan,water dikinase[J].Plant Physiology,2005,137(1):242-252.
[49] BAUNSGAARD L,LÜTKEN H,MIKKELSEN R,GLARING M A,PHAM T T,BLENNOW A.A novel isoform of glucan,water dikinase phosphorylates pre-phosphorylated α-glucans and is involved in starch degradation in Arabidopsis[J].The Plant Journal,2005,41(4):595-605.
[50] HEJAZI M,FETTKE J,PARIS O,STEUP M.The two plastidial starch-related dikinases sequentially phosphorylate glucosyl residues at the surface of both the A-and B-type allomorphs of crystallized maltodextrins but the mode of action differs[J].Plant Physiology,2009,150(2):962-976.
[51] TAKEDA Y,HIZUKURI S.Re-examination of the action of sweet-potato beta-amylase on phosphorylated (1→4)-χ-D-glucan[J].Carbohydrate Research,1981,89(1):174-178.
[52] COMPAROT-MOSS S,KÖTTING O,STETTLER M,EDNER C,GRAF A,WEISE S E,STREB S,LUE W L,MACLEAN D,MAHLOW S,RITTE G,STEUP M,CHEN J,ZEEMAN S C,SMITH A M.A putative phosphatase,LSF1,is required for normal starch turnover in Arabidopsis leaves[J].Plant Physiology,2010,152(2):685-697.
[53] KÖTTING O,SANTELIA D,EDNER C,EICKE S,MARTHALER T,GENTRY M S,COMPAROT-MOSS S,CHEN J,SMITH A M,STEUP M,RITTE G,ZEEMAN S C.STARCHEXCESS4 is a laforin-like phosphoglucan phosphatase required for starch degradation in Arabidopsis thaliana[J].The Plant Cell,2009,21(1):334-346.
[54] SANTELIA D,KÖTTING O,SEUNG D,SCHUBERT M,THALMANN M,BISCHOF S,MEEKINS D A,LUTZ A,PATRON N,GENTRY M S,ALLAIN F H T,ZEEMAN S C.The phosphoglucan phosphatase like sex Four2 dephosphorylates starch at the C3-position in Arabidopsis[J].The Plant Cell,2011,23(11):4096-4111.
[55] SCHREIER T B,UMHANG M,LEE S K,LUE W L,SHEN Z X,SILVER D,GRAF A,MÜLLER A,EICKE S,STADLERWAIBEL M,SEUNG D,BISCHOF S,BRIGGS S P,KÖTTING O,MOORHEAD G B G,CHEN J,ZEEMAN S C.LIKE SEX4 1 acts as a β-amylase-binding scaffold on starch granules during starch degradation[J].The Plant Cell,2019,31(9):2169-2186.
[56] LIU J,WANG X C,GUAN Z Y,WU M L,WANG X Y,FAN R,ZHANG F,YAN J J,LIU Y J,ZHANG D L,YIN P,YAN J J.The like sex four 1-malate dehydrogenase complex functions as a scaffold to recruit β-amylase to promote starch degradation[J].The Plant Cell,2023,36(1):194-212.
[57] ZEEMAN S C,KOSSMANN J,SMITH A M.Starch:its metabolism,evolution,and biotechnological modification in plants[J].Annual Review of Plant Biology,2010,61:209-234.
[58] ZHANG Q,PRITCHARD J,MIEOG J,BYRNE K,COLGRAVE M L,WANG J R,RAL J P F.Overexpression of a wheat α-amylase type 2 impact on starch metabolism and abscisic acid sensitivity during grain germination[J].The Plant Journal,2021,108(2):378-393.
[59] WEISE S E,KIM K S,STEWART R P,SHARKEY T D.β-maltose is the metabolically active anomer of maltose during transitory starch degradation[J].Plant Physiology,2005,137(2):756-761.
[60] SCHEIDIG A,FRÖHLICH A,SCHULZE S,LLOYD J R,KOSSMANN J.Downregulation of a chloroplast-targeted betaamylase leads to a starch-excess phenotype in leaves[J].The Plant Journal,2002,30(5):581-591.
[61] DAVID L C,LEE S K,BRUDERER E,ABT M R,FISCHERSTETTLER M,TSCHOPP M A,SOLHAUG E M,SANCHEZ K,ZEEMAN S C.BETA-AMYLASE9 is a plastidial nonenzymatic regulator of leaf starch degradation[J].Plant Physiology,2022,188(1):191-207.
[62] WOOLLEY D J,LAWES G S,CRUZ-CASTILLO J G.The growth and competitive ability of Actinidia deliciosa‘Hayward’fruit:Carbohydrate availability and response to the cytokinin-active compound CPPU[J].Acta Horticulturae,1992(297):467-474.
[63] NARDOZZA S,BOLDINGH H L,OSORIO S,HÖHNE M,WOHLERS M,GLEAVE A P,MACRAE E A,RICHARDSON A C,ATKINSON R G,SULPICE R,FERNIE A R,CLEARWATER M J.Metabolic analysis of kiwifruit (Actinidia deliciosa)berries from extreme genotypes reveals hallmarks for fruit starch metabolism[J].Journal of Experimental Botany,2013,64(16):5049-5063.
[64] WEGRZYN T,MACRAE E.Alpha-amylase and starch degradation in kiwifruit[J].Journal of Plant Physiology,1995,147(1):19-28.
[65] BONGHI C,PAGNI S,VIDRIH R,RAMINA A,TONUTTI P.Cell wall hydrolases and amylase in kiwifruit softening[J].Postharvest Biology and Technology,1996,9(1):19-29.
[66] MACRAE E,QUICK W P,BENKER C,STITT M.Carbohydrate metabolism during postharvest ripening in kiwifruit[J].Planta,1992,188(3):314-323.
[67] BURDON J,PIDAKALA P,MARTIN P,BILLING D,BOLDINGH H.Fruit maturation and the soluble solids harvest index for‘Hayward’kiwifruit[J].Scientia Horticulturae,2016,213:193-198.
[68] BURDON J.Kiwifruit biology:The commercial implications of fruit maturation[J].Horticultural Reviews,2018,46:385-421.
[69] LI M J,FENG F J,CHENG L L.Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development[J].PLoS One,2012,7(3):e33055.
[70] MACK C,WEFERS D,SCHUSTER P,WEINERT C H,EGERT B,BLIEDUNG S,TRIERWEILER B,MUHLE-GOLL C,BUNZEL M,LUY B,KULLING S E.Untargeted multi-platform analysis of the metabolome and the non-starch polysaccharides of kiwifruit during postharvest ripening[J].Postharvest Biology and Technology,2017,125:65-76.
[71] NARDOZZA S,GAMBLE J,AXTEN L G,WOHLERS M W,CLEARWATER M J,FENG J Q,HARKER F R.Dry matter content and fruit size affect flavour and texture of novel Actinidia deliciosa genotypes[J].Journal of the Science of Food and Agriculture,2011,91(4):742-748.
[72] HARKER F R,CARR B T,LENJO M,MACRAE E A,WISMER W V,MARSH K B,WILLIAMS M,WHITE A,LUND C M,WALKER S B,GUNSON F A,PEREIRA R B.Consumer liking for kiwifruit flavour:A meta-analysis of five studies on fruit quality[J].Food Quality and Preference,2009,20(1):30-41.
[73] CARLI P,ARIMA S,FOGLIANO V,TARDELLA L,FRUSCIANTE L,ERCOLANO M R.Use of network analysis to capture key traits affecting tomato organoleptic quality[J].Journal of Experimental Botany,2009,60(12):3379-3386.
[74] CANO M P,DE ANCOS B,MATALLANA M C,CÁMARA M,REGLERO G,TABERA J.Differences among Spanish and Latin-American banana cultivars:Morphological,chemical and sensory characteristics[J].Food Chemistry,1997,59(3):411-419.
[75] BURDON J,MCLEOD D,LALLU N,GAMBLE J,PETLEY M,GUNSON A.Consumer evaluation of‘Hayward’kiwifruit of different at-harvest dry matter contents[J].Postharvest Biology and Technology,2004,34(3):245-255.
[76] 张慧琴,谢鸣,张琛,杨鲁琼,章镇,肖金平,周利秋.猕猴桃果实发育过程中淀粉积累差异及其糖代谢特性[J].中国农业科学,2014,47(17):3453-3464.ZHANG Huiqin,XIE Ming,ZHANG Chen,YANG Luqiong,ZHANG Zhen,XIAO Jinping,ZHOU Liqiu.Difference in starch accumulation and characterization of sugar metabolism during fruit development of kiwi fruit[J].Scientia Agricultura Sinica,2014,47(17):3453-3464.
[77] 戚雯烨,周晨卉,宋丽君,钟雨,郑小林.毛花猕猴桃‘华特’果实采后糖代谢研究[J].果树学报,2016,33(6):744-751.QI Wenye,ZHOU Chenhui,SONG Lijun,ZHONG Yu,ZHENG Xiaolin.Study on sugar metabolism of Actindia eriantha Benth‘White’during storage[J].Journal of Fruit Science,2016,33(6):744-751.
[78] 杨勇,陈露,陈成,阎永齐.环剥对红阳猕猴桃果实品质及糖代谢的影响[J].江苏农业科学,2021,49(19):156-163.YANG Yong,CHEN Lu,CHEN Cheng,YAN Yongqi.Effects of girdling treatment on fruit quality and sugar metabolism of Hongyang kiwifruit[J].Jiangsu Agricultural Sciences,2021,49(19):156-163.
[79] 王静,冯梅凤,杨碧敏,林丽莎,林河通.猕猴桃果实采后生理、采后病害与保鲜技术研究进展[J].包装与食品机械,2014,32(4):53-57.WANG Jing,FENG Meifeng,YANG Bimin,LIN Lisha,LIN Hetong.Studies on postharvest physiology,postharvest disease and freshness-keeping methods of kiwifruit[J].Packaging and Food Machinery,2014,32(4):53-57.
[80] 黄文俊,钟彩虹.猕猴桃果实采后生理研究进展[J].植物科学学报,2017,35(4):622-630.HUANG Wenjun,ZHONG Caihong.Research advances in the postharvest physiology of kiwifruit[J].Plant Science Journal,2017,35(4):622-630.
[81] SCHRÖDER R,ATKINSON R.Kiwifruit cell walls:Towards an understanding of softening[J].New Zealand Journal of Forestry Science,2006,36(1):112-129.
[82] ZHANG Q Y,GE J,LIU X C,WANG W Q,LIU X F,YIN X R.Consensus co-expression network analysis identifies AdZAT5 regulating pectin degradation in ripening kiwifruit[J].Journal of Advanced Research,2022,40:59-68.
[83] MOCHIZUKI T,KUROSAKI T.Histochemical changes of starch in kiwifruit (Actinidia chinensis Planch.) during fruit growth and storage[J].Nippon Shokuhin Kogyo Gakkaishi,1988,35(4):221-225.
[84] ARPAIA M L,LABAVITCH J M,GREVE C,KADER A A.Changes in the cell wall components of kiwifruit during storage in air or controlled atmosphere[J].Journal of the American Society for Horticultural Science,1987,112(3):474-481.
[85] ATKINSON R G,GUNASEELAN K,WANG M Y,LUO L K,WANG T C,NORLING C L,JOHNSTON S L,MADDUMAGE R,SCHRÖDER R,SCHAFFER R J.Dissecting the role of climacteric ethylene in kiwifruit (Actinidia chinensis) ripening using a 1-aminocyclopropane-1-carboxylic acid oxidase knockdown line[J].Journal of Experimental Botany,2011,62(11):3821-3835.
[86] 王贵禧,韩雅珊,于梁.浸钙对猕猴桃果实硬度变化影响的生化机制[J].园艺学报,1995,22(1):21-24.WANG Guixi,HAN Yashan,YU Liang.Biochemical mechanism of the firmness changes of kiwifruit treated by CaCl2[J].Acta Horticulturae Sinica,1995,22(1):21-24.
[87] 王贵禧,韩雅珊,于粱.猕猴桃软化过程中阶段性专一酶活性变化的研究[J].植物学报,1995,37(3):198-203.WANG Guixi,HAN Yashan,YU Liang.Study on the activities of stage specific enzyme during softening of kiwifruit[J].Journal of Integrative Plant Biology,1995,37(3):198-203.
[88] 王贵禧,韩雅珊,于梁.猕猴桃总淀粉酶活性与果实软化的关系[J].园艺学报,1994,21(4):329-333.WANG Guixi,HAN Yashan,YU Liang.The relationship between amylase activity and softening of kiwifruit after harvest[J].Acta Horticulturae Sinica,1994,21(4):329-333.
[89] ALEXANDER L,GRIERSON D.Ethylene biosynthesis and action in tomato:A model for climacteric fruit ripening[J].Journal of Experimental Botany,2002,53(377):2039-2055.
[90] MCDONALD B,HARMAN J E.Controlled-atmosphere storage of kiwifruit.I.Effect on fruit firmness and storage life[J].Scientia Horticulturae,1982,17(2):113-123.
[91] MATSUMOTO S,OBARA T,LUH B S.Changes in chemical constituents of kiwifruit during post-harvest ripening[J].Journal of Food Science,1983,48(2):607-611.
[92] RITENOUR M A,CRISOSTO C H,GARNER D T,CHENG G W,ZOFFOLI J P.Temperature,length of cold storage and maturity influence the ripening rate of ethylene-preconditioned kiwifruit[J].Postharvest Biology and Technology,1999,15(2):107-115.
[93] HU X,KUANG S,ZHANG A D,ZHANG W S,CHEN M J,YIN X R,CHEN K S.Characterization of starch degradation related genes in postharvest kiwifruit[J].International Journal of Molecular Sciences,2016,17(12):2112.
[94] 陈景丹,许凤,陈伟,杨震峰.猕猴桃果实采后软化期间淀粉降解关键基因表达分析[J].核农学报,2018,32(2):236-243.CHEN Jingdan,XU Feng,CHEN Wei,YANG Zhenfeng.Starch degradation and analysis of key-gene expression during postharvest kiwifruit softening[J].Journal of Nuclear Agricultural Sciences,2018,32(2):236-243.
[95] ZHANG A D,WANG W Q,TONG Y,LI M J,GRIERSON D,FERGUSON I,CHEN K S,YIN X R.Transcriptome analysis identifies a zinc finger protein regulating starch degradation in kiwifruit[J].Plant Physiology,2018,178(2):850-863.
[96] 刘璐,王康,韩一璐,杨民杰,陈伟,曹士锋,施丽愉.猕猴桃AcbHLH137 功能鉴定及对淀粉降解基因AcBAM3 转录激活分析[J].核农学报,2022,36(3):544-553.LIU Lu,WANG Kang,HAN Yilu,YANG Minjie,CHEN Wei,CAO Shifeng,SHI Liyu.Functional identification of Acb-HLH137 and its transcriptional activation of starch degradation gene AcBAM3 in kiwifruit[J].Journal of Nuclear Agricultural Sciences,2022,36(3):544-553.
[97] HUAN C,DU X J,WANG L F,KEBBEH M,LI H H,YANG X H,SHEN S L,ZHENG X L.Transcriptome analysis reveals the metabolisms of starch degradation and ethanol fermentation involved in alcoholic off-flavour development in kiwifruit during ambient storage[J].Postharvest Biology and Technology,2021,180:111621.
[98] BURDON J,LALLU N,FRANCIS K,BOLDINGH H.The susceptibility of kiwifruit to low temperature breakdown is associated with pre-harvest temperatures and at-harvest soluble solids content[J].Postharvest Biology and Technology,2007,43(3):283-290.
[99] BURDON J,PIDAKALA P,MARTIN P,MCATEE P A,BOLDINGH H L,HALL A,SCHAFFER R J.Postharvest performance of the yellow-fleshed‘Hort16A’kiwifruit in relation to fruit maturation[J].Postharvest Biology and Technology,2014,92:98-106.
[100] MITALO O W,ASICHE W O,KASAHARA Y,TOSA Y,TOKIWA S,USHIJIMA K,NAKANO R,KUBO Y.Comparative analysis of fruit ripening and associated genes in two kiwifruit cultivars ‘(Sanuki Gold’and‘Hayward’) at various storage temperatures[J].Postharvest Biology and Technology,2019,147:20-28.
[101] MITALO O W,TOKIWA S,KONDO Y,OTSUKI T,GALIS I,SUEZAWA K,KATAOKA I,DOAN A T,NAKANO R,USHIJIMA K,KUBO Y.Low temperature storage stimulates fruit softening and sugar accumulation without ethylene and aroma volatile production in kiwifruit[J].Frontiers in Plant Science,2019,10:888.
[102] MWORIA E G,YOSHIKAWA T,SALIKON N,ODA C,ASICHE W O,YOKOTANI N,ABE D,USHIJIMA K,NAKANO R,KUBO Y.Low-temperature-modulated fruit ripening is independent of ethylene in‘Sanuki Gold’kiwifruit[J].Journal of Experimental Botany,2012,63(2):963-971.
[103] MITALO O W,ASICHE W O,KASAHARA Y,TOSA Y,OWINO W O,MWORIA E G,USHIJIMA K,NAKANO R,KUBO Y.Characterization of ripening-related genes involved in ethylene-independent low temperature-modulated ripening in‘Rainbow Red’kiwifruit during storage and on-vine[J].The Horticulture Journal,2018,87(3):421-429.
[104] ASICHE W O,MITALO O W,KASAHARA Y,TOSA Y,MWORIA E G,OWINO W O,USHIJIMA K,NAKANO R,YANO K,KUBO Y.Comparative transcriptome analysis reveals distinct ethylene-independent regulation of ripening in response to low temperature in kiwifruit[J].BMC Plant Biology,2018,18(1):1-18.
[105] 陈璐,高柱,毛积鹏,张小丽,卢玉鹏,林孟飞,公旭晨,王小玲.不同温度处理采后猕猴桃果实淀粉降解的转录组分析[J].江西农业大学学报,2023,45(3):591-604.CHEN Lu,GAO Zhu,MAO Jipeng,ZHANG Xiaoli,LU Yupeng,LIN Mengfei,GONG Xuchen,WANG Xiaoling.Transcriptome analysis of starch degradation in post-harvest kiwifruit treated at different temperatures[J].Acta Agriculturae Universitatis Jiangxiensis,2023,45(3):591-604.
[106] LAI R L,WU X P,FENG X,GAO M X,LONG Y,WU R J,CHENG C Z,CHEN Y T.Identification and characterization of long non-coding RNAs:Implicating insights into their regulatory role in kiwifruit ripening and softening during low-temperature storage[J].Plants,2023,12(5):1070.
Advance in starch metabolism research of kiwifruit