苹果绣线菊蚜(Aphis citricola)属半翅目蚜科,是苹果生产期重要的害虫之一。目前主要的防治措施仍然是化学防治[1-2],而化学防治导致害虫抗药性增强等问题,因此,研究者不断寻求其他控制害虫的方法。伴随果品安全质量的要求以及生态环境保护意识的提高,生物防治的应用范围逐渐扩大,生物防治技术也在有机生产管理中得到重视[3-5],其中以化学信息素为关键组分的天敌引诱剂作为增效手段,在生物防治管理中逐渐推广应用。
化学信息素驱动害虫和天敌对周边环境做出可变的响应策略,从而调控害虫和天敌的分布[6-8]。而昆虫化学信息素的田间效果的最大影响因素在于其缓释技术,目前缓释技术的研究主要包括分子凝胶、光感应缓释和诱芯等,其中,诱芯、微胶囊与微球等产品已实现商业化[9]。水杨酸甲酯是许多植物自然释放的挥发性气味物质,并在诸多被害虫侵染的作物中大量释放,可以远距离吸引瓢虫等天敌[10-11],常用作天敌引诱剂的有效成分[12-13]。但对水杨酸甲酯缓释材料的田间效果测评缺乏研究,也缺乏水杨酸甲酯调控害虫和天敌空间分布的研究。
地统计分析可以对害虫或天敌的空间分布模式进行推断,更直观有效地获得害虫和天敌的分布状态等重要信息[14]。明确害虫和天敌的种群消长动态和分布范围有助于后续进行害虫综合治理,优化管理措施,为害虫的有效防治提供理论依据[15-17]。
因此,笔者在本研究中首先调查了苹果园内苹果绣线菊蚜的种群消长动态以确定水杨酸甲酯的施用时间,使用5 种常用聚集度指标参数法分析水杨酸甲酯处理对果园捕食性瓢虫及苹果绣线菊蚜空间分布的影响,明确水杨酸甲酯PE缓释管对苹果绣线菊蚜的防控效果。
水杨酸甲酯PE 缓释管以聚乙烯(PE)为外部缓释材料,内部填充5 g 水杨酸甲酯(AR,99%),委托南京新安中绿生物科技有限公司加工。化学药剂选用70%吡虫啉水分散粒剂(拜耳作物科学有限公司,市售)用于后续田间试验。
1.2.1 水杨酸甲酯PE 缓释管田间应用时间分析为了明确水杨酸甲酯的果园使用时期,调查了苹果园苹果绣线菊蚜的种群消长动态并确定发生高峰期。2020 和2021 年5—7 月,在北京市昌平区流村镇(116°2′E,40°10′N)采用五点法调查苹果园内苹果绣线菊蚜以及捕食性瓢虫(主要为异色瓢虫和七星瓢虫)的种群消长动态。每点选取2株果树,每株树按照东、南、西、北、中5个方位,每个方位固定2个果枝,每周调查1 次苹果绣线菊蚜及其捕食性瓢虫的数量。
1.2.2 水杨酸甲酯PE 缓释管对捕食性瓢虫及苹果绣线菊蚜种群消长动态和空间分布的影响 2022年选取3个苹果园,分别作为水杨酸甲酯PE缓释管处理区、化学防治区和对照区,水杨酸甲酯PE缓释管处理区和空白对照区内树龄约为10 a(年),园区面积约1 hm2,化学防治区内树龄约为8 a,园区面积约0.67 hm2,主要品种为富士,种植密度约为900株·hm-2,各园区之间间隔100 m 以上。水杨酸甲酯PE 缓释管处理区内按5 列×5 行网格法(约为3 m×4 m)均匀悬挂水杨酸甲酯PE 缓释管,且园区内部保留自然生草;化学防治园区内喷施吡虫啉杀虫剂,按照4 g·666.7 m-2兑水40 L 进行喷雾施用;以未喷施化学杀虫剂和未悬挂水杨酸甲酯PE 缓释管的果园为对照,对照区内保留自然生草,无其他防治蚜虫措施。在各园区内均匀采点并定株调查,把果园按5列×5 行网格法排列,记录各点坐标,每个园区共调查25株果树,调查方法同1.2.1。
1.2.3 水杨酸甲酯PE 缓释管的田间缓释速率监测 室外悬挂水杨酸甲酯PE缓释管和电子温度计,间隔2 h 自动记录温度,每周称量记录水杨酸甲酯PE 缓释管的质量。分别于悬挂初期和悬挂5 周后检测水杨酸甲酯PE 缓释管的释放情况,将100 μm PDMS 萃取头插入装有水杨酸甲酯PE 缓释管的采样袋中,顶空萃取30 min,然后进行GC-MS 检测。载气为高纯氦气(纯度不小于99.99%),进样口温度250 ℃,不分流进样。程序升温:40 ℃保持3.5 min,以10 ℃·min-1 升至100 ℃,再以7 ℃·min-1 升至180 ℃,最后以25 ℃·min-1升至280 ℃,保持5 min。
试验所获数据由统计软件SPSS 23 和Excel 处理。以不同处理区作为处理因子,对2022年苹果绣线菊蚜和捕食性瓢虫发生量进行单因素方差分析,采用Duncan’s 检验法比较不同处理间差异显著性(p<0.05)。
聚集度指数:采用以下5 种常用的聚集度指标测定苹果绣线菊蚜和捕食性瓢虫的空间分布型,即聚块性指标(m*/m)、扩散系数(C)、丛生指标(I)、Cassie 指标(CA)和负二项分布值(K 指标),参考朱莹等[18]聚集度指标范围确定各特征值含义,其中,当C<1、I<0、CA<0、m*/m<1、K<0 时为均匀分布;当C=1、I=0、CA=0、m*/m=1、K≥8 时为随机分布;当C>1、I>0、CA>0、m*/m>1、0<K<8 时为聚集分布。
空间相关性:用SPSS 23 统计软件进行正态分布检验。用GS+7.0 软件对数据进行最适模型拟合。用ArcGis 10.2软件进行Kriging空间插值,得到苹果绣线菊蚜和捕食性瓢虫直观空间分布图。将调查期间内各样本点苹果绣线菊蚜的数量累加计算总和,在空间分析之前,首先对数据进行充分转换,使其近似于正态分布,调查数据进行对数lg(x+1)正态转换,其中x 是每个调查点苹果绣线菊蚜数量。通过半方差分析得到地统计参数,并确定调整后的最佳拟合模型,使用Kriging 插值法结合地统计参数得到苹果绣线菊蚜和捕食性瓢虫的空间分布图。
2020 和2021 年苹果绣线菊蚜在5 月23 日之后开始快速增长,2020年苹果绣线菊蚜的发生数量在5 月30 日达到峰值,而2021 年在6 月13 日达到峰值。2020和2021年捕食性瓢虫的发生数量分别在6月6 日和6 月20 日达到峰值,之后逐渐减少。连续2 a调查结果显示,苹果园中苹果绣线菊蚜的大规模发生或峰值出现时间在5月底至6月中旬(图1),水杨酸甲酯PE缓释管的悬挂时间定在5月30日。
图1 2020、2021 年苹果绣线菊蚜和捕食性瓢虫的种群消长动态
Fig.1 Population dynamics of A.citricola and predatory ladybirds in 2020 and 2021
水杨酸甲酯PE 缓释管悬挂7 d 后,对不同园区进行调查,不同处理区内捕食性瓢虫和苹果绣线菊蚜的种群消长动态如图2 所示。水杨酸甲酯PE 缓释管处理区和对照区在整个试验期间捕食性瓢虫的发生数量均高于化学防治区,在悬挂第3 周发现水杨酸甲酯PE 缓释管处理区内捕食性瓢虫(4.1±0.7)的发生数量同时显著高于对照区(2.7±0.4)和化学防治区(0.3±0.2)(F=16.044,p<0.001)(图2-A)。悬挂水杨酸甲酯PE缓释管2周后,苹果绣线菊蚜的发生数量开始降低,水杨酸甲酯PE 缓释管处理区(657.0±93.8)内苹果绣线菊蚜的发生数量低于对照区(997.8±102.9),且与化学防治区(630.2±63.0)之间无显著差异(F=5.764,p=0.005),而4周后,化学防治区内苹果绣线菊蚜的发生数量显著高于其他区域(图2-B)。
图2 2022 年不同处理区内捕食性瓢虫(A)和苹果绣线菊蚜(B)的种群消长动态
Fig.2 Population dynamics of predatory ladybugs(A)and A.citricola(B)in different treatment areas in 2022
图中数据为(平均值±标准误),不同小写字母表示同一日期下不同处理之间的捕食性瓢虫(苹果绣线菊蚜)发生数量在0.05 水平差异显著(Duncan’s 多重检验法)。
Data are (mean ± SE), and different lowercase letters indicate significant differences (p<0.05) in number of predatory ladybugs (A. citricola) under different treatments on the same date by Duncan’s multiple range test.
在测定的聚集度指标数据中(表1),丛生指标I(290.87~598.02)>0,聚块性指标m*/m(1.15~1.40)>1,Cassie指标CA(0.15~0.40)>0,扩散系数C(290.71~597.62)>1,负二项分布值K(2.51~6.54)>0,说明在水杨酸甲酯PE缓释管处理区、化学防治区和对照区中苹果绣线菊蚜均呈聚集分布。
表1 苹果绣线菊蚜的聚集度指标
Table 1 Aggregation index of A.citricola
注:¯x 为样本均数,S2 为样本方差。
Note:¯x is the sample mean,S2 is the sample variance.
?
从空间分布图可以看出水杨酸甲酯PE 缓释管处理区内的瓢虫分布密度更高,而化学防治区瓢虫种群密度整体偏低(图3-A~C)。水杨酸甲酯PE 缓释管处理区内苹果绣线菊蚜的虫口密度相比其他区域较低,边缘分布模式更加明显,对照区内虫口密度相对偏高。而3个区域内苹果绣线菊蚜均在园区中间分布密度较低,周边或靠近单边的分布密度较高(图3-D~F),结合聚集度指数(表1)可以明确各苹果园区内苹果绣线菊蚜呈现边缘聚集分布。因此,施用水杨酸甲酯PE 缓释管可以维持捕食性瓢虫的种群数量,进一步降低苹果绣线菊蚜的发生数量,阻止苹果绣线菊蚜进一步向园区内部扩散。
图3 捕食性瓢虫(A~C)和苹果绣线菊蚜(D~F)的空间分布
Fig.3 The spatial distribution map of predatory ladybirds(A-C)and A.citricola(D-F)
图中的点代表调查点位,图B 和E 内调查点位同时是水杨酸甲酯PE 缓释管悬挂点位。
The points in the map represent the survey points,the survey points in Figure B and E are also the suspension points of MeSA PE rubber.
在试验期间平均温度在25 ℃上下波动,水杨酸甲酯PE 缓释管的初始质量为7.14 g,5 周内水杨酸甲酯PE 缓释管的质量共减少3.38 g(图4-A),释放速率约为0.68 g·周-1。悬挂初期,其有效物质相对丰度较高(图4-B),悬挂5 周后,仍然能检测到水杨酸甲酯PE缓释管内的有效成分(图4-C)。
图4 水杨酸甲酯的田间缓释速率(A)和相对丰度(B、C)
Fig.4 The sustained release rate(A)and relative abundance(B and C)of MeSA in apple orchard
笔者在本研究中检测了水杨酸甲酯PE 缓释管的缓释速率,同时探究水杨酸甲酯对天敌和害虫的空间分布特征的影响。水杨酸甲酯PE 缓释管处理可以有效增加捕食性瓢虫的种群发生量,使苹果绣线菊蚜发生数量减少以及分布范围远离水杨酸甲酯的处理区,苹果绣线菊蚜的高密度危害面积进一步减少,从而增强对苹果绣线菊蚜的控害作用。此外,还明确水杨酸甲酯PE缓释管田间持效在4周以上。
通过蚜虫动态调查可以明确,在北京地区苹果园中苹果绣线菊蚜在5月初开始出现,并在5月底至6月中旬达到发生量高峰,这与刘雪莹等[19]关于陕西省苹果绣线菊蚜发生时间的调查结果基本一致,这表明北方地区苹果绣线菊蚜的种群消长动态具有时间上的同步性。针对苹果绣线菊蚜的防治,随着生物技术的发展,生物防治效果愈发明显,如姜莉莉等[20]发现使用生物防治技术与吡虫啉的防治效果相当,吴旭东等[21]发现田间释放异色瓢虫卵卡防控甜菜蚜虫,益害比1∶5与1∶10的处理效果良好,其持效性显著优于吡虫啉处理。笔者在本研究中也发现水杨酸甲酯PE 缓释管处理区苹果绣线菊蚜的发生数量在前期与化学防治区无显著差异,且捕食性瓢虫的发生数量更高,化学防治区内捕食性瓢虫的发生数量在前4 周内均显著低于水杨酸甲酯PE 缓释管处理区,这可能是化学杀虫剂作用的结果[22]。对室内滤纸药膜法研究表明,吡虫啉对2 龄异色瓢虫幼虫的致死中质量浓度值达13.511 mg·L-1[23],且不同温度对亚致死剂量的吡虫啉处理后异色瓢虫的捕食量、寻找效应、捕食功能等方面都有显著影响[24]。
基于化学信息素引诱天敌昆虫实现害虫防治的生态调控措施是现代农业绿色植物保护体系中的持续有效举措[7,25]。水杨酸甲酯是目前研究、应用最为广泛的天敌引诱剂,其对东亚小花蝽、异色瓢虫、龟纹瓢虫等天敌具有引诱作用[26-27]。在本试验中水杨酸甲酯PE缓释管处理区,前2周捕食性瓢虫的种群数量与对照区无显著差异,而第3 周显著高于其他处理区,因此,提前2周悬挂水杨酸甲酯PE缓释管,有助于将瓢虫发生峰期提前,增强对果园蚜虫的防控作用。应用化学信息素缓释技术等绿色防控技术,可以降低害虫的种群密度或危害程度,并提高天敌数量,如水杨酸甲酯处理的葡萄园中天敌数量增加、大豆蚜丰度和蓟马密度明显较低[28-30]。本研究中水杨酸甲酯PE缓释管处理区内苹果绣线菊蚜的发生数量相比其他区域更低,且捕食性瓢虫的种群数量更高,都可能与使用化学信息素防治技术有关。化学信息素也被用于其他害虫的防控,如梨小食心虫性信息素用于梨小食心虫的防治[31]等。因此,水杨酸甲酯对害虫和天敌昆虫空间分布的结果可为其他化学信息素的应用研究提供借鉴。此外,化学信息素与功能植物协同可以增强害虫防治效果,Jaworski等[25]发现,在苹果园内协同使用水杨酸甲酯和金盏菊可以显著提升龟纹瓢虫对苹果绣线菊蚜的生物防治效果。
空间密度分析可以反映出害虫和天敌的分布规律。在不同处理措施下苹果绣线菊蚜均在园区周边的分布密度高,而中间部分密度相对偏低,呈现出边缘聚集的分布模式。这与其他害虫的分布规律有相似之处,如在作物周边番茄潜叶蛾的虫害更为严重且作物区边缘是其产卵聚集地[32]。自然生草有助于增加天敌的种类和数量[33],水杨酸甲酯处理能够让瓢虫的分布相对更加均匀,而捕食性瓢虫的这种分布状态可能导致苹果绣线菊蚜整体上分布密度低。笔者在本研究中明确了苹果绣线菊蚜和捕食性天敌的具体分布情况,有助于探究昆虫从替代宿主或越冬地点的时空传播规律[34],同时为果园前期周边的生态管理和生物防治提供参考。
此外,化学信息素缓释技术需考虑材料的缓释、储存等基本能力,还需考虑温湿度等外界条件的作用。分子凝胶技术通过内部的相互作用促使其具备持续缓释的能力,微纳米材料可以载体的优势在于避免有效物质在使用期间内被氧化,光感应技术可以利用不同天气或不同波长光等光敏特性调控活性分子的释放[9]。单纯的水杨酸甲酯释放时间约为4 d,以海藻酸钠为缓释材料的水杨酸甲酯小球持续释放时间在9 d左右[13],因此缓释材料制备技术的研究前景极广,而本试验中发现田间悬挂5周后,仍然能检测到水杨酸甲酯PE 缓释管内的有效成分,表明PE管材可作为长期缓释水杨酸甲酯的载体。
笔者在本研究中发现水杨酸甲酯PE 缓释管的田间时效超过4 周,提高捕食性瓢虫的数量以及在果园分布更均匀,有效降低了苹果绣线菊蚜的发生数量,降低园区内部苹果绣线菊蚜的虫口密度,使最高密度的苹果绣线菊蚜仅出现在园区的边缘位置,为化学信息素的田间应用和害虫的防治提供理论依据。
致谢:感谢北京昌平区林业植保站王松工程师和长江大学本科生王政伟对果园调查的支持帮助。
[1] 牛萌萌,段洁利,方会敏,杨洲,朱正波.果园施药技术研究进展[J].果树学报,2019,36(1):103-110.NIU Mengmeng,DUAN Jieli,FANG Huimin,YANG Zhou,ZHU Zhengbo. Research progress in orchard chemical spraying technology[J].Journal of Fruit Science,2019,36(1):103-110.
[2] 封云涛,郭晓君,李娅,李光玉,庾琴,杜恩强,张润祥.三种助剂在减量化防治苹果黄蚜中的应用研究[J].果树学报,2020,37(3):397-403.FENG Yuntao,GUO Xiaojun,LI Ya,LI Guangyu,YU Qin,DU Enqiang,ZHANG Runxiang. Application of three surfactants for dose-reduced chemical control of Aphis citricola Van der Goot (Linnaeus)[J]. Journal of Fruit Science,2020,37(3):397-403.
[3] RAGSDALE D W,LANDIS D A,BRODEUR J,HEIMPEL G E,DESNEUX N. Ecology and management of the soybean aphid in North America[J]. Annual Review of Entomology,2011,56:375-399.
[4] AGGARWAL N,SHARMA S,JALALI S K.On-farm impact of biocontrol technology against rice stem borer,Scircophaga incertulas (Walker) and rice leaf folder Cnaphalocrocis medinalis(Guenee) in aromatic rice[J]. Entomologia Generalis,2016,36(2):137-148.
[5] DONG Y C,HAN P,NIU C Y,ZAPPALÀ L,AMIENSDESNEUX E,BEAREZ P,LAVOIR A V,BIONDI A,DESNEUX N. Nitrogen and water inputs to tomato plant do not trigger bottom-up effects on a leafminer parasitoid through host and non-host exposures[J]. Pest Management Science,2018,74(3):516-522.
[6] KHAN Z R,JAMES D G,MIDEGA C A O,PICKETT J A.Chemical ecology and conservation biological control[J]. Biological Control,2008,45(2):210-224.
[7] XU Q X,HATT S,LOPES T,ZHANG Y,BODSON B,CHEN J L,FRANCIS F.A push-pull strategy to control aphids combines intercropping with semiochemical releases[J]. Journal of Pest Science,2018,91(1):93-103.
[8] GURR G M,WRATTEN S D,LANDIS D A,YOU M S. Habitat management to suppress pest populations:Progress and prospects[J].Annual Review of Entomology,2017,62:91-109.
[9] 严力,李卓睿,韩国志. 昆虫信息素缓释技术的研究进展[J].应用化学,2019,36(10):1099-1108.YAN Li,LI Zhuorui,HAN Guozhi. Research progress on controlled release technology for insect pheromones[J]. Chinese Journal of Applied Chemistry,2019,36(10):1099-1108.
[10] 苗进,韩宝瑜.外源水杨酸甲酯(MeSA)处理茶树对茶园主要害虫及其天敌的影响[J].生态学杂志,2011,30(3):564-568.MIAO Jin,HAN Baoyu.Effects of treating tea plants with exogenous methyl salicylate(MeSA)on the main pests and their natural enemies in tea garden[J].Chinese Journal of Ecology,2011,30(3):564-568.
[11] TURLINGS T C J,ERB M. Tritrophic interactions mediated by herbivore-induced plant volatiles:Mechanisms,ecological relevance,and application potential[J].Annual Review of Entomology,2018,63:433-452.
[12] 刘丰黎.烟草大田调控烟蚜茧蜂行为的信息素研究[D].杭州:浙江大学,2021.LIU Fengli. Semiochemicals mediating searching behaviors of Aphidius gifuensis Ashmead in the tobacco fields[D].Hangzhou:Zhejiang University,2021.
[13] 朱英菲.水杨酸甲酯缓释球的制备及其生态功能评价[D].泰安:山东农业大学,2015.ZHU Yingfei.Slow-release formulation preparation and ecological function evaluation based on methyl salicylate in biological control of wheat aphids[D]. Taian:Shandong Agricultural University,2015.
[14] GERKEN A R,CAMPBELL J F. Spatial and temporal variation in stored-product insect pest distributions and implications for pest management in processing and storage facilities[J]. Annals of the Entomological Society of America,2022,115(3):239-252.
[15] KORIE S,PERRY J N,MUGGLESTONE M A,CLARK S J,THOMAS C F G,MOHAMAD ROFF M N. Spatiotemporal associations in beetle and virus count data[J].Journal of Agricultural,Biological,and Environmental Statistics,2000,5(2):214-239.
[16] NGUYEN H D D,NANSEN C.Edge-biased distributions of insects:A review[J]. Agronomy for Sustainable Development,2018,38(1):11.
[17] 李少华,王云鹏,王荣成,尹萍,李向东,郑方强.玉米田桃蛀螟幼虫的空间分布型与抽样技术[J].中国农业科学,2022,55(10):1961-1970.LI Shaohua,WANG Yunpeng,WANG Rongcheng,YIN Ping,LI Xiangdong,ZHENG Fangqiang. Spatial distribution pattern and sampling technique of Conogethes punctiferalis larvae in maize fields[J]. Scientia Agricultura Sinica,2022,55(10):1961-1970.
[18] 朱莹,孙宇,陈玉青,杨益众.两类不同玉米田蚜虫发生动态数学模型与空间分布型测定[J].环境昆虫学报,2020,42(4):903-909.ZHU Ying,SUN Yu,CHEN Yuqing,YANG Yizhong. Study on mathematical models of aphid occurrence in two different maize fields and their spatial distribution patterns[J]. Journal of Environmental Entomology,2020,42(4):903-909.
[19] 刘雪莹,王欣,高其琴,吴江波,侯伟,张伯虎,邹佩华,侯猛,袁涛,李怡萍.两种果树害虫发生动态与生物源农药防治技术研究[J].西北农业学报,2021,30(6):929-938.LIU Xueying,WANG Xin,GAO Qiqin,WU Jiangbo,HOU Wei,ZHANG Bohu,ZOU Peihua,HOU Meng,YUAN Tao,LI Yiping. Occurrence dynamics and biogenic pesticide control technology of two pests in apple orchards[J].Acta Agriculturae Boreali-Occidentalis Sinica,2021,30(6):929-938.
[20] 姜莉莉,孙瑞红,武海斌,宫庆涛,蒋恩顺.苹果园绣线菊蚜和山楂叶螨的田间生物防控技术研究[J].中国果树,2021(11):39-43.JIANG Lili,SUN Ruihong,WU Haibin,GONG Qingtao,JIANG Enshun. Study on biological control of Aphis citricola and Tetranychus viennensis in apple orchard[J].China Fruits,2021(11):39-43.
[21] 吴旭东,王蓓,黄忠阳,李伟明,江丰,谢洪芳,刘庆叶,陈莉莉,胡卫丛,王东升.释放异色瓢虫对甜瓜蚜虫的防控效果[J].中国瓜菜,2021,34(10):104-109.WU Xudong,WANG Bei,HUANG Zhongyang,LI Weiming,JIANG Feng,XIE Hongfang,LIU Qingye,CHEN Lili,HU Weicong,WANG Dongsheng. Study on the control effect of releasing harlequin ladybirds on muskmelon aphids[J]. China Cucurbits and Vegetables,2021,34(10):104-109.
[22] DESNEUX N,DECOURTYE A,DELPUECH J M.The sublethal effects of pesticides on beneficial arthropods[J]. Annual Review of Entomology,2007,52:81-106.
[23] 肖达,郭晓军,王甦,张君明,张帆.三种杀虫剂对几种昆虫天敌的毒力测定[J].环境昆虫学报,2014,36(6):951-958.XIAO Da,GUO Xiaojun,WANG Su,ZHANG Junming,ZHANG Fan.The toxicity of three insecticides to natural enemy[J].Journal of Environmental Entomology,2014,36(6):951-958.
[24] 王峰巍,王甦,张帆,庞虹.不同温度对经吡虫啉处理的异色瓢虫捕食能力的影响[J].环境昆虫学报,2010,32(4):504-509.WANG Fengwei,WANG Su,ZHANG Fan,PANG Hong. Influence of imidacloprid on predatory capacity of Harmonia axyridis(Pallas) under different temperatures[J]. Journal of Environmental Entomology,2010,32(4):504-509.
[25] JAWORSKI C C,XIAO D,XU Q X,RAMIREZ-ROMERO R,GUO X J,WANG S,DESNEUX N.Varying the spatial arrangement of synthetic herbivore-induced plant volatiles and companion plants to improve conservation biological control[J]. Journal of Applied Ecology,2019,56(5):1176-1188.
[26] 杨帆,王甦,张君明,张帆,谭晓玲,易图永.增殖植物和植物诱导抗性挥发物质对东亚小花蝽和浅黄恩蚜小蜂的嗅觉行为影响及田间诱集作用[J].环境昆虫学报,2017,39(6):1250-1257.YANG Fan,WANG Su,ZHANG Junming,ZHANG Fan,TAN Xiaoling,YI Tuyong. Olfactory influences and filed attractions of enhancing plant and herbivore induced defense volatiles to predacious flower bug Orius sauteri (Hemoptera:Anthocoridae)and parasitoid wasp Encarsia sophia (Hymenoptera:Aphelinidae)[J]. Journal of Environmental Entomology,2017,39(6):1250-1257.
[27] 董洁,刘英杰,李佩玲,林芳静,陈巨莲,刘勇.间作与MeSA释放对麦长管蚜及其优势天敌的生态效应[J].应用生态学报,2012,23(10):2843-2848.DONG Jie,LIU Yingjie,LI Peiling,LIN Fangjing,CHEN Julian,LIU Yong. Ecological effects of wheat-oilseed rape intercropping combined with methyl salicylate release on Sitobion avenae and its main natural enemies[J]. Chinese Journal of Applied Ecology,2012,23(10):2843-2848.
[28] JAMES D G,GRASSWITZ T R. Synthetic herbivore-induced plant volatiles increase field captures of parasitic wasps[J]. Bio-Control,2005,50(6):871-880.
[29] MALLINGER R E,HOGG D B,GRATTON C. Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera:Aphididae) in soybean agroecosystems[J].Journal of Economic Entomology,2011,104(1):115-124.
[30] GADINO A N,WALTON V M,LEE J C. Evaluation of methyl salicylate lures on populations of Typhlodromus pyri(Acari:Phytoseiidae) and other natural enemies in western Oregon vineyards[J].Biological Control,2012,63(1):48-55.
[31] 王留洋,杨超霞,郭兵博,折冬梅,梅向东,杨新玲,宁君.昆虫性信息素研究进展与应用前景[J].农药学学报,2022,24(5):997-1016.WANG Liuyang,YANG Chaoxia,GUO Bingbo,SHE Dongmei,MEI Xiangdong,YANG Xinling,NING Jun. Research progress and application prospects on insect sex pheromone[J]. Chinese Journal of Pesticide Science,2022,24(5):997-1016.
[32] MARTINS J C,PICANÇO M C,SILVA R S,GONRING A H,GALDINO T V,GUEDES R N. Assessing the spatial distribution of Tuta absoluta (Lepidoptera:Gelechiidae) eggs in openfield tomato cultivation through geostatistical analysis[J]. Pest Management Science,2018,74(1):30-36.
[33] 李丽莉,门兴元,郭文秀,曲诚怀,曹洪建,丁荔,朱文君,曲在亮,李卓,吕素洪,宋莹莹,崔洪莹.生草模式对苹果园天敌及其调控苹果绣线菊蚜作用的影响[J]. 中国生物防治学报,2021,37(5):885-891.LI Lili,MEN Xingyuan,GUO Wenxiu,QU Chenghuai,CAO Hongjian,DING Li,ZHU Wenjun,QU Zailiang,LI Zhuo,LÜ Suhong,SONG Yingying,CUI Hongying.Effects of grass-growing patterns on the population dynamics of natural enemies and management of Aphis citricola in apple orchards[J]. Chinese Journal of Biological Control,2021,37(5):885-891.
[34] STELL E,MEISS H,LASSERRE-JOULIN F,THEROND O.Towards predictions of interaction dynamics between cereal aphids and their natural enemies:A review[J].Insects,2022,13(5):479.
Evaluation of the biocontrol capacity of slow-release methyl salicylate by mediating abundance of predatory ladybirds in orchards