不同栽培品种(系)橄榄香气成分特征及差异研究

郑宗昊1,2,张向争1,2,徐 荣1,2,王乃玉1,2,傅芳浩1,2,谷梦雅1,2,潘腾飞1,2*,佘文琴1,2*

1福建农林大学园艺学院,福州 350002;2福建农林大学园艺产品贮运保鲜研究所,福州 350002)

摘 要:【目的】探究不同栽培品种(系)橄榄果实香气成分特征及差异,为橄榄的果实香气品质和品种选育提供参考。【方法】以11个不同品种(系)橄榄为试验材料,采用电子鼻结合顶空固相微萃取(HS-SPME-GC-MS)技术,对不同品种(系)橄榄香气成分进行分析。【结果】电子鼻实验可以将11个品种(系)橄榄进行区分,说明参试11个品种(系)橄榄香气特征存在差异。HS-SPME-GC-MS实验结果表明,11个不同品种(系)橄榄共检测出57个挥发性物质成分,其中有23个挥发性物质是不同品种(系)橄榄主要差异物质。结合香气活性值(odor activity value,OAV)分析结果进一步筛选出α-蒎烯、石竹烯、α-石竹烯等香气物质,这些化合物可能是构成橄榄果实香气特征差异的主要香气活性物质;可以将不同橄榄产区11个橄榄品种(系)分为两类,即以平阳1号、平阳3号等为代表的木香型品种(系),以梅埔2号、刘族本等为代表的清香型品种(系)。【结论】烯萜类化合物为橄榄主要香气物质,11个不同品种(系)橄榄香气成分与含量均存在差异,经过OAV分析,α-蒎烯和石竹烯等为主要特征香气活性物质。

关键词:橄榄;香气;电子鼻;顶空固相微萃取;香气活性值

橄榄(Canarium album)是我国特有的亚热带果树[1-2],常种植于我国的福建、广东、浙江等地。其中福建福州地区栽培的品种有灵峰、檀香、清榄1号等,莆田地区栽培的品种有霞溪本和刘族本等;广东揭西地区栽培的品种有三棱榄和揭西香榄等;浙江温州苍南一带还栽培平阳1 号、平阳2 号等。香气是客观反映果实风味、成熟度和果实品质的重要指标,果品怡人的香气也是吸引消费者和增强市场竞争力的重要因素。随着国内外市场对果品品质要求越来越高,以及食品工业对天然风味物质需求的增加,果品的香气研究日益受到关注,已成为果品品质的重要研究领域之一[3-4],因此对不同品种橄榄香气品质差异的研究具有一定的意义和价值。

电子鼻是一种快速无损检测的新型人工智能嗅觉装置,在食品方面的应用非常广,涉及食品分类、风味研究、新鲜度评价、保质期评价等主要领域[5],其缺点是不能准确定量样品中每一种具体挥发性物质[6]。果实香气富集方法包括同时蒸馏萃取法(SED)[7]、固相微萃取法(SPME)[8]等。顶空固相微萃取法作为一种气相色谱的无溶剂萃取技术,具有操作简单、富集率高、重现性好等优点,也可以更加准确、真实地反映香气成分的组成状况[9-10],与电子鼻结合可以取长补短、发挥两种仪器的优势。钟明等[11-12]采用固相微萃取和气相色谱-质谱联用方法对广东的冬节圆和三棱榄果实挥发油化学成分进行分析,结果显示2 个品种(系)中的香气成分主要有石竹烯、大根香叶烯Dα-古巴烯、α-蒎烯和桧烯等;赵丽娟等[13]采用同时蒸馏萃取装置,并用GC-MS分别对橄榄中的橄榄肉和橄榄仁的挥发油进行提取和鉴定,得出石竹烯、丁二酸二丁酯、十五烷、环己酮等为主要香气成分;方丽娜等[14]对长营果实的香气进行检测分析,鉴定出大量的石竹烯和古巴烯等;赖瑞联等[15]采用顶空固相微萃取法对福州3个鲜食橄榄品种(系)进行检测,研究结果表明,石竹烯是橄榄果实香气物质中含量较高且稳定的物质,烯烃类物质占大多数。上述关于橄榄果实香气成分的研究仅集中于福州、广东等单一地区的橄榄品种(系),前人结果表明不同产地的橄榄品种(系)香气组分存在差异,但并未对不同产区的品种(系)进一步进行分析,探究其香气特征是否存在差异。

笔者课题组前期利用HS-SPME-GC-MS进行研究,表明不同橄榄品种(系)在香气物质组分与含量间均存在差异[16],笔者在此基础上进一步优化了顶空萃取方法并结合电子鼻技术对11 个不同品种(系)橄榄香气物质进行检测,探究3 个主要栽培区域不同品种(系)橄榄的香气特征与香气组分差异。

1 材料和方法

1.1 试验材料

于2020 年10—12 月采集福州市农业科学研究所、闽侯、闽清、莆田等地11个不同品种(系)橄榄果实,分别为福建区域主要栽培品种灵峰、檀香、梅埔2 号、清榄1 号、霞溪本、刘族本,广东区域主要栽培品种揭西香榄、三棱榄,浙江区域主要栽培品种平阳1号、平阳2号和平阳3号。每个品种选择长势一致、无病虫害的果树。采果时沿树冠东西南北方位取大小适中、均匀一致,无病虫、无损伤且成熟度为九成熟的果实,每个品种设3次重复,每个品种1次共取30个果实。取回实验室后清洗、削皮混样处理之后将果皮用锡箔纸包裹,用液氮速冻后放置于-80 ℃冰箱保存备用。

1.2 试验方法

1.2.1 电子鼻测定 取出样品放入液氮盒中,用多样品组织研磨仪(60 Hz,60 s)将样品磨成粉末。取1 g 磨好的样品于60 mL 顶空瓶中,于50 ℃在水浴锅内平衡5 min后开始检测。利用iNose型电子鼻,参照前人实验参数并加以优化[17-19],设置气体流量为0.60 L·min-1;采样时间为300 s;进样准备等待时间为10 s;样品清洗时间为120 s;操作环境温度50 ℃。

1.2.2 气相色谱-质谱(GC-MS)测定 样品前处理。取出样品放入液氮盒中,用磨样机(60 Hz,60 s)磨成粉末。取1 g磨好的样品放入顶空萃取瓶中,加入1 mL 饱和氯化钠溶液和6 μL(100 μg·mL-1)癸酸乙酯内标溶液于顶空瓶中,再将瓶口密闭,随后在50 ℃磁力搅拌加热器中预热8 min。

顶空固相微萃取(HS-SPME)条件参考笔者课题组前期方法[16]并加以优化。使用萃取纤维头50/30 μm DVB/CAR/PDMS,萃取头在250 ℃条件温度下老化60 min 后,将萃取针插入存放样品的顶空瓶中,设置萃取温度50 ℃,顶空萃取45 min,并在250 ℃下解析4 min,进行GC-MS 分离鉴定。测定方法:利用GC-MS 气质联用仪(型号:GC680+SQ8T+HS40),参照方丽娜等[14]的GC-MS方法并加以优化,对不同品种(系)的橄榄进行香气测定。色谱条件:FFAP-5MS;载气为99.99%氦气,压力100 kPa;分流比10∶1;柱箱温度50 ℃,进样口温度250 ℃,柱流量1 mL·min-1;升温程序:起始温度50 ℃,保持2 min;以5 ℃·min-1 升至150 ℃,保持5 min;以10 ℃·min-1 升至230 ℃,保持5 min。质谱条件:电子轰击离子源;接口温度250 ℃;离子源温度300 ℃;质量扫描范围50~620 m/z。

1.3 数据分析

在GC-MS 条件下,测得橄榄挥发性成分GCMS 总离子流色谱图。根据质谱图NIST 11.L 与质谱库Wiley 7 确定挥发性物质成分,并参照每种香气成分的CAS编号,同时结合人工谱图解析和资料分析进行定性。定量通过与内标物的峰面积比较,得到挥发性物质成分的含量(w),单位为μg·g-1,即:挥发性物质成分含量=(挥发性物质成分物质峰面积×内标物含量)/内标物峰面积。通过查阅文献报道的香气组分在水介质中的气味阈值,再通过香气组分在橄榄中的相对含量,计算得到部分香气组分在橄榄果实中的OAV(即挥发性物质成分的相对含量与香气成分阈值之比)。使用Origin 2018 软件绘制指纹图谱;使用TBtools 绘制热图;利用https://cloud.metware.cn 网站进行PCA 和OPLS-DA,计算预测变量重要性投影(variable importance in projection,VIP);并结合SPSS 19.0 软件进行单因素分析。以p<0.05、VIP≥1 为条件筛选差异挥发性物质成分;利用主成分分析(principal component analysis,PCA)对结果进行提取和可视化作图。

2 结果与分析

2.1 基于电子鼻技术的不同品种橄榄香气差异分析

通过对11 个不同品种(系)橄榄电子鼻数据进行OPLS-DA分析(图1-A),11个不同品种(系)橄榄在得分散点图的横轴上实现了区分;模型交叉验证结果(图1-B)显示,自变量拟合指数(R2X)为0.818,因变量拟合指数(R2Y)为0.733,模型预测指数(Q2)为0.597。其中福州地区主要栽培的品种(系)模型比较接近,广东地区主栽的揭西香榄与三棱榄有一定的相似性,浙江地区的平阳榄与其他品种(系)相比能较好区分,说明不同品种(系)橄榄香气存在一定区别。

图1 不同品种(系)橄榄电子鼻的OPLS-DA 分析(A)、模型交叉验证结果(B)及雷达图(C)
Fig.1 OPLS-DA analysis(A),permutation test(B)and radar chart(C)of C.album electronic noses of different varieties

从电子鼻检测数据绘制的电子鼻特征气味雷达图(图1-C)可看出,10 个传感器对挥发性成分的响应值不同。在10 个传感器中,S2 响应值在1.95~4.43 之间,认为该传感器是橄榄特征香气最敏感的传感器。如表1所示,S1、S7和S8这3个传感器对不同品种(系)橄榄起到区分作用(VIP>1,p<0.05),这些传感器可能在本试验OPLS-DA 判别模型中的贡献较大,其他传感器响应并不显著。

表1 不同传感器的VIP 值和p
Table 1 VIP value and p value of different sensors

?

2.2 不同品种(系)橄榄挥发物成分特征分析

2.2.1 基于不同品种(系)橄榄挥发物成分分析为研究不同品种(系)橄榄果实的香气特征,利用顶空固相微萃取与气相色谱质谱联用的方法对11 个橄榄品种(系)的挥发性物质成分及相对含量进行分析鉴定。试验品种(系)共检测到57 种,其中包括33 种烯烃类、4 种苯环类、3 种醛类、1 种酚类、1种醚类、4 种醇类、4 种萘类、2 种酮类、5 种烷烃类。以检测出的57 个挥发物组分作为因变量,不同品种(系)作为自变量,通过OPLS-DA 分析,可以实现不同品种(系)橄榄样品的有效区分(图2-A)。从图2-B 可知,自变量拟合指数(R2X)为0.505,因变量拟合指数(R2Y)为0.994,模型预测指数(Q2)为0.985,表示模型拟合结果可接受,说明模型不存在过拟合,模型验证有效,认为该结果可用于不同橄榄品种(系)鉴别分析。

图2 不同品种(系)橄榄挥发物的正交偏最小二乘判别分析(A)、模型交叉验证结果(B)及挥发物指纹图谱(C)
Fig.2 Orthogonal partial least squares discriminant analysis(A),permutation test(B)and volatile matter fingerprints(C)of different C.album varieties

根据这些挥发物成分的峰保留时间、峰面积值等相关参数建立不同品种(系)橄榄挥发物指纹图谱,如图2-C所示,不同地区样品挥发物指纹图谱之间具有一定的差异。

为了获得更准确和更直观的聚类结果,使用主成分分析对挥发物组分数据进行降维处理,得到11个不同品种(系)橄榄的得分散点3D图(图3-A),样本间的相似度越高则距离越近。图3-B为主成分分析可解释变异图,左图为累计可解释变异,纵坐标代表各个主成分的累计贡献值,累计比值越接近于1,表示PCA模型的可靠性越强;右图为各个主成分的可解释变异,可看出PC1>PC2>PC3>PC4>PC5,其累计方差贡献率分别为27.08%、20.83%、13.20%、10.77%、7.04%,其中PC1、PC2和PC3的方差贡献率之和为61.1%,具有较高的可靠性。α-蒎烯、石竹烯、α-石竹烯等挥发性物质是构成主成分得分图的主要贡献物质。

图3 不同品种(系)橄榄挥发物成分得分散点3D 图(A)和可解释变异图(B)
Fig.3 PCA3D map(A)and variation map(B)of C.album volatile matter components of different varieties

2.2.2 不同品种(系)橄榄挥发物成分的聚类分析基于不同品种(系)橄榄挥发物成分绘制聚类热图(图4),不同品种(系)橄榄样品挥发物组分和含量丰富,在组成种类、含量、占有比例、特有成分等方面均存在较大差异。聚类热图结果显示,可以将11个不同品种(系)橄榄分为两大类,以平阳1 号、清榄1号等为代表的一类品种(系),其主要挥发物含量高于梅埔2号、刘族本等品种(系)。其中平阳1号和平阳2号的挥发物成分有一定的相似性且显著区别于其他品种(系),这两个品种(系)的挥发物总含量高于其他品种(系),以石竹烯、α-蒎烯等物质最为显著。参试的刘族本、平阳2 号挥发物物质总含量相对较低,各主要挥发物成分物质含量均不显著。

图4 不同品种(系)橄榄挥发物成分聚类热图
Fig.4 Heatmap of volatile matter components of C.album from different varieties

上述11 个不同品种(系)橄榄挥发物成分中烯烃类化合物是构成橄榄果实香气特征的主要物质,但在不同品种(系)橄榄中,挥发物组成成分、各物质含量占有比例及特有成分等方面都存在差异。结果可为后续橄榄果实香气物质代谢途径及代谢物相关基因的挖掘与功能分析提供参考。

2.3 不同品种(系)橄榄挥发物差异分析

2.3.1 不同品种(系)橄榄挥发物成分差异分析 进一步分析不同挥发物成分对区分橄榄品种(系)的贡献率,根据p<0.05、VIP≥1 的标准,筛选出23 种不同品种(系)的差异挥发物物质(图5),其中烯烃类物质16 种、萘类3 种、苯环类2 种、酚类1 种、醇类1种。如图5所示,灵峰差异化合物主要为去氢白菖烯、桧烯、D-柠檬烯等;清榄1号中以α-蒎烯、γ-榄香烯、邻异丙基甲苯等为主要差异化合物;揭西香榄中以大根香叶烯D、莰烯、(1S,8aR)-1-异丙基-4,7-二甲基-1,2,3,5,6,8a-六氢萘等为主要差异化合物;平阳1号和平阳3号中以(-)-α-荜澄茄油烯、百里香酚、α-蒎烯等为主要差异化合物。上述各样品中的差异化合物对构成不同品种间风味品质的差异有一定的影响。

图5 不同品种(系)橄榄的差异挥发物成分聚类热图
Fig.5 Heatmap of different volatile matter components of C.album of different varieties

2.3.2 不同品种(系)橄榄香气OAV 分析 前人研究通过计算OAV 值来评价单个香气对果实整体香气的贡献度,OAV 值>1 时认为该挥发物组分对果实香气具有一定的影响,OAV值>10时认为该挥发物组分对果实整体香气贡献极大。结合文献报道的香气成分的阈值和属性描述,计算11 个不同品种(系)橄榄香气成分的OAV值。由表2可知,共有19种香气成分可计算OAV,且大多数OAV 值均大于1,认为这些香气物质可能对区分不同品种(系)橄榄果实的香气特征具有重要作用。基于不同品种(系)橄榄OAV数据绘制聚类热图(图6),可以将11个品种(系)大致分为两大类。

表2 不同香气成分的香气阈值
Table 2 Aroma threshold values of different aroma components

?

图6 不同品种(系)橄榄香气成分OAV 值的聚类热图
Fig.6 Heatmap of OAV values of C.album aroma components of different varieties

3 讨 论

在以往的研究中,广东品种(系)三棱榄[11]和冬节圆橄榄[12]中含量较高的香气成分主要有石竹烯、大根香叶烯Dα-古巴烯、α-蒎烯和桧烯等,福州地区栽培的长营[14]、清榄1 号、灵峰[15]等也包含有大量的石竹烯和古巴烯等,本试验结果与前人相似,通常认为,大部分具有挥发性的物质并无气味,不能构成果实的特征香气,只有香气活性组分才对香气具有显著贡献[25],因此香气成分含量并不能够作为判定果实香气特征的主要依据,通常赋予果实香气特征的是具有较高OAV值的香气成分[26-27]。认为单个香气成分对果实整体香气的贡献取决于浓度和气味阈值[20]。各个品种(系)中α-蒎烯的OAV 值均大于1,并且大多数品种(系)OAV 值大于100,因此α-蒎烯是橄榄果实中重要的香气特征物质。在特殊香气分类方面,果实香气类型通常可分为果香型、木香型和醛香型等几种,周如隽等[28]、张海朋[29]等将蒎烯类挥发性物质香气描述为清新清香、木香、甜香型,α-蒎烯是本研究中OAV值最高的,即香气贡献程度最高的挥发性物质,因此橄榄果实烯烃类香气主要成分所表现出来香气风味为木香、甜香型。石竹烯作为橄榄香气组分中含量最高且稳定存在的物质,其OAV 值在各个品种(系)中均大于1,有6 个品种(系)中的OAV值>10,认为石竹烯对橄榄果实整体的香气有较大的贡献。

前人从香气物质含量方面对橄榄的品种(系)进行分类的研究报道较少。本研究在分析OAV 值的基础上将11个不同品种(系)橄榄分为2类,分别为木香型与清香型,其中平阳1号、平阳2号,灵峰、清榄1 号等由于α-蒎烯、石竹烯和β-蒎烯等的OAV 值显著高于其他品种(系)表现出显著的松油香、木香,月桂烯、D-柠檬烯与反式-2-己烯醛[30-31]等能表现出果香、清香及柠檬香,但香气活性值与α-蒎烯等相比差异显著,认为该类品种(系)为木香型;此外本研究中的平阳1号与平阳3号,香气组分的含量显著高于其他品种(系),因此表现出来的香气特征也会高于其他品种(系),与电子鼻实验得到的结果相同,并且OAV值较其他品种(系)也有显著的差异,因此参试的平阳1号、平阳3号是最具橄榄果实香气特征的品种(系),认为α-蒎烯、石竹烯、β-蒎烯等可能是形成橄榄香气特征的关键香气化合物。檀香、三棱榄、梅埔2 号等品种(系)表现出的松油香、木香相对不显著,由于这类品种(系)总体的香气活性值均不显著,且反式-2-己烯醛与月桂烯在这类品种(系)香气组分中占比较高,即更多地呈现出一定的清香与果香,因此这类品种(系)呈现的香气类型为清香型。橄榄果实中主要香气成分烯烃类物质所表现出来香气风味为木香、甜香型,可能是橄榄鲜食入口初苦涩后呈回甘清甜感官效果的因素[32]

笔者在本研究中对影响不同品种(系)橄榄果实的香气成分进行分析比较,为辨别不同橄榄品种(系)提供理论参考。此外,同一品种(系)受不同产地土壤、小气候影响可能会对香气品质造成一定的影响,因此后续可以进一步研究不同产地相同品种(系)的橄榄果实,还需进一步控制变量,结合飞行时间气相质谱、矿物质元素和气相色谱离子迁移谱等技术,为福建、广东、浙江等地橄榄果实的香气品质研究提供参考。果实挥发性成分与成熟过程中的植物生理代谢机制紧密相关[33],后续还应对橄榄萜烯类化合物代谢途径中相关的基因进行挖掘与功能验证,探究形成其风味特征的机制。

4 结 论

不同橄榄品系的香气成分差异较大,这些品种(系)的重要香气成分都是以烯萜类物质为主,因此该类物质构成了橄榄的香气特征骨架。通过聚类和OAV分析,将参试橄榄香气特征分为清香型与木香型,α-蒎烯和石竹烯等为主要特征香气活性物质。

参考文献References:

[1] 吴如健,万继锋,韦晓霞,陈瑾,胡菡青,潘少霖.橄榄种质资源果实表型性状多样性分析及其数量分类研究[J].果树学报,2015,32(5):797-805.WU Rujian,WAN Jifeng,WEI Xiaoxia,CHEN Jin,HU Hanqing,PAN Shaolin. Fruit character diversity analysis and numerical classification of Chinese olive germplasm resources[J]. Journal of Fruit Science,2015,32(5):797-805.

[2] 覃振师,谭秋锦,黄锡云,陈海生,何铣扬,王文林,郑树芳,曾馥平.乌榄果实品质的相关性研究[J].中国南方果树,2017,46(2):95-97.QIN Zhenshi,TAN Qiujin,HUANG Xiyun,CHEN Haisheng,HE Xianyang,WANG Wenlin,ZHENG Shufang,ZENG Fuping.Study on the correlation of fruit quality of black olive[J]. South China Fruits,2017,46(2):95-97.

[3] 伊兴凯.果实香气物质代谢谱及单糖转运体功能的研究[D].合肥:安徽农业大学,2015.Yi Xingkai.Aromatic metabolite profiling and functional analysis for monosaccharide transporters in fruit[D].Hefei:Anhui Agricultural University,2015.

[4] 梁敏华,苏新国,梁瑞进,杨震峰.芒果果实采后香气物质合成代谢调控研究进展[J].农产品加工,2020(18):61-64.LIANG Minhua,SU Xinguo,LIANG Ruijin,YANG Zhenfeng.Progress on aroma substances synthesis and metabolism of postharvest Mango fruit[J].Farm Products Processing,2020(18):61-64.

[5] SHI H,ZHANG M,ADHIKARI B.Advances of electronic nose and its application in fresh foods:A review[J]. Critical Reviews in Food Science and Nutrition,2018,58(16):2700-2710.

[6] BANERJEE M B,ROY R B,TUDU B P,BANDYOPADHYAY R,BHATTACHARYYA N. Black tea classification employing feature fusion of E-Nose and E-Tongue responses[J]. Journal of Food Engineering,2019,244:55-63.

[7] ZHU Y,LV H P,DAI W D,GUO L,TAN J F,ZHANG Y,YU F L,SHAO C Y,PENG Q H,LIN Z.Separation of aroma components in Xihu Longjing tea using simultaneous distillation extraction with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry[J]. Separation and Purification Technology,2016,164:146-154.

[8] ZHU B Y,ZHANG J,LI J Y,FANG S M,ZHANG Z Z,WANG R J,DENG W W.Aroma profile of Jinmudan tea produced using Camellia sinensis,cultivar Jinmudan using solid-phase microextraction,gas chromatography-mass spectrometry,and chemometrics[J]. European Food Research and Technology,2021,247(5):1061-1082.

[9] 王静.固相微萃取-气相色谱分析方法[J].山东化工,2018,47(19):85-89.WANG Jing. Solid phase microextraction and gas chromatographic analysis[J].Shandong Chemical Industry,2018,47(19):85-89.

[10] 宝贵荣,成喜峰,领小,孟和.固相微萃取技术模式的研究进展[J].应用化工,2015,44(11):2097-2099.BAO Guirong,CHENG Xifeng,LING Xiao,MENG He.Developments of solid phase micro-extraction techniques[J]. Applied Chemical Industry,2015,44(11):2097-2099.

[11] 钟明,陈玉芬,甘廉生,蔡时可.‘三棱榄’橄榄果实香气成分分析[J].园艺学报,2003,30(6):757.ZHONG Ming,CHEN Yufen,GAN Liansheng,CAI Shike.Studies on the volatile aroma compounds in fruit of Chinese white olive Sanling (Canarium album Raeusch.)[J].Acta Horticulturae Sinica,2003,30(6):757.

[12] 钟明,陈玉芬,甘廉生,王萍.冬节圆橄榄果实挥发油化学成分分析[J].果树学报,2004,21(5):494-495.ZHONG Ming,CHEN Yufen,GAN Liansheng,WANG Ping.Studies on the volatile compounds in fruit of Chinese olive cultivar Dongjieyuan[J]. Journal of Fruit Science,2004,21(5):494-495.

[13] 赵丽娟,辛广,张捷莉.气相色谱-质谱法分析福建地区橄榄中橄榄肉和橄榄仁挥发油成分[J]. 食品科学,2005,26(9):391-395.ZHAO Lijuan,XIN Guang,ZHANG Jieli.Study on volatile constituents of the meat and kernel of Canarium album (Lour.)Raeusch from Fujian Province by gas chromatography-mass spectrometry(GC/MS)[J].Food Science,2005,26(9):391-395.

[14] 方丽娜,吴文珊,黄美丽,刘亮.‘长营’橄榄果实挥发性成分分析[J].亚热带植物科学,2009,38(2):44-47.FANG Lina,WU Wenshan,HUANG Meili,LIU Liang.Study on volatile compounds in fruit of Canarium album‘Changying’[J].Subtropical Plant Science,2009,38(2):44-47.

[15] 赖瑞联,冯新,陈瑾,陈义挺,吴如健.福州3 个鲜食橄榄品种(系)的果实品质特征与香气组分分析[J].食品科学,2020,41(6):231-238.LAI Ruilian,FENG Xin,CHEN Jin,CHEN Yiting,WU Rujian.Quality characteristics and aroma components of three fresh edible cultivars of Canarium album grown in Fuzhou[J]. Food Science,2020,41(6):231-238.

[16] 郑宗昊,张向争,傅芳浩,孙兴,潘腾飞,郭志雄,佘文琴.基于HS-SPME-GC-MS 技术的不同品种(系)橄榄香气成分研究[J].食品工业科技,2022,43(23):282-290.ZHENG Zonghao,ZHANG Xiangzheng,FU Fanghao,SUN Xing,PAN Tengfei,GUO Zhixiong,SHE Wenqin.Study on aroma components of Canarium album of different cultivars based on HS-SPME-GC-MS[J]. Science and Technology of Food Industry,2022,43(23):282-290.

[17] 邵淑贤,徐梦婷,林燕萍,陈潇敏,方德音,蔡捷英,王金焕,金珊,叶乃兴.基于电子鼻与HS-SPME-GC-MS 技术对不同产地黄观音乌龙茶香气差异分析[J].食品科学,2023,44(4):232-239.SHAO Shuxian,XU Mengting,LIN Yanping,CHEN Xiaomin,FANG Deyin,CAI Jieying,WANG Jinhuan,JIN Shan,YE Naixing. Differential analysis of aroma components of Huangguanyin Oolong tea from different geographical origins using electronic nose and Headspace Solid-Phase Microextraction-Gas Chromatography-Mass spectrometry[J]. Food Science,2023,44(4):232-239.

[18] 王淑燕,赵峰,饶耿慧,林宏政,郭永春,傅天甫,翁发水,叶乃兴.基于电子鼻和ATD-GC-MS 技术分析茉莉花茶香气成分的产地差异[J].食品工业科技,2021,42(15):234-239.WANG Shuyan,ZHAO Feng,RAO Genghui,LIN Hongzheng,GUO Yongchun,FU Tianfu,WENG Fashui,YE Naixing.Origin difference analysis of aroma components in jasmine tea based on electronic nose and ATD-GC-MS[J].Science and Technology of Food Industry,2021,42(15):234-239.

[19] 颜廷宇,林洁鑫,朱建新,叶乃兴,金珊,黄建锋,王鹏杰,吴芹瑶,郑德勇,杨江帆.电子鼻和GC-MS 结合化学计量学应用于高香红茶与传统工夫红茶香气特征的研究[J].食品工业科技,2022,43(18):252-261.YAN Tingyu,LIN Jiexin,ZHU Jianxin,YE Naixing,JIN Shan,HUANG Jianfeng,WANG Pengjie,WU Qinyao,ZHENG Deyong,YANG Jiangfan.Analysis of E-nose and GC-MS combined with chemometrics applied to the aroma characteristics of high aroma black tea and traditional congou black tea[J]. Science and Technology of Food Industry,2022,43(18):252-261.

[20] 张劲.杧果香气特征分析研究[D].南宁:广西大学,2011.ZHANG Jin.Study on aroma characterization of mango fruit[D].Nanning:Guangxi University,2011.

[21] PINO J A,MESA J.Contribution of volatile compounds to mango (Mangifera indica L.) aroma[J]. Flavour and Fragrance Journal,2006,21(2):207-213.

[22] NÚÑEZ SELLÉS A J,AGÜERO J A,PAZ L N. GC-MS analysis of mango stem bark extracts (Mangifera indica L.),Haden variety.Possible contribution of volatile compounds to its health effects[J].Open Chemistry,2021,19(1):27-38.

[23] BOONBUMRUNG S,TAMURA H,MOOKDASANIT J,NAKAMOTO H,ISHIHARA M,YOSHIZAWA T,VARANYANOND W. Characteristic aroma components of the volatile oil of yellow keaw mango fruits determined by limited odor unit method[J]. Food Science and Technology Research,2001,7(3):200-206.

[24] 陈婷婷.柑橘果实香气活性物质的确定及香气品质评价模型的建立[D].重庆:西南大学,2018.CHEN Tingting. Identification of aroma-active compounds and modeling of aroma quality evaluation of Citrus fruits[D].Chongqing:Southwest University,2018.

[25] OHASHI T,MIYAZAWA Y,ISHIZAKI S,KUROBAYASHI Y,SAITO T. Identification of odor- active trace compounds in blooming flower of damask rose (Rosa damascena)[J]. Journal of Agricultural and Food Chemistry,2019,67(26):7410-7415.

[26] 赵明,邹瑜,何海旺,武鹏,龙芳,莫天利,黄相.基于GC-MS的不同香蕉品种果实香气品质分析[J].西南农业学报,2021,34(5):964-970.ZHAO Ming,ZOU Yu,HE Haiwang,WU Peng,LONG Fang,MO Tianli,HUANG Xiang. Analysis of aromatic components from six banana varieties by GC-MS[J]. Southwest China Journal of Agricultural Sciences,2021,34(5):964-970.

[27] SHENG X J,LIN Y N,CAO J M,NING Y,PANG X L,WU J H,KONG F Y. Comparative evaluation of key aroma-active compounds in sweet osmanthus (Osmanthus fragrans Lour.)with different enzymatic treatments[J]. Journal of Agricultural and Food Chemistry,2021,69(1):332-344.

[28] 周如隽,赵雯琪,张越,张圣航.基于GC-MS 与GC-O 法分析两种桔子油中特征性香气成分[J].香料香精化妆品,2021(3):1-5.ZHOU Rujuan,ZHAO Wenqi,ZHANG Yue,ZHANG Shenghang. Study on characteristic aroma components in two tangerine oils by GC-MS and GC-O[J].Flavour Fragrance Cosmetics,2021(3):1-5.

[29] 张海朋.不同柑橘种质挥发性物质谱分析及相关基因挖掘和验证[D].武汉:华中农业大学,2019.ZHANG Haipeng. Volatile profiling of various Citrus germplasms in combination with mining and characterization of volatile biosynthetic genes[D]. Wuhan:Huazhong Agricultural University,2019.

[30] 刘晔,葛丽琴,王远兴.3 个产地不同等级庐山云雾茶挥发性成分主成分分析[J].食品科学,2018,39(10):206-214.LIU Ye,GE Liqin,WANG Yuanxing. Principal component analysis of volatile compounds in different grades of Lu mountain clouds-mist tea from three regions[J]. Food Science,2018,39(10):206-214.

[31] 王姝瑶,郝鑫,曲悦,陈迎迎,沈应柏.反式-2-己烯醛在植物防御反应中的作用[J].植物学报,2021,56(2):232-240.WANG Shuyao,HAO Xin,QU Yue,CHEN Yingying,SHEN Yingbai.The role of trans-2-hexenal in plant defense responses[J].Chinese Bulletin of Botany,2021,56(2):232-240.

[32] 许长同.橄榄鲜食果品质的感观与理化评价初探[J].福建果树,2009(4):35-37.XU Changtong.Preliminary study on sensory and physicochemical evaluation of fresh olive fruit quality[J]. Fujian Fruits,2009(4):35-37.

[33] 李旺雄,唐中祺,程鸿,孔维萍,罗石磊.不同甜瓜品种贮藏期间品质变化和风味物质分析[J].中国瓜菜,2021,34(9):50-55.LI Wangxiong,TANG Zhongqi,CHENG Hong,KONG Weiping,LUO Shilei. Analysis of quality changes and flavor substances of different melon varieties during storage[J]. China Cucurbits and Vegetables,2021,34(9):50-55.

Study on the characteristics and differences in aroma components among different cultivars of Canarium album

ZHENG Zonghao1, 2, ZHANG Xiangzheng1, 2, XU Rong1, 2, WANG Naiyu1, 2, FU Fanghao1, 2, GU Mengya1,2,PAN Tengfei1,2*,SHE Wenqin1,2*

(1College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China;2Institute of Storage, Transportation and Preservation of Horticultural Products,Fujian Agriculture and Forestry University,Fuzhou 350002,Fujian,China)

Abstract:【Objective】Fruit aroma is one of the determinants in fruit quality and flavor characteristics.Canarium album has gained the recognition from market with unique aroma.To explore the aroma profile characteristics of C. album, the volatile components of 11 varieties from different producing areas were analyzed in this study. Cluster analysis and orthogonal partial least squares discriminant analysis were used to classify volatile profile of 11 C. album varieties. The characteristic aromatic components detected in C.album were quantified using odor activity value(OAV),and the ratio of the volatile compound concentration to their odor threshold. Aroma components with an aroma value greater than or equal to 1 are considered as characteristic fragrances.【Methods】The volatile components in fruits of 11 varieties of C.album were analyzed by electronic nose combined with HS-SPME-GC-MS.The volatile compounds were determined according to mass spectrometry NIST 11.L and mass spectrometry library Wiley 7, and the CAS number of each volatile component was listed. Meanwhile, manual spectrogram analysis and data analysis were combined for qualitative analysis. The content of volatile components was determined by comparing with the peak area of internal standard. Fingerprint was made by Origin 2018 software. Heatmap was made with TBtools.The variable importance in projection (VIP) was calculated by PCA and OPLS-DA(https://cloud.metware.cn).SPSS 19.0 software was used for single factor analysis.Results were extracted and visualized with Principal Component Analysis(PCA).【Results】The results of electronic nose experiment showed that three sensors of orthogonal partial least squares discriminant analysis could distinguish different varieties of C.album,namely S1 sensor,S7 sensor and S8 sensor. S2 sensor had the highest response value among the 10 sensors and can reflect the aroma characteristics of C. album fruit, and the electronic nose experiment can distinguish 11 different varieties of C.album.The results of HS-SPME-GC-MS showed that the volatile components of C.album varieties were similar in 11 different varieties,but significantly different in contents.A total of 57 volatile components were detected in 11 different C. album varieties, which were analyzed by OPLS-DA and based on p-value<0.05, VIP≥1 condition, and 23 aroma substances were further screened out, which were related to C. album aroma quality, such as (-)-α-cubene, thymol, α-pinene and D-limonene contents,and the differences among 11 varieties reached a significant level.By comparing the OAV values of aroma substances of 11 varieties of C.album,the results showed that the OAV values of α-pinene in all varieties tested were higher, and the previous aroma description of α-pinene was mainly woody and pine-oil,so the olive fruits showed obvious woody and pine-oil aroma,which was woody flavor.Eleven different varieties of C. album can be divided into two categories.Among them, Pingyang No. 1, Pingyang No. 2, Lingfeng and Qinglan No. 1 showed significantly higher OAV values of α-pinene, caryophylene and β-pinene than other varieties, which showed significant pine oil fragrance and woody fragrance. Cinnamene, trans-2-hexenal and D-limonene showed fruity, delicate and lemon aromas, but their aroma activity was significantly different compared with α-pinene, suggesting that these varieties were wood scented. In addition, the contents of aroma components of Pingyang No. 1 and Pingyang No. 3 were significantly higher than those of other varieties, so their aromatic flavor was stronger than that of other varieties.These results were generally consistent with the results of electronic nose experiment and OAV.Therefore,Pingyang No.1 and Pingyang No.3 were the cultivars with the most aromatic flavor of C. album fruits. It was believed that α-pinene, caryophyllene and β-pinene may be the key aroma compounds that form the aroma characteristics of C. album. Varieties like Sanlenlan and Meipu No. 2 displayed less significant pine incense and costus smell as their overall aroma active values were not significant, and anti-2-hexene aldehyde and myrcene contents in such varieties of aroma components were higher. These results suggested that their aromas were sweeter.【Conclusion】In this study,the aroma components affecting different C.album varieties were analyzed and compared,so as to provide theoretical reference for identifying different C. album varieties. Due to the influence of soil and microclimate,the aroma of fruits with the same variety may be different.Therefore,further research on the aroma of C. album fruits with the same variety in different habitats can be required by combining gas chromatography-time of flight mass spectrometry,mineral elements and gas chromatography-mass spectrum techniques to provide a new sight of aroma quality in C. album fruits in Fujian, Guangdong and Zhejiang.This study provides a new sight for understanding C.album aroma and flavor characteristics. Moreover,the genes related to the metabolism pathway of C. album terpene compounds should be excavated, the functional verification should be performed, and the mechanism of forming the flavor characteristics of C.album terpenes should be explored.

Key words:Canarium album;Aroma;Electronic nose;HS-SPME-GC-MS;Odor activity value

中图分类号:S667.5

文献标志码:A

文章编号:1009-9980(2023)08-1640-11

DOI:10.13925/j.cnki.gsxb.20220581

收稿日期2022-10-27

接受日期:2023-02-13

基金项目福建省引导性科技计划项目(KJy22015XA);中央财政林业科技推广示范项目(闽财指〔2021〕363号);福建名优果树产业服务团队(11899170119)

作者简介郑宗昊,男,在读硕士研究生,研究方向为果树生理生化与分子生物学。Tel:18350386233,E-mail:964837911@qq.com

*通信作者Author for correspondence.Tel:13600803579,E-mail:wenqinshe@163.com;E-mail:tfpan@fafu.edu.cn