寒地苹果龙丰、岳艳及其两个杂交优系抗寒性综合评价

包俊宏1,包敖民2,杨 荣1,3*,李今普1,王宝侠2,郑东生1,何炎红1*

1内蒙古农业大学林学院,呼和浩特 010018;2通辽市林业和草原研究所,内蒙古通辽 028399;3内蒙古自治区林业科学研究院,呼和浩特 010010)

摘 要:【目的】通过对内蒙古寒地苹果龙丰和岳艳及其2个优系的抗寒性进行综合评价,明确2个优系的适生区域,为丰富寒地苹果种质资源以及选育抗寒性强的寒地苹果品种提供科学依据。【方法】以龙丰、岳艳以及它们的2个杂交优系为试材,在不同低温处理下进行1年生枝条生理指标试验,测定相对电导率(REC)、丙二醛(MDA)含量、超氧化物歧化酶(SOD)活性、过氧化物酶(POD)活性、可溶性蛋白(SP)含量;以及在模拟霜降条件下做花期生理反应试验,测定花朵子房及幼果过冷却点和结冰点。采用隶属函数法综合评价4份苹果材料的抗寒性。【结果】随着处理温度的降低,各供试材料枝条的相对电导率逐渐升高,呈“S”形变化曲线,其中优系TL0099相对电导率上升幅度小,岳艳跃变幅度较大;优系TL0099的MDA含量在-25 ℃低温胁迫下出现突然跃变的现象,而岳艳从对照(4 ℃)持续增加,-25 ℃低温胁迫处理后开始下降;优系TL0099的POD活性显著高于亲本组合;不同低温处理下,2个优系枝条SOD活性显著高于亲本组合。各供试材料SP含量到达峰值的温度均在-20 ℃,且达到峰值后,SP含量不再上升。通过花期霜冻试验,发现4 份供试材料的子房、幼果受冻温度范围为-5.6 ℃~-2.4 ℃,且各供试材料幼果过冷却点均高于子房过冷却点。【结论】4 份苹果材料抗寒力强弱排序依次为:TL0099>TL0092>龙丰>岳艳。其中TL0099、TL0092 为Ⅱ级抗寒品系;龙丰为Ⅲ级中抗品种;岳艳为Ⅳ级低抗品种。

关键词:苹果;抗寒性;生理指标;过冷却点

苹果(Malus domestica Borkh.)是温带落叶果树,作为中国第二大水果,在农业生产中占有重要地位,决定着中国人的果盘子[1-2]。改革开放以来,中国苹果产业布局不断优化调整,受经济、气候条件、国家政策等因素的影响,苹果生产布局发生了重大改变[3-4]。优质抗寒苹果主产区位于北纬40°~46°,其气候特征包括低温、干旱、强风、初霜早、降温快和秋季短暂等。这些气候条件导致苹果树过冬率低,出现抽条和冻害的现象。此外,随全球气候变暖,近年来中国的暖冬和暖春现象日益增多。大部分植物的物候期提前,而春季气温回升速度也加快,进一步增加了果树花期遭受晚霜冻害的风险[5]。苹果属于呼吸跃变型果实,根据中国国情和果实特点,需要培育优质、耐贮、晚熟的主栽品种及特色多样化的早、中熟品种[6],而对现有苹果品种抗寒能力的评价对新品种选育、栽培和后期推广具有重要指导意义。

关于果树抗寒性的评价,前人采用了不同方法进行了深入研究。其中,生理生化指标测试法常用于抗寒性评价[7]。井俊丽等[8]利用主成分分析法对自然越冬条件下不同苹果砧木1年生枝条生理特性进行了分析,最终确定了3个主成分,包括11个指标作为苹果主要的抗寒性评价指标。李荣富等[9]认为,利用电导率值能够较为准确地反映果树真实的抗寒能力。刘兴禄等[7]采用隶属函数法结合电导法通过对5个砧木苹果1年生枝条低温胁迫下的抗寒应答机制进行了抗寒性研究和评价,结果表明,电导法与隶属函数法对不同砧木抗寒性的评价结果完全一致。丛日征等[10]认为,因抗寒机制复杂,植物的抗寒性应由多个因素综合决定。抗晚霜能力也是决定苹果是否可以丰收的关键因素,但目前关于果树花期冻害的研究较少,李晓龙等[11]认为,可以通过检测花朵过冷点及结冰点温度判定不同品种花朵抗寒性。孙鲁龙等[12]通过霜冻试验,研究不同矮化中间砧对瑞雪苹果花抗霜冻能力的影响,发现瑞雪苹果花霜冻半致死温度平均为-4.32 ℃,边花抗冻性整体上优于中心花。袁嘉玮等[13]采用人工气候箱对运城主要果树花期冻害指标进行了研究,并得到运城市苹果、梨、杏和桃花期遭受冻害的临界温度。

杂交育种既能将2 个或2 个以上的优异性状集中到一个新的品系中,又能利用杂种优势培育出优于双亲的新品种[14]。2012 年左右,龙丰为东北地区栽植面积最大的寒地小果型苹果品种,具有丰(稳)产、优质、耐贮的优良特点,成为东北寒地苹果产区的主栽品种[15-16];而岳艳为大果型苹果,品质和抗寒性均较好,在辽宁、河北等地广泛栽培。2012年,笔者课题组以“抗寒、优质、中果、果肉脆”为育种目标,以龙丰和岳艳为亲本,开展了杂交育种试验,最终获得480 株后代群体。10 年的跟踪选择表明,子代TL0092具有不易落果、着色好、香味浓郁、可溶性固形物含量达20%的优良特性;子代TL0099 具有早熟、优质、抗病性强等特性。因此,为进一步验证2个优系的抗寒能力,笔者以父母本龙丰、岳艳以及2个杂交优系为试材,对4份供试材料进行了1年生枝条在低温寒冷条件下的生理指标的测定,以及模拟霜降条件下花芽子房、幼果的生理反应试验。利用隶属函数法进行综合性评价,以期对2 个优系抗寒性进行科学判断,最终确定2个优系的适宜栽培区,为丰富寒地苹果品种资源以及选育抗寒性强的寒地苹果品种提供科学依据。

1 材料和方法

1.1 试验材料

试验材料为龙丰、岳艳以及岳艳×龙丰的杂交优选后代TL0092、TL0099,具体品种情况见表1。

表1 供试材料基本情况
Table 1 Basic information of test materials

1.2 材料采集

于2023年2月初,剪取各试材长势良好、均匀一致的1 年生休眠枝条(分别取20 枝),长度截取约为40 cm,粗度约为0.7 cm,用自来水、蒸馏水先后冲洗3次,擦干后两端进行蜡封,塑封置于冰盒带回实验室,用于相关生理生化指标的测定。

于2023年4月19日,在各试材枝条露红期采集枝条并插入花泥中以此提供枝条所需水分,带回实验室并进行水培,用于子房过冷却点测定。幼果采于盛花期7 d后,测定过冷却点及结冰点。

1.3 材料处理

将采集的4 个苹果1 年生休眠枝条带回实验室后剪去顶部5 cm,先后用自来水、蒸馏水冲洗3遍,均匀分成7组,分别在4 ℃、-10 ℃、-20 ℃、-25 ℃、-30 ℃、-35 ℃、-40 ℃冰箱中进行冷冻处理。降温(5 ℃·h-1)至设定温度后持续24 h 后将各低温胁迫的样品进行解冻;以4 ℃作为对照,用于生理指标测定。

将露红期采集的枝条水培至开花,根据通辽发生霜冻时温度变化情况,以室温做对照,共设置-1 ℃、-2 ℃、-3 ℃、-4 ℃、-5 ℃、-6 ℃等6个低温处理。模拟霜箱先预冷至10 ℃左右之后以1.5 ℃·h-1速度降温至4 ℃左右,再以2 ℃·h-1的速度缓慢降温到设定温度,持续2 h后,以2 ℃·h-1速度升至室内温度,测定各供试材料过冷却点与结冰点。

1.4 生理指标的测定方法

参照金明丽[17]、杨雪[18]、张钢[19]的方法测定相对电导率(REC)。采用硫代巴比妥酸(TBA)法测定丙二醛(MDA)含量,采用四唑氮蓝光还原法测定超氧化物歧化酶(SOD)活性,采用愈创木酚法测定过氧化物酶(POD)活性,采用考马斯亮蓝G-250 染色法测定可溶性蛋白(SP)含量[20]

1.5 过冷却点测定方法

过冷却现象指植物体温下降至0 ℃以下时,植物器官组织内水分未结冰仍保持液态的现象。结冰现象是随着外界温度持续降低而低于植物组织自身能抵御的最低温度时,组织释放潜热,温度变化曲线出现峰值跳跃,该峰的起点温度就是过冷却点(T1),回升到一定温度后,冰晶核形成,温度不再上升,晶体增长,放热与吸热处于平衡状态,此时温度即结冰点(T2)。

采用MSX-2F型模拟霜箱系统(精度为±0.5 ℃),以4 份试材的子房及幼果为测定部位,测定过冷却点和结冰点。将苹果枝条置于人工霜箱内,再将热电偶温度传感器探头安置在待测部位上[11]。温度传感器与数据采集系统和微机连接,每10 s自动扫描1次,连续记录数据、分析组织表面温度变化,绘制温度变化曲线。

1.6 数据处理与分析

采用模糊隶属函数法,用公式(1)和(2)[21]计算4个供试材料抗寒指标的隶属函数值,用公式(3)计算供试材料的抗寒性综合评价值(Di)。用SPSS 22 进行数据统计与分析,并用Excel绘图。

式中,uXij)为i样品j性状的隶属函数值,Xij为i样品j 性状的实测值,XmaxXmin分别为该指标的最大值和最小值;Di为i 材料的平均隶属函数值,n 为测定指标数,Di值越大,表明抗寒性越强。

2 结果与分析

2.1 不同低温处理对相对电导率的影响

利用电导率法来评价植物的耐寒能力是一种相对直观的手段,已在多个领域得到广泛应用[22]。当相对电导率达到50%时,这个温度可以被视为枝条的半致死温度[23]。如图1所示,TL0092、TL0099、龙丰和岳艳在-35 ℃、-40 ℃、-35 ℃、-35 ℃的温度下,它们的相对电导率分别达到了55.76%、57.35%、49.99%、48.06%。这些数据表明TL0092、TL0099、龙丰和岳艳的半致死温度在-35 ℃、-40 ℃、-35 ℃、-35 ℃左右。不同品种枝条电解质渗出率均随着低温的胁迫,呈“S”形变化趋势。从整体上看,在4 ℃、-10 ℃、-20 ℃、-25 ℃、-30 ℃处理时,各供试材料的电导率增加速率较为缓慢。在-35 ℃处理时,龙丰、TL0092枝条相对电导率迅速升高。TL0099 枝条相对电导率则在-40 ℃处理时骤增,且与其他试材相比对照至-40 ℃跃升值为18.96%,变化较为平缓,说明TL0099细胞膜系统受害程度低于其他试材,抗寒性较强。4 个苹果休眠枝条的电导率均在-40 ℃处理下达到峰值。

图1 不同低温处理下苹果枝条电导率的变化
Fig.1 Changes in electrical conductivity content of apple branches under different low temperature treatments

不同小写字母表示相同温度下品种间差异显著(p<0.05)。下同。
Different small letters indicate significant differences between varieties at the same temperature(p<0.05).The same below.

2.2 不同低温处理下MDA含量的变化

MDA是膜脂过氧化作用的产物,植物在逆境胁迫时其含量的增加会破坏细胞膜系统,严重时导致细胞的死亡[24]。如图2所示,在不同低温胁迫下,亲本和后代植株的MDA 含量变化并不完全一致。TL0092 的MDA 含量在-10 ℃~-30 ℃时,差异不显著,且在-25 ℃时与龙丰无显著差异。TL0099 在4 ℃、-10 ℃、-20 ℃时,MDA含量变化趋于稳定,而在-25 ℃处理下骤增,达到峰值。亲本岳艳的MDA含量随着温度的下降而升高,在-25 ℃时达高峰,而后又急剧降低。-35 ℃低温处理下,子代TL0092、TL0099 与亲本岳艳差异不显著。-40 ℃低温处理下,优系TL0099与亲本龙丰无显著差异。

图2 不同低温处理下苹果枝条MDA 含量的变化
Fig.2 Changes in MDA content of apple branches under different low temperature treatments

2.3 不同低温处理下POD活性的变化

POD 是植物体内酶促防御系统的重要组成部分[25]。随着处理温度的降低,亲本与优系POD 活性变化如图3 所示,亲本龙丰与岳艳的POD 活性均在处理温度为-25 ℃时达到峰值。亲本龙丰、岳艳在整个过程中呈N形变化趋势。在处理温度为-30 ℃时,子代TL0092 的POD 活性达到峰值;TL0099 则在4 ℃、-10 ℃、-20 ℃、-30 ℃时POD 活性显著高于其他供试材料。TL0092 在整个低温胁迫过程中呈升-降-升-降-升的双峰曲线变化趋势,而TL0099 呈升-降-升的单峰曲线变化趋势,且在-20 ℃~-30 ℃低温处理下变化较为平缓。

图3 不同低温处理后各苹果枝条POD 活性的变化
Fig.3 The changes of POD activity in apple branch after low temperature treatment

2.4 不同低温处理下SOD活性的变化

SOD在抗氧化酶系统中扮演重要的角色,在植物体内普遍存在,过氧化氢的产生与SOD活性直接相关。稳定且较高水平的SOD活性能够高效清除细胞内因低温胁迫产生的活性氧物质,进一步保证细胞内环境的稳态[26]。如图4所示,不同低温胁迫的各供试材料中,2个亲本枝条SOD活性分别在-25 ℃、-30 ℃低温处理时达到峰值,而2 个优系枝条SOD活性分别在-35 ℃、-40 ℃低温处理时达到峰值。在-10 ℃处理下,TL0092、龙丰SOD 活性极显著高于岳艳和TL0099,且岳艳与优系TL0099 在-10 ℃、-20 ℃、-25 ℃处理下SOD活性差异不显著。TL0092在-30 ℃、-35 ℃处理时SOD 活性显著高于其他供试材料。在整个低温处理过程中,TL0092、龙丰、岳艳SOD 活性呈M 形双峰曲线变化趋势、而TL0099枝条SOD含量呈降-升-降-升的变化趋势。

图4 不同低温处理下苹果枝条SOD 活性的变化
Fig.4 The changes of SOD activity in apple branch after low temperature treatment

2.5 不同低温处理对SP含量的影响

SP通过降低植物细胞冰点,减小低温结冰伤害致死概率,是植物体内重要的有机渗透调节物质[27]。由图5可知,除岳艳外,其他3份材料SP含量呈升-降-升-降-升的变化趋势,且均在-20 ℃低温处理时达到峰值,达到一定低温后,SP 含量开始下降。在-25 ℃低温处理下,TL0092、TL0099、龙丰SP 含量下降,在-30 ℃时再次上升,呈M 形变化趋势。岳艳亦在-20 ℃低温下,SP含量达到峰值后呈持续降低趋势,而优系TL0092 在-20 ℃~-30 ℃低温处理时变化较平缓。

图5 不同低温处理下苹果枝条SP 含量的变化
Fig.5 Changes in SP content of apple branches under different low-temperature treatment

2.6 各苹果子房、幼果过冷却点

不同试材霜降后过冷却点不同,且幼果过冷却点高于子房过冷却点(见表2、图6、图7),龙丰盛花期(子房)的过冷却点范围为-2.6 ℃~-4 ℃,幼果过冷却点范围为-2.6 ℃~-3.0 ℃。岳艳盛花期(子房)的过冷却点范围为-2.5 ℃~-3.4 ℃,幼果过冷却点范围为-2.4 ℃~-2.8 ℃。TL0092盛花期(子房)的过冷却点范围为-2.7 ℃~-4.0 ℃,幼果过冷却点范围为-2.4 ℃~-3.3 ℃。TL0099 盛花期(子房)的过冷却点范围为-2.7 ℃~-5.6 ℃,幼果过冷却点范围为-2.8 ℃~-3.3 ℃。各供试材料幼果过冷却点均比子房过冷却点高,说明苹果幼果抗寒性不如子房。

图6 各苹果盛花期(子房)过冷却点
Fig.6 Supercooling points of each apple during its flowering(ovary)

图7 各苹果幼果过冷却点
Fig.7 Supercooling points of young apple fruits period

表2 各苹果子房及幼果过冷却点
Table 2 Supercooling points of various apple flower organs and young fruits ℃

2.7 苹果品种抗寒性的综合评价

植物抗寒性是由多种综合作用的累加结果,受多因素的影响和制约,用某单一指标评价植物的抗寒性不具有代表性。而多元统计方法中的隶属函数法可将多种指标综合起来,因此,采用隶属函数法综合多个指标评价植物的抗寒性较为可靠[23]。根据上述所测得的与苹果抗寒性相关的指标数据,运用隶属函数法得出4 份供试材料的隶属函数平均值,隶属函数值越大,品种抗寒性越强,按照大小依次排序,得出龙丰、岳艳、TL0092、TL0099 抗寒性的强弱综合排名。从表3可以得出,4个苹果1年生休眠枝抗寒性强弱的综合排名依次为:TL0099>TL0092>龙丰>岳艳。

表3 4 个苹果品种(系)枝条抗寒隶属函数值及综合评价
Table 3 The value and comprehensive evaluation of the cold resistance membership function of four apple varieties(lines)branches

注:参照陶雅[28]的方法,按平均隶属度将耐寒性分为Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ等5 个等级:其中0.80~1.00 为Ⅰ级高抗品种;0.60~0.79 为Ⅱ级抗寒品种;0.40~0.59 为Ⅲ级中抗品种;0.20~0.39 为Ⅳ级低抗品种;0.00~0.19 为Ⅴ级不抗品种。
Note: Referring to Tao Ya’s[28] method,cold tolerance is divided into 5 levels based on average membership: Ⅰ,Ⅱ,Ⅲ,Ⅳ,Ⅴetc.Among them,0.80-1.00 are high resistance varieties at level Ⅰ;0.60-0.79 are Class Ⅱcold resistant varieties;0.40-0.59 are grade Ⅲmedium resistant varieties;0.20-0.39 are low resistance varieties of grade Ⅳ;0.00-0.19 are non resistant varieties of Grade Ⅴ.

参照陶雅[28]的方法,对4个苹果进行分级,其中TL0099、TL0092 为Ⅱ级抗寒品系;龙丰为Ⅲ级中抗品种;岳艳为Ⅳ级低抗品种。

3 讨论

在本试验中,人工模拟低温胁迫的方式虽与自然环境条件下的冻害存在差异,但所有供试材料在同一条件下进行测定,能够反映不同供试材料间抗寒能力的强弱[29]

3.1 低温胁迫与膜稳定性的关系

相对电导率的大小是植物抗寒性强弱的重要指标。在不同低温胁迫下,各品种电导率均随温度的下降而增加,抗寒性强的品种相对电导率增幅较小且相对电导率值较低[30]。在本研究中,4个苹果品种(系)1 年生休眠枝的相对电导率随温度的降低呈“S”形变化趋势。TL0099电导率升高的速度相对平缓,且与其他供试材料相比,对照至-40 ℃增长率最低,说明TL0099细胞膜系统受害程度低于TL0092、龙丰与岳艳。MDA作为膜脂过氧化的重要产物,是衡量细胞膜受损害程度的重要指标[31-33]。植株体内MDA 大量积聚后,与蛋白质结合引起膜蛋白的变性,从而导致生理代谢紊乱,严重时导致植株死亡[34]。4 份供试材料1 年生休眠枝条MDA 含量在-25 ℃~-30 ℃低温条件下显著降低,这可能是由于超过了植株所能承受的低温范围,从而使细胞遭到破坏,影响低温胁迫下的正常生理反应。而岳艳在对照、-10 ℃、-20 ℃、-25 ℃低温条件下,MDA释放量较高,说明低温加剧细胞膜脂过氧化程度,导致生物膜受损较严重。

3.2 低温胁迫与抗氧化系统的关系

POD、SOD 是保护植物酶系统的重要酶类[35-36]。低温胁迫影响植物细胞膜的稳定性,随着低温胁迫程度的增大对植物造成的伤害也随之加重[37]。本研究表明,POD 活性随着低温的胁迫加重,呈先升后降的趋势,达到一定低温后,POD活性开始降低,这表明保护酶系统能及时响应低温胁迫,与闫忠业等[38]报道的结果一致。范宗民等[39]在葡萄砧木的抗寒性研究中发现,SOD 活性随着温度的降低,其活性不稳定,呈现M形的变化趋势。本研究中各供试材料SOD 活性变化呈M 形趋势的有岳艳、龙丰、TL0092,POD 活性在-35 ℃之后开始降低,可能表明在-40 ℃低温下已无法及时响应过氧化胁迫,氧自由基含量超过了保护酶系统的清除能力。

3.3 低温胁迫与渗透调节物质的关系

SP 含量与抗寒性呈正相关,SP 大量积累,帮助细胞维持较低的渗透势,增强细胞的耐脱水能力,从而减缓低温伤害。SP 是植物体内重要的渗透调节物质[40],并且抗寒性强的品种SP含量较高。本试验各苹果供试材料SP含量到达峰值的温度均在-20 ℃,达到峰值后,各供试材料SP含量不再上升,开始下降,可能是因为-20 ℃低温时各苹果枝条体内渗透调节代谢系统遭到破坏。

3.4 低温胁迫与过冷却点的关系

过冷却点温度是植物组织器官生理适应的低温下限,过冷点越低,抗寒性越强[41]。通过测定各供试材料子房、幼果过冷却点以及结冰点得出数据,并发现同试材同器官的过冷却点和结冰点都有范围,这与廖咸康等[42]在8种草本地被植物细胞溶液中的研究结果一致。影响生物体过冷却点及抗寒性的因素较多,如植株体含水量、植株体抗冻物质含量、降温速度等[43-45]。各供试材料幼果过冷却点均比子房过冷却点高,说明苹果幼果抗寒性不如子房。4 个苹果子房、幼果受冻温度范围为-5.6 ℃~-2.4 ℃,说明当温度低于-5.6 ℃时,各供试材料花朵子房及幼果将可能全部受冻。

笔者在本试验中发现,在低温胁迫处理中,单个指标试验结果与最终的隶属函数法计算得出的综合结果略有差异,MDA、SOD、SP 3个指标测定结果表明,子代TL0092、TL0099 抗寒力均强于亲本龙丰、岳艳。因此仅用单一指标来判定苹果耐寒性比较片面,应结合多项指标综合判定各品种抗寒性强弱,避免因单个指标的片面性造成误差,采用隶属函数法可以更全面、准确地反映果树的实际抗寒能力。

4 结论

通过人工模拟低温环境,测定4 个苹果品种(系)枝条生理指标相对电导率、MDA 含量、SP 含量、POD 活性、SOD 活性,结合花期霜冻试验,通过隶属函数法计算各项指标的平均隶属度,结果表明,4 个苹果品种(系)枝条的抗寒性由强到弱依次为:TL0099>TL0092>龙丰>岳艳。子代抗寒性较强于亲本。TL0092、TL0099 为Ⅱ级抗寒品系,可尝试在较寒冷的地区推广种植。4个苹果品种(系)的子房、幼果受冻温度范围为-5.6 ℃~-2.4 ℃。

参考文献References:

[1] 周江涛,赵德英,陈艳辉,康国栋,程存刚.中国苹果产区变动分析[J].果树学报,2021,38(3):372-384.ZHOU Jiangtao,ZHAO Deying,CHEN Yanhui,KANG Guodong,CHENG Cungang.Analysis of apple producing area changes in China[J].Journal of Fruit Science,2021,38(3):372-384.

[2] 徐功勋,周佳,吕德国,秦嗣军.4 个苹果品种的抗寒性评价[J].果树学报,2023,40(4):669-679.XU Gongxun,ZHOU Jia,LÜ Deguo,QIN Sijun.Cold resistance evaluation of four apple varieties[J].Journal of Fruit Science,2023,40(4):669-679.

[3] 陈学森,伊凯,王宝侠,张宇明,王楠,张宗营,毛志泉,胡大刚,姜远茂.果树科技面向国家重大需求Ⅳ:寒地苹果助力东北振兴[J].中国果树,2023(4):1-6.CHEN Xuesen,YI Kai,WANG Baoxia,ZHANG Yuming,WANG Nan,ZHANG Zongying,MAO Zhiquan,HU Dagang,JIANG Yuanmao.Fruit tree technology facing major national demand Ⅳ:Cold-terra apple helps the revitalization of Northeast China[J].China Fruits,2023(4):1-6.

[4] 于林霞.气候因素对黄土高原区苹果生产技术效率的影响研究[D].杨凌:西北农林科技大学,2018.YU Linxia.Research on the effect of climatic factors on the apple productive technique efficiency in the Loess Plateau region[D].Yangling:Northwest A&F University,2018.

[5] 郭佳,张宝林,高聚林,彭健,罗瑞林.气候变化对中国农业气候资源及农业生产影响的研究进展[J].北方农业学报,2019,47(1):105-113.GUO Jia,ZHANG Baolin,GAO Julin,PENG Jian,LUO Ruilin.Advances on the impacts of climate change on agro-climatic resources and agricultural production in China[J].Journal of Northern Agriculture,2019,47(1):105-113.

[6] 陈学森,王楠,张宗营,吴树敬,毛志泉,尹承苗,姜远茂,葛顺峰,朱占玲,姜翰,由春香,胡大刚,李媛媛,王小非.果树科技面向国家重大需求Ⅰ:果树种质资源与遗传育种研究的四个坚持和四个面向[J].中国果树,2023(1):1-4.CHEN Xuesen,WANG Nan,ZHANG Zongying,WU Shujing,MAO Zhiquan,YIN Chengmiao,JIANG Yuanmao,GE Shunfeng,ZHU Zhanling,JIANG Han,YOU Chunxiang,HU Dagang,LI Yuanyuan,WANG Xiaofei.Fruit tree technology faces major national needs Ⅰ:Four persistence and four faces in the research of fruit germplasm resources and genetic breeding[J].China Fruits,2023(1):1-4.

[7] 刘兴禄,王红平,孙文泰,董铁,牛军强,马明.5 个砧木苹果枝条的抗寒性评价[J].果树学报,2021,38(8):1264-1274.LIU Xinglu,WANG Hongping,SUN Wentai,DONG Tie,NIU Junqiang,MA Ming.Cold resistance evaluation of the shoots of 5 apple rootstocks[J].Journal of Fruit Science,2021,38(8):1264-1274.

[8] 井俊丽,刘铭潇,魏欣,徐继忠,李中勇,张学英,周莎莎.几种苹果中间砧的抗寒性评价[J].果树学报,2022,39(6):970-981.JING Junli,LIU Mingxiao,WEI Xin,XU Jizhong,LI Zhong yong,ZHANG Xueying,ZHOU Shasha.Evaluation of cold hardiness of several apple interstocks[J].Journal of Fruit Science,2022,39(6):970-981.

[9] 李荣富,王丽雪,张华.果树抗寒性的细胞生物学研究进展[J].北京农学院学报,1996,11(2):79-84.LI Rongfu,WANG Lixue,ZHANG Hua.Progress in cell biology research on cold resistance of fruit trees[J].Journal of Beijing Agricultural College,1996,11(2):79-84.

[10] 丛日征,张吉利,王思瑶,于宏影,闫晓娜,裴晓娜,何山.植物抗寒性鉴定及其生理生态机制研究进展[J].温带林业研究,2020,3(1):27-33.CONG Rizheng,ZHANG Jili,WANG Siyao,YU Hongying,YAN Xiaona,PEI Xiaona,HE Shan.Research progress of plant cold resistance identification and its physiological and ecological mechanism[J].Journal of Temperate Forestry Research,2020,3(1):27-33.

[11] 李晓龙,褚燕南,张磊,陈仁伟,张晓煜,岳海英,贾永华,王芳.苹果花期抗寒能力判定指标解析[J].果树学报,2022,39(10):1935-1944.LI Xiaolong,CHU Yannan,ZHANG Lei,CHEN Renwei,ZHANG Xiaoyu,YUE Haiying,JIA Yonghua,WANG Fang.Analysis of evaluation indexes of cold resistance of apple trees at flowering stage[J].Journal of Fruit Science,2022,39(10):1935-1944.

[12] 孙鲁龙,樊娟,王翠翠,李凤龙,刘振中,赵政阳.不同矮化中间砧对瑞雪苹果花抗霜冻能力的影响[J].中国果树,2023(8):12-16.SUN Lulong,FAN Juan,WANG Cuicui,LI Fenglong,LIU Zhenzhong,ZHAO Zhengyang.Effects of different dwarfing interstocks on frost resistance of‘Ruixue’apple flowers[J].China Fruits,2023(8):12-16.

[13] 袁嘉玮,梁宇卿,梁哲军,张健,王璐.运城市主要果树花期冻害指标研究[J].干旱区资源与环境,2021,35(2):143-148.YUAN Jiawei,LIANG Yuqing,LIANG Zhejun,ZHANG Jian,WANG Lu.Study on freezing indexes of main fruit trees at flowering stage in Yuncheng[J].Journal of Arid Land Resources and Environment,2021,35(2):143-148.

[14] 张振.杂交育种在新品种培育中的优缺点[J].北京农业,2014(36):31.ZHANG Zhen.The advantages and disadvantages of hybrid breeding in the cultivation of new varieties[J].Beijing Agriculture,2014(36):31.

[15] 胡颖慧,于文全,刘畅,顾广军,卜海东,杨悦,程显敏,孙晓环.寒地苹果品种龙丰的品质与应用研究现状[J].黑龙江农业科学,2022(5):125-128.HU Yinghui,YU Wenquan,LIU Chang,GU Guangjun,BU Haidong,YANG Yue,CHENG Xianmin,SUN Xiaohuan.Research status of quality and application of A cold resistant apple variety‘Longfeng’[J].Heilongjiang Agricultural Sciences,2022(5):125-128.

[16] 刘畅,王昆,安萌萌,梅闯,曹阳,于文全,卜海东,程显敏,顾广军,孟祥海,董雪梅,程存刚.寒地苹果主栽品种果实品质及香气组分[J].新疆农业科学,2019,56(10):1846-1859.LIU Chang,WANG Kun,AN Mengmeng,MEI Chuang,CAO Yang,YU Wenquan,BU Haidong,CHENG Xianmin,GU Guangjun,MENG Xianghai,DONG Xuemei,CHENG Cungang.Study on fruit quality and aroma components of main apple varieties in cold region[J].Xinjiang Agricultural Sciences,2019,56(10):1846-1859.

[17] 金明丽.苹果砧木实生后代抗寒性鉴定[D].保定:河北农业大学,2011.JIN Mingli.Identification of cold resistant of apple seedling rootstocks[D].Baoding:Hebei Agricultural University,2011.

[18] 杨雪.苹果和梨不同品种的抗寒性比较[D].保定:河北农业大学,2014.YANG Xue.Comparative on frost hardiness of several varieties of pear and apple trees[D].Baoding:Hebei Agricultural University,2014.

[19] 张钢.国外木本植物抗寒性测定方法综述[J].世界林业研究,2005,18(5):14-20.ZHANG Gang.Review on methods for measuring frost hardiness in woody plants abroad[J].World Forestry Research,2005,18(5):14-20.

[20] 李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.LI Hesheng.Principles and techniques of plant physiological biochemical experiment[M].Beijing:Higher Education Press,2000.

[21] 孙世航.猕猴桃抗寒性评价体系的建立与应用[D].北京:中国农业科学院,2018.SUN Shihang.Establishment and application of evaluation method of freezing tolerance in Actinidia[D].Beijing:Chinese Academy of Agricultural Sciences,2018.

[22] 李彦慧,佟爱民,刘冬云,周怀军,杨敏生,佟荣喜.廊坊杨抗寒性研究[J].河北农业大学学报,2005,28(4):23-26.LI Yanhui,TONG Aimin,LIU Dongyun,ZHOU Huaijun,YANG Minsheng,TONG Rongxi.Studies on cold-resistance of popular Langfang[J].Journal of Agricultural University of Hebei,2005,28(4):23-26.

[23] 王红平,董铁,刘兴禄,尹晓宁,孙文泰,牛军强,马明.5 个苹果砧木品种枝条的低温半致死温度及耐寒性评价[J].果树学报,2020,37(4):495-501.WANG Hongping,DONG Tie,LIU Xinglu,YIN Xiaoning,SUN Wentai,NIU Junqiang,MA Ming.A study on the cold resistance and the semi-lethal temperatures for branches of five apple rootstock cultivars[J].Journal of Fruit Science,2020,37(4):495-501.

[24] 陈新华,郭婧,祁雷,曹丹丹,赵斌,郭宝林.低温胁迫对甜樱桃一年生枝条的影响[J].果树学报,2014,31(S1):124-128.CHEN Xinhua,GUO Jing,QI Lei,CAO Dandan,ZHAO Bin,GUO Baolin.Resistance of different sweet cherry varieties to the cold stress[J].Journal of Fruit Science,2014,31(S1):124-128.

[25] 苏丹,李红丽,董智,张晓晓,贾淑友.盐胁迫对白榆无性系抗氧化酶活性及丙二醛的影响[J].中国水土保持科学,2016,14(2):9-16.SU Dan,LI Hongli,DONG Zhi,ZHANG Xiaoxiao,JIA Shuyou.Effects of salt stress on activities of antioxidant enzymes and MDA of elm clones[J].Science of Soil and Water Conservation,2016,14(2):9-16.

[26] 高拖弟.6 个不同鲜食枣品种抗寒性研究[D].榆林:榆林学院,2023.GAO Tuodi.The study on cold resistance of six different freshenble jujube varieties[D].Yulin:Yulin University,2023.

[27] 亓春宇,刘凤歧,刘杰淋,朱瑞芬,唐凤兰.低温胁迫下紫花苜蓿杂交代抗氧化酶及可溶性蛋白的动态聚类分析[J].中国草地学报,2017,39(2):53-58.QI Chunyu,LIU Fengqi,LIU Jielin,ZHU Ruifen,TANG Fenglan.Cluster analysis of antioxidant enzymes and soluble protein of alfalfa hybrid under low temperature stress[J].Chinese Journal of Grassland,2017,39(2):53-58.

[28] 陶雅.22 个国内外苜蓿品种抗寒性评价[D].北京:中国农业科学院,2008.TAO Ya.The cold-resistance evaluation of twenty-two alfalfa varieties at home and abroad[D].Beijing:Chinese Academy of Agricultural Sciences,2008.

[29] 王瑾,陈淑英,秦德明,卢磊,尚振江.5 个苹果矮化砧木品种的抗寒性测定[J].北方果树,2020(2):9-11.WANG Jin,CHEN Shuying,QIN Deming,LU Lei,SHANG Zhenjiang.Determination of cold resistance of 5 apple dwarf rootstock varieties[J].Northern Fruits,2020(2):9-11.

[30] 章敏.八仙花品种资源繁殖与评价研究[D].北京:北京林业大学,2021.ZHANG Min.Propagation and evaluation of Hydrangea cultivars[D].Beijing:Beijing Forestry University,2021.

[31] 邹琦.植物生理学实验指导[M].北京:中国农业出版社,2000.ZOU Qi.Experimental guidance on plant physiology[M].Beijing:China Agriculture Press,2000.

[32] 石雪晖,刘昆玉,杨国顺,吕长平,王淑英,罗川蕙.低温胁迫对柑橘离体叶片质膜透性和MDA 及V-C 含量的影响[J].湖南农业大学学报,1997,23(1):36-40.SHI Xuehui,LIU Kunyu,YANG Guoshun,LÜ Changping,WANG Shuying,LUO Chuanhui.Influences of low temperature stress on the permeability of plasma membrane,the contents of MDA and V-C of citrus excised leaves[J].Journal of Hunan Agricultural University,1997,23(1):36-40.

[33] 李冰,张敬敬,高秀瑞,史宇凡,潘秀清,武彦荣.低温胁迫下不同基因型西瓜抗寒性综合评价[J].中国瓜菜,2019,32(4):16-19.LI Bing,ZHANG Jingjing,GAO Xiurui,SHI Yufan,PAN Xiuqing,WU Yanrong.Comprehensive evaluation of cold resistance of different watermelon under low temperature stress[J].China Cucurbits and Vegetables,2019,32(4):16-19.

[34] 王以柔,李平,刘鸿先,曾韶西,陈德峰,郭俊彦.低温对不同耐寒力的黄瓜幼苗子叶的各细胞器中NAD+-苹果酸脱氢酶的影响[J].植物生理学报,1985,11(2):147-154.WANG Yirou,LI Ping,LIU Hongxian,ZENG Shaoxi,CHEN Defeng,GUO Junyan.The effect of low temperature on malate dehydrogenase in various organelles of cucumber seedling cotyledons with different cold tolerance[J].Physiology and Molecular Biology of Plants,1985,11(2):147-154.

[35] 赵媛媛,刘明国,赵伟浩.3 种外来树种抗寒性生理指标的比较[J].安徽农业科学,2007,35(5):1298-1299.ZHAO Yuanyuan,LIU Mingguo,ZHAO Weihao.Study on cold tolerance of foreign trees[J].Journal of Anhui Agricultural Sciences,2007,35(5):1298-1299.

[36] 陈钰,郭爱华,姚月俊,姚延梼.休眠期内不同杏品种枝条中SOD、POD 酶活性的变化[J].山西农业大学学报(自然科学版),2008,28(1):48-50.CHEN Yu,GUO Aihua,YAO Yuejun,YAO Yantao.Study on the relationship of enzyme activity of SOD and POD of different almonds and their tolerance to cold in dormant period[J].Journal of Shanxi Agricultural University (Natural Science Edition),2008,28(1):48-50.

[37] 李建设,耿广东,程智慧.低温胁迫对茄子幼苗抗寒性生理生化指标的影响[J].西北农林科技大学学报(自然科学版),2003,31(1):90-92.LI Jianshe,GENG Guangdong,CHENG Zhihui.Effects of chilling stress on chill-resistance physiological and biochemical indexes of eggplant seedlings[J].Journal of Northwest Sci-Tech University of Agriculture and Forestry,2003,31(1):90-92.

[38] 闫忠业,吕天星,王冬梅,杨锋,刘志,伊凯.苹果品种抗寒性评价[C]//第四届全国果树种质资源研究与开发利用学术研讨会论文汇编.北京:中国园艺学会,2010:79-82.YAN Zhongye,LÜ Tianxing,WANG Dongmei,YANG Feng,LIU Zhi,YI Kai.ppraisal of cold hardness in apple cultivars[C]//Compilation of papers at the fourth national symposium on fruit tree germplasm resources research and development.Beijing:Chinese Horticultural Society,2010:79-82.

[39] 范宗民,孙军利,赵宝龙,刘怀锋,于坤,章智钧,刘晶晶.不同砧木‘赤霞珠’葡萄枝条抗寒性比较[J].果树学报,2020,37(2):215-225.FAN Zongmin,SUN Junli,ZHAO Baolong,LIU Huaifeng,YU Kun,ZHANG Zhijun,LIU Jingjing.Evaluation of cold resistance of one-year shoots from‘Cabernet Sauvignon’grape vine grafted on different rootstocks[J].Journal of Fruit Science,2020,37(2):215-225.

[40] 王力源,麻芸娇,李文杰,刘兴菊,梁海永.不同榆树无性系对低温胁迫的生理响应及抗寒性评价[J].林业与生态科学,2020,35(2):144-152.WANG Liyuan,MA Yunjiao,LI Wenjie,LIU Xingju,LIANG Haiyong.Physiological response and cold resistance of different Ulmus clones to low temperature stress[J].Forestry and Ecological Sciences,2020,35(2):144-152.

[41] 王晨冰,王发林,万信,赵秀梅,牛茹萱.低温胁迫下桃子房和幼果的过冷却点及生理响应[J].甘肃农业科技,2020(9):18-22.WANG Chenbing,WANG Falin,WAN Xin,ZHAO Xiumei,NIU Ruxuan.Supercooling point of peach ovary and young fruit under low temperature stress and its physiological response[J].Gansu Agricultural Science and Technology,2020(9):18-22.

[42] 廖咸康,苗思远,钟剑,杨晨,马玥,谭钦.8 种草本地被植物细胞溶液过冷却点及结冰点的研究[J].现代园艺,2018(11):31-32.LIAO Xiankang,MIAO Siyuan,ZHONG Jian,YANG Chen,MA Yue,TAN Qin.A study on the supercooling point and freezing point of cell solutions of 8 grass local cover Plants[J].Contemporary Horticulture,2018(11):31-32.

[43] 王静,张晓煜,杨洋,李红英,卫建国,朱永宁,田磊.宁夏主要果树花器官及幼果霜冻临界温度比较研究[J].北方园艺,2015(7):9-13.WANG Jing,ZHANG Xiaoyu,YANG Yang,LI Hongying,WEI Jianguo,ZHU Yongning,TIAN Lei.Comparative study of critical temperature suffering frost of floral organs and young fruit of the main fruit trees in Ningxia[J].Northern Horticulture,2015(7):9-13.

[44] 张瑞,马纪.昆虫过冷却点的影响因素概述[J].天津农业科学,2013,19(11):76-84.ZHANG Rui,MA Ji.Insect supercooling point and its influence factors[J].Tianjin Agricultural Sciences,2013,19(11):76-84.

[45] MOHAMMADZADEH M,IZADI H.Cooling rate and starvation affect supercooling point and cold tolerance of the Khapra beetle,Trogoderma granarium Everts fourth instar larvae (Coleoptera:Dermestidae)[J].Journal of Thermal Biology,2018,71:24-31.

Comprehensive evaluation of cold resistance of apple Longfeng,Yueyan and their two hybrid strains in cold region

BAO Junhong1,BAO Aomin2,YANG Rong1,3*,LI Jinpu1,WANG Baoxia2,ZHENG Dongsheng1,HE Yanhong1*

(1College of Forestry,Inner Mongolia Agricultural University,Hohhot 010018,Inner Mongolia,China;2Tongliao Forestry and Grassland Science Research Institute,Tongliao 028399,Inner Mongolia,China;3Inner Mongolia Autonomous Region Forestry Science Research Institute,Hohhot 010010,Inner Mongolia,China)

Abstract: 【Objective】With global warming,the risk of late frost damage in flowering period of fruit trees is increasing.Therefore,in order to stabilize food security and ensure the red line of cultivated land,the main direction of apple breeding in cold areas is to select and breed middle and early cold-resistant varieties.The evaluation of cold resistance of existing apple varieties is extremely important for new varieties breeding,and cultivation.In this paper,apple Longfeng and Yueyan and their two superior strains in northeast cold region of Inner Mongolia were studied,in order to further verify the cold resistance of the two superior strains and to clarify the suitable cultivation areas of the two superior strains,and provide scientific basis for enriching the germplasm resources of apple in cold region and breeding cold region apples with strong cold resistance.【Methods】Two commercial varieties,Longfeng and Yueyan,along with two superior lines,TL0092 and TL0099,were used as test materials.The physiological indicators of one-year-old branches under various low-temperature conditions,as well as the physiological responses of flower buds post low-temperature treatment,were assessed to evaluate the cold resistance of Longfeng,Yueyan,and the two superior lines.The one-year dormant branches were evenly divided into seven groups,subjected to seven different temperature treatments: 4 ℃,-10 ℃,-20 ℃,-25 ℃,-30 ℃,-35 ℃,and-40 ℃.The temperature was reduced to the setting temperature at a rate of 5 ℃·h-1 and and maintained for 24 hours,then the samples under low-temperature stress were thawed;4 ℃served as the control for physiological testing.The malondialdehyde content was measured using the thiobarbituric acid (TBA) method,superoxide dismutase (SOD) activity by the nitro blue tetrazolium reduction method,peroxidase (POD) activity by the guaiacol method,soluble protein(SP)content using Coomassie Brilliant Blue G-250 staining,and relative electrical conductivity(E)refered to the methods of Jin Mingli,Yang Xue,et al.The branches collected at the red-bud stage were hydroponically cultivated to bloom,and based on temperature changes during frost occurrence,six lowtemperature treatments (-1 ℃,-2 ℃,-3 ℃,-4 ℃,-5 ℃,-6 ℃) were set with room temperature as the control.The simulated frost box was pre-cooled to about 10 ℃,then cooled at a rate of 6 ℃/4 h to about 4 ℃,and slowly cooled to the set temperature at a rate of 1 ℃/0.5 h,maintained for 2 hours.The heating rate was set at 1 ℃/0.5 h back to room temperature.The ovarys and exocarps of the young fruits during full bloom and young fruit stages were used as the measurement sites to determine the supercooling point and freezing point of each test material,with continuous automatic data recording and analysis of surface temperature changes of the tissues.【Results】The electrical conductivity of all test materials increased with the temperature decreasing,showing an“S”-shaped change curve.The varieties with strong cold resistance had lower increase in relative electrical conductivity Among them,the line TL0099 exhibited a lower increase in the relative electrical conductivity,indicating that its cell membrane system suffered less damage than the two parents and the line TL0092,showed stronger cold resistance.Conversely,Yueyan showed a relatively higher leap in the relative electrical conductivity.The conductivity of the dormant branches of all test materials showe a peak under the-40 ℃treatment.Among the four apple materials,the line TL0099 showed a sudden jump in the MDA content at-25 ℃,while Yueyan continuously increased until-25 ℃before declining.Under low-temperature stress,the two parent varietiess showed an“N”-shaped change trend in the POD content,the line TL0092 showed a peak at-30 ℃,showing an initial increase followed by a decrease.The POD activity of TL0099 was significantly higher than that of the parents and TL0092.The SOD content of the branches of TL0099 and TL0092 under different low-temperature treatments was significantly higher than that of the parents Longfeng and Yueyan.The SP content of the all test materials showed a peak at-20 ℃and did not increase further,the varieties with stronger cold resistance had higher SP content.The frost test during the flowering period revealed that the freezing temperature range for the ovarys and young fruits of the test materials was-2.4 ℃to-5.6 ℃,with the supercooling point of young fruits higher than that of the ovarys,indicating that the young fruit's cold resistance was inferior to that of the ovarys.【Conclusion】By conducting the artificial low-temperature treatment experiments on one-year-old branches and frost tests during the flowering period,and analyzing with the membership function method,the cold resistance of the four apple varieties(strains)was ranked as follows:TL0099>TL0092>Longfeng>Yueyan.The lines TL0092 and TL0099 were classified as Level Ⅱcold-resistant strains,Longfeng as a LevelⅢmoderately cold resistant variety,and Yueyan as a Level Ⅳlow-resistant variety.

Key words: Apple;Cold resistance;Physiological indicators;Supercooling point

中图分类号:S661.1

文献标志码:A

文章编号:1009-9980(2024)02-0241-11

DOI:10.13925/j.cnki.gsxb.20230438

收稿日期:2023-10-20

接受日期:2023-12-18

基金项目:内蒙古自治区科技计划项目(2021GG0034)

作者简介:包俊宏,女,在读硕士研究生,研究方向为果树抗逆性。E-mail:2670874142@qq.com

*通信作者Author for correspondence.E-mail:2008yarong@163.com;E-mail:hyh20012008@imau.edu.cn