软枣猕猴桃[Actinidia arguta(Sieb. & Zucc.)Planch.ex Miq.]别名软枣子、奇异莓、猕猴梨等,属于猕猴桃科(Actinidiaceae Gilg & Werderm.)、猕猴桃属(Actinidia Lindl.)大型落叶藤本植物[1]。其果实在鲜食时爽口多汁,果味鲜美且含有丰富的维生素C、蛋白质及矿质元素等营养物质[2],除此之外软枣猕猴桃还有极高的药用价值,果实药用具有养生保健、解热的功效,还有抗肿瘤[3]、抗辐射、抗氧化、抗衰老、降血糖、抗炎、抑制失眠、提高免疫力、润肠通便等功效[4-7]。它除用于鲜食以外,还可用于果酱、罐头、酿酒、冻干粉等[8]加工原材料,深受广大消费者喜爱。软枣猕猴桃野生种质资源丰富,主要分布在中国、朝鲜、日本及俄罗斯远东地区,在中国则是东北三省资源分布最为丰富[9]。基于丰富的种质资源,中国已先后选育出魁绿[10]、丰绿[11]、佳绿[12]等优良品种。
种质资源重要性状表型评价鉴定是加快育种进程、选育优良品种的重要工作之一,果实品质性状的评价是软枣猕猴桃种质资源表型鉴定的重要内容,也是筛选优异种质材料的重要依据[13]。有关软枣猕猴桃种质资源的评价主要集中在表型性状[14-15]、抗寒性[16]、抗病性[17]等方面,但近几年对果实品质也进行了相关研究。秦红艳等[18]对70 份软枣猕猴桃的15个性状指标进行主成分分析,并提取了4 个主要成分,且发现在育种改良过程中第1 主成分增大时有利于增大果实大小,第3 主成分增大时有利于提高果实品质;仇占南等[19]的研究表明,野生软枣猕猴桃个体间果实品质差异大,并建立果实以总酚含量、维生素C 含量、固酸比、平均单果质量、可溶性固形物含量和可滴定酸含量为主要指标的评价体系。科学评价软枣猕猴桃果实品质是高效利用种质资源的前提,核心评价指标的筛选与综合评价方法的应用是科学评价果实品质的重要步骤。因此需要在已有的研究基础上构建更加合理有效的评价指标体系。
笔者在本研究中以35 份软枣猕猴桃资源为材料,以形态指标、颜色指标、加工与风味指标、营养指标等21 个指标组成原始指标体系,采用变异系数、相关性分析、主成分分析进行软枣猕猴桃果实品质评价核心指标筛选,并用因子分析法对果实品质综合评价,通过上述方法旨在建立软枣猕猴桃果实品质综合评价体系,筛选出优质资源,为科学评价其果实品质及选育优良品种提供理论依据。
供试的35 份软枣猕猴桃资源(表1)均于2022年9 月采自中国农业科学院特产研究所软枣猕猴桃、五味子国家林木种质资源库,采摘后放入薄膜盒运回实验室,于当天完成果实外观等相关指标的测定后于-80 ℃超低温保存备用。
表1 35 份软枣猕猴桃资源果实外观品质评价
Table 1 Evaluation of appearance quality of the 35 Actinidia arguta fruits
?
1.2.1 外观品质 参照《猕猴桃种质资源描述规范和数据标准》[20]对果实的外观品质性状进行分类评价鉴定。果实形状:短圆为1,梯形为2,短圆柱为3,长圆柱为4,圆球形为5,扁圆形为6,卵形为7,圆柱形为8,倒卵形为9,椭圆形为10,短椭圆形为11,长椭圆形为12。果皮颜色:浅绿为1,绿为2,深绿为3,浅褐为4,褐色为5,深褐为6,浅红为7,红为8,紫红为9。果肩形状:方为1,圆为2,斜为3。果喙形状:浅钝凸为1,深钝凸为2,浅尖凸为3,深尖凸为4。
1.2.2 果实品质 单果质量:称质量法测定,随机选取各资源10个果实,计算平均单果质量。果实横纵径:数显式游标卡尺测定,果形指数=纵径/横径。果实色度:采用NH-310高品质便携式电脑色差仪测定果实色差L*(反映颜色的明亮度,L*<0 表示偏黑,L*>0 表示偏白)、a*(反映颜色的红绿程度,a>0 表示颜色偏红,a<0表示颜色偏绿)、b*(反映颜色的黄蓝程度,b>0表示颜色偏黄,b<0表示颜色偏蓝)、c*(表示色彩饱和度)[13]。可溶性固形物含量采用手持折光仪测定;可溶性糖含量采用蒽酮试剂法测定;可滴定酸含量采用氢氧化钠溶液滴定法测定;维生素C含量采用2,6-二氯靛酚滴定法测定;pH采用pH计法测定;出汁率:随机选取10~20 个果实,称取果实质量,榨汁并测定果汁质量,计算出汁率,出汁率/%=果汁质量/果实质量×100;还原糖含量采用3,5-二硝基水杨酸法测定;单宁含量采用Folin-Denis 试剂法测定;可溶性蛋白质含量采用考马斯亮蓝法测定;可溶性果胶、原果胶及果胶含量采用咔唑比色法测定;固酸比为可溶性固形物含量与可滴定酸含量的比值[21-23]。
应用Excel 2010 软件对试验数据进行统计整理,SPSS 23.0 对试验数据进行差异性分析、相关性分析、主成分分析。基于主成分分析所筛选的指标再作因子分析,并以提取因子所对应的方差贡献率为权重,采用参考文献[24]的方法计算各因子得分与综合得分,实现基于因子分析法的果实品质综合评价,评选出果实品质优良的软枣猕猴桃资源。
对35份软枣猕猴桃果实外观品质进行分析(表1)。不同软枣猕猴桃资源的外观品质存在一定差异。从果实形状方面看,有3 份资源为短圆形,有6份资源为梯形,有5份资源为短圆柱形,有14份资源为长圆柱形,有6 份资源为倒卵形,有1 份资源为短椭圆形;从果皮颜色方面看,主要有浅绿色、绿色和深绿色,其中15份资源为浅绿色,16份资源为绿色,4份资源为深绿色;从果肩形状来看,主要为方形和圆形;从果喙形状来看,有11份资源为浅钝凸形,有8 份资源为深钝凸形,有10 份资源为浅尖凸形,有6份资源为深尖凸形。
对35 份软枣猕猴桃资源果实主要品质指标进行测定(表2)。通过显著性差异分析可以看出,SH1、SH5、A130701 的单果质量显著大于大多数材料。SH5、A100101、SH1、T060203 的横径最大,在2.90~3.12 cm 之间且无显著差异。SH1、A130701、SH5、A140301 的纵径显著大于其他资源。A130701、SH1、SH2 的果形指数最高,且无显著差异。SH5 和SH2 的L*显著高于其他材料,说明SH5和SH2的果实明亮度高。A191002和B080401的a*值较高,b*值和c*值较低,说明这2份资源的果实颜色偏绿且果实的色彩饱和度低。
表2 35 份软枣猕猴桃资源果实品质性状
Table 2 Fruit quality traits of the 35 Actinidia arguta fruits
?
表2 (续) Table 2 (Continued)
注:不同小写字母表示在p<0.05 水平差异显著。
Note:Different small letters indicate significant difference at p<0.05.
?
不同软枣猕猴桃的内在果实品质也存在差异。SH5、SH3和SH1的可溶性固形物含量最高且存在显著差异,为16.50%~17.73%;B080701的可滴定酸和可溶性糖含量均高于其他材料,说明该资源果实口感酸甜;SH5的固酸比显著高于其他材料,达到54.77;A100703和B080401的维生素C含量最高且无显著差异,达到102.61 mg·100 g-1和101.92 mg·100 g-1;A020203的可溶性蛋白质含量显著高于其他材料,达0.43 mg·g-1;A040103的出汁率最高,达74.30%,显著高于其他材料;各个资源果实的pH在3.54~4.24;各个资源还原糖含量有较大差异,含量为0.41%~7.52%,其中SH1的还原糖含量最高;B070101的单宁含量(ρ)显著高于其他材料,达0.80 g·L-1;A140101的可溶性果胶和果胶含量均显著高于其他材料,分别为0.92%和1.82%;SH5的原果胶含量显著高于其他材料。
由表3可知,外观指标单果质量、横径、纵径与果形指数互呈极显著相关;颜色指标L*、a*、b*、c*互呈极显著相关,L*与风味指标可溶性固形物含量、可滴定酸含量和固酸比均呈极显著相关,a*与功能性成分维生素C含量呈极显著正相关;风味指标可溶性固形物含量与可滴定酸含量呈极显著负相关,与固酸比呈极显著正相关,可滴定酸含量与固酸比极显著负相关,与可溶性糖含量呈极显著正相关,单宁含量与可溶性固形物含量和固酸比呈极显著负相关,与可滴定酸含量呈极显著正相关;营养指标可溶性蛋白质含量与可溶性固形物含量和固酸比呈极显著正相关,与可滴定酸含量和原果胶含量呈极显著负相关;功能性成分维生素C含量与a*和可滴定酸含量呈极显著正相关;加工指标出汁率与L*、b*、可溶性固形物含量和固酸比呈极显著负相关,与可滴定酸含量、可溶性果胶含量呈极显著正相关;可溶性果胶含量、原果胶含量与果胶含量之间互呈极显著正相关。
主成分分析是通过降维的方式,将多个变量简化为少数的几个综合变量,使现有的几个少数综合变量可以直接反映原来变量的信息[25]。通过前文结果,剔除横径、纵径、c*、还原糖含量、可溶性果胶含量、原果胶含量、果胶含量后,对其余13项指标进行数据标准化,使KMO值大于临界值0.6,进行主成分分析。
由表4可知,根据特征值大于1的原则共提取5个主成分,累计方差贡献率达到76.782%,综合了13项品质指标的大部分信息。主成分1 的贡献率为25.288%,主要代表固酸比、可滴定酸含量、单宁含量、出汁率和可溶性固形物含量,反映风味与加工品质;主成分2的贡献率为16.954%,主要代表L*、a*和b*,反映果实颜色;主成分3的贡献率为14.535,主要代表单果质量与果形指数,反映果实大小;主成分4的贡献率为10.177%,主要代表可溶性糖含量和可溶性蛋白质含量,反映营养品质;主成分的贡献率为9.828%,主要代表维生素C含量与a*,反映功能性成分。
表4 旋转后因子载荷矩阵及贡献率
Table 4 Factor loading matrix and contribution rate after rotation
?
与主成分分析相同,对剩余的13项指标进行因子分析,提取前5 个因子所对应的方差贡献率为权重,对35份软枣猕猴桃资源进行基于因子分析法的果实品质综合评价。
由表5可知,SH5在因子1和因子2得分排名均位于第一,说明SH5在因子1和因子2中包含的指标中表现均为最优;因子1 得分最低的是B070101,说明B070101 在因子1 所包含的指标中表现最差;因子2得分最低的A191002,说明A191002在因子2所包含的指标中表现最差;因子3得分最高的是SH1,最低的是A160701,说明SH1 在因子3 包含的指标中表现最优,而A160701 在因子3 所包含的指标中表现最差;因子4 得分最高的是B080701,最低的是SH4,说明B080701 在因子4 包含的指标中表现最优,而SH4在因子4所包含的指标中表现最差;因子5 得分最高的是A180902,最低的是A101201,说明A180902 在因子5 中包含的指标中表现最优,而A101201 在因子5 所包含的指标中表现最差。计算各个资源在因子分析法中的综合得分并进行排序,结果表明SH5、SH1、SH3、SH4、B080701 为排名前5的优良软枣猕猴桃资源;A020203 和A060902 的综合得分和排名相同,均为-0.02和15。
表5 35 份软枣猕猴桃资源果实品质综合评价结果
Table 5 Quality comprehensive score and ranking of the 35 Actinidia arguta fruits
?
种质资源是软枣猕猴桃种质创新的重要基础,而有效利用种质资源的前提则是对资源进行综合评价,不同软枣猕猴桃种质资源间果实品质性状的差异性,是育种材料的选择和产品开发的重要参考依据。从差异性结果分析可知,B080701 的可滴定酸和可溶性糖含量均显著高于其他材料;SH1 和SH5单果质量、横径、纵径均显著高于其他材料;A100703 和B080401 的维生素C 含量均高于其他材料,这些材料可作为果实风味、大小和功能性成分的优良育种材料;而A040103的出汁率最高,可作为加工果汁果酒的材料。
从相关性分析结果可以看出,21项指标存在一定的相关性,需要进一步简化果实品质评价体系,因此结合变异系数分析、相关性分析及主成分分析对核心指标进行筛选。加工与风味指标中固酸比在因子1中权重高且变异系数大,但固酸比为导出指标,因此出汁率、单宁含量、可滴定酸含量与可溶性固形物含量代表加工与风味指标;颜色指标L*、a*和b*在因子2中权重都较高,但是a*的变异系数最高,且反映的是果实红绿程度,因此相比之下a*更能作为颜色指标;在反映果实大小指标中果形指数为导出指标,但单果质量变异系数大,且与横径、纵径均呈极显著相关,因此单果质量作为果实大小指标,因子4中可溶性糖含量的权重最高且变异系数大,因此作为营养指标;因子5中维生素C含量的权重最高,变异系数大,且与其他指标的相关性低,因此作为功能性指标。综上可以筛选出可滴定酸含量、可溶性固形物含量、出汁率、单宁含量、a*、单果质量、可溶性糖含量和维生素C含量作为软枣猕猴桃果实品质评价的核心指标,这与仇占南等[19]筛选出来的部分指标一致,笔者在本研究中筛选的指标还包含了出汁率、单宁、a*与可溶性糖含量。
3 品质指标间相关性分析
Table 3 Correlation analysis among quality indicators
?
因子分析法是常用的果实品质评价方法[26]。因子分析法是通过主成分分析在最大程度保留原有信息的前提下,将多个相关变量转化为少数相关性较小的综合指标,并以各个因子的贡献率为权重计算各个资源果实品质的综合得分,可以有效针对较多指标的数据集进行综合评价[27]。荆荣线等[28]对香菇7个品质参数进行主成分分析,将7个品质指标简化为总灰分含量和粗多糖含量作为筛选营养品质优异香菇的2个重要指标。笔者在本研究中通过主成分分析对35 份软枣猕猴桃资源的主要果实品质指标进行简化,从13项指标中提取了5个主成分,累计贡献率达到76.782%,最后以各主成分对应的贡献率为权重,基于因子分析法对果实品质进行综合评价,得到SH5、SH1、SH3、SH4、B080701为排名前5的优良软枣猕猴桃资源。在评价优良种质资源时除了考虑果实品质之外,还需要对耐贮性、抗病性、抗寒性、抗旱性、丰产性等因子进行评价,因此在果实品质评价的基础上,进一步结合耐贮性、抗病性、抗寒性、抗旱性、丰产性等进行全面评价,才能筛选出适宜软枣猕猴桃产业发展的优良软枣猕猴桃资源。
通过对35 份软枣猕猴桃资源果实品质综合分析得到的结论如下:SH5、SH1、SH3、SH4、B080701为排名前5的优良软枣猕猴桃资源;可滴定酸含量、可溶性固形物含量、出汁率、单宁含量、a*、单果质量、可溶性糖含量和维生素C 含量为软枣猕猴桃果实品质评价的核心指标。
[1] 卢立媛,刘振盼,孙阳,张永华,尤文忠. 软枣猕猴桃研究进展[J].特产研究,2020,42(5):89-93.LU Liyuan,LIU Zhenpan,SUN Yang,ZHANG Yonghua,YOU Wenzhong. Research progress of Kiwiberry[J]. Special Wild Economic Animal and Plant Research,2020,42(5):89-93.
[2] 刘硕,钱程,金丽华,董畅,段慧敏,马珺婕,李润茁,狄俊彤,孟凡娟.北方软枣猕猴桃研究进展[J].辽宁林业科技,2021(1):45-48.LIU Shuo,QIAN Cheng,JIN Lihua,DONG Chang,DUAN Huimin,MA Junjie,LI Runzhuo,DI Juntong,MENG Fanjuan. Research progress of Actinidia arguta in North China[J]. Liaoning Forestry Science and Technology,2021(1):45-48.
[3] 赵楠,柴军红,何婷婷,宛春雷,景云荣,张蕾.软枣猕猴桃植物化学成分及生物活性研究进展[J].食品研究与开发,2020,41(2):211-215.ZHAO Nan,CHAI Junhong,HE Tingting,WAN Chunlei,JING Yunrong,ZHANG Lei. Research progress on chemical constituents and biological activities of Actinidia arguta[J]. Food Research and Development,2020,41(2):211-215.
[4] ALMEIDA D,PINTO D,SANTOS J,VINHA A F,PALMEIRA J,FERREIRA H N,RODRIGUES F,OLIVEIRA M B P P.Hardy kiwifruit leaves (Actinidia arguta):An extraordinary source of value-added compounds for food industry[J]. Food Chemistry,2018,259:113-121.
[5] GONG D S,SHARMA K,KANG K W,KIM D W,OAK M H.Endothelium-dependent relaxation effects of Actinidia arguta extracts in coronary artery:involvement of eNOS/akt pathway[J].Journal of Nanoscience and Nanotechnology,2020,20(9):5381-5384.
[6] HEO K H,SUN X,SHIM D W,KIM M K,KOPPULA S,YU S H,KIM H B,KIM T J,KANG T B,LEE K H.Actinidia arguta extract attenuates inflammasome activation:potential involvement in NLRP3 ubiquitination[J]. Journal of Ethnopharmacology,2018,213:159-165.
[7] CHOI J J,PARK B,KIM D H,PYO M Y,CHOI S,SON M,JIN M.Blockade of atopic dermatitis-like skin lesions by DA-9102,a natural medicine isolated from Actinidia arguta,in the Mg-deficiency induced dermatitis model of hairless rats[J].Experimental Biology and Medicine,2008,233(8):1026-1034.
[8] 孙宏莱,毕云杰,时得友,朱雪彤,李丽丽,N.V.扎依湄科,N.V.斯克里普琴科,刘德江.软枣猕猴桃果品加工与贮藏保鲜研究进展[J].食品与发酵工业,2020,46(11):315-320.SUN Honglai,BI Yunjie,SHI Deyou,ZHU Xuetong,LI Lili,N.V. Zaimenko,N. V. Skrypchenko,LIU Dejiang. Research progress on Actinidia arguta processing and storage[J].Food and Fermentation Industries,2020,46(11):315-320.
[9] 刘青,贾东峰,黄春辉,钟敏,廖光联,徐小彪.软枣猕猴桃(Actinidia arguta)种质资源研究进展[J].北方园艺,2020(22):132-137.LIU Qing,JIA Dongfeng,HUANG Chunhui,ZHONG Min,LIAO Guanglian,XU Xiaobiao. Research progress on germplasm resources of Actinidia arguta[J]. Northern Horticulture,2020(22):132-137.
[10] 赵淑兰,袁福贵,马月申,赵井才,杨金茹.软枣猕猴桃新品种:魁绿[J].园艺学报,1994,21(2):207-208.ZHAO Shulan,YUAN Fugui,MA Yueshen,ZHAO Jingcai,YANG Jinru. Kui Lü:a new cultivar of Actinidia arguta Planch.[J].Acta Horticulturae Sinica,1994,21(2):207-208.
[11] 赵淑兰. 软枣猕猴桃新品种:“丰绿”[J]. 特产研究,1996,18(3):51-52.ZHAO Shulan.‘Feng Lü’:a new cultivar of Actinidia argute Planch.[J]. Special Wild Economic Animal and Plant Research,1996,18(3):51-52.
[12] 秦红艳,杨义明,艾军,范书田,王振兴,许培磊,刘迎雪,赵滢,张庆田,张宝香,李晓艳,李晓红,赵淑兰. 软枣猕猴桃新品种:‘佳绿’的选育[J].果树学报,2015,32(4):733-735.QIN Hongyan,YANG Yiming,AI Jun,FAN Shutian,WANG Zhenxing,XU Peilei,LIU Yingxue,ZHAO Ying,ZHANG Qingtian,ZHANG Baoxiang,LI Xiaoyan,LI Xiaohong,ZHAO Shulan.A new cultivar of Actinidia arguta Planch.‘Jialü’[J]. Journal of Fruit Science,2015,32(4):733-735.
[13] 李勋兰,魏召新,彭芳芳,罗友进,韩国辉.35 份果桑资源果实品质分析与综合评价[J].果树学报,2022,39(3):332-342.LI Xunlan,WEI Zhaoxin,PENG Fangfang,LUO Youjin,HAN Guohui. Fruit quality analysis and comprehensive evaluation of 35 mulberry accessions[J]. Journal of Fruit Science,2022,39(3):332-342.
[14] 李红莉,王澎,李雪,陶双勇,孙强,逄宏扬,张跃新,孙向辉.黑龙江野生软枣猕猴桃种质资源表型性状的遗传多样性[J].经济林研究,2022,40(1):150-158.LI Hongli,WANG Peng,LI Xue,TAO Shuangyong,SUN Qiang,PANG Hongyang,ZHANG Yuexin,SUN Xianghui. Genetic diversity of phenotypic traits of wild Actinidia arguta germplasm resources in Heilongjiang[J]. Non-Wood Forest Research,2022,40(1):150-158.
[15] 王东来,周文杰,姚平,赵凤军,黄国辉.软枣猕猴桃种质资源表型性状的数量分类研究[J].北方园艺,2022(10):33-40.WANG Donglai,ZHOU Wenjie,YAO Ping,ZHAO Fengjun,HUANG Guohui. Numerical classification of Actinidia arguta Planch. germplasm resources according phenotypic characters[J]. Northern Horticulture,2022(10):33-40.
[16] 曹健冉.软枣猕猴桃种质资源抗寒性评价及其抗寒生理机制研究[D].北京:中国农业科学院,2019.CAO Jianran. Evaluation on cold resistance of germplasm resources and its physiological mechanisms of Actindia arguta[D].Beijing:Chinese Academy of Agricultural Sciences,2019.
[17] 温欣,秦红艳,艾军,王月,韩先焱,李昌禹.软枣猕猴桃种质资源溃疡病抗性鉴定方法的建立与评价[J].植物保护,2021,47(2):193-199.WEN Xin,QIN Hongyan,AI Jun,WANG Yue,HAN Xianyan,LI Changyu.Establishment and evaluation of resistance identification method for Pseudomonas syringae pv. actinidiae disease in Actinidia arguta germplasm resources[J]. Plant Protection,2021,47(2):193-199.
[18] 秦红艳,许培磊,艾军,刘迎雪,范书田,杨义明,王振兴,张宝香,赵滢.软枣猕猴桃种质资源果实品质、表型性状多样性及主成分分析[J].中国农学通报,2015,31(1):160-165.QIN Hongyan,XU Peilei,AI Jun,LIU Yingxue,FAN Shutian,YANG Yiming,WANG Zhenxing,ZHANG Baoxiang,ZHAO Ying.Diversity of fruit quality and phenotypic traits of Actinidia arguta Planch. germplasm resources and their principal component analysis[J].Chinese Agricultural Science Bulletin,2015,31(1):160-165.
[19] 仇占南,张茹阳,彭明朗,张文,李天忠,朱元娣.北京野生软枣猕猴桃果实品质综合评价体系[J]. 中国农业大学学报,2017,22(2):45-53.QIU Zhannan,ZHANG Ruyang,PENG Minglang,ZHANG Wen,LI Tianzhong,ZHU Yuandi. Comprehensive evaluation system of the fruit quality of wild Actinidia argutain Beijing[J].Journal of China Agricultural University,2017,22(2):45-53.
[20] 胡忠荣,陈伟,李坤明. 猕猴桃种质资源描述规范和数据标准[M].北京:中国农业出版社,2006.HU Zhongrong,CHEN Wei,LI Kunming. Descriptors and data standard for kiwifruit (Actinidia spp.)[M]. Beijing:China Agriculture Press,2006.
[21] 曹炜玉,舒楠,温锦丽,路文鹏.不同品种酿酒葡萄果实发育期间营养物质动态变化及成熟期果实主成分分析[J].北方园艺,2022(14):16-23.CAO Weiyu,SHU Nan,WEN Jinli,LU Wenpeng. Dynamic changes of nutrients in different varieties of wine grapes during fruit development based on principal components[J]. Northern Horticulture,2022(14):16-23.
[22] 国家标准局.水果、蔬菜维生素C 含量测定法:GB/T 6195—1986[S].北京:中国标准出版社,1986.Determination of vitamin C in vegetables and fruits(2,6-dechloro-indophenol titration method):GB/T 6195—1986[S]. Beijing:China Standards Press,1986.
[23] 曹建康,姜微波,赵玉梅.果蔬采后生理生化实验指导[M].北京:中国轻工业出版社,2007.CAO Jiankang,JIANG Weibo,ZHAO Yumei. Experimental guidance of postharvest physiology and biochemistry of fruits and vegetables[M].Beijing:China Light Industry Press,2007.
[24] 马庆华,李永红,梁丽松,李琴,王海,许元峰,孙玉波,王贵禧.冬枣优良单株果实品质的因子分析与综合评价[J].中国农业科学,2010,43(12):2491-2499.MA Qinghua,LI Yonghong,LIANG Lisong,LI Qin,WANG Hai,XU Yuanfeng,SUN Yubo,WANG Guixi. Factor analysis and synthetical evaluation of the fruit quality of Dongzao(Ziziphus jujuba Mill.‘Dongzao’) advanced selections[J]. Scientia Agricultura Sinica,2010,43(12):2491-2499.
[25] 宋贺,何维,刘祚祚,李瑞婷,吴杰,廖天,姜燕.基于主成分分析综合评价‘热农1 号’余甘子果实品质[J].食品工业科技,2023,44(8):318-325.SONG He,HE Wei,LIU Zuozuo,LI Ruiting,WU Jie,LIAO Tian,JIANG Yan. Comprehensive evaluation of‘Renong No.1’Phyllanthus emblica L.quality based on principal component analysis[J]. Science and Technology of Food Industry,2023,44(8):318-325.
[26] 王佳豪,段雅倩,乜兰春,宋立彦,赵文圣,方思雨,赵佳腾.‘羊角脆’类甜瓜果实品质因子分析及综合评价[J].中国农业科学,2019,52(24):4582-4591.WANG Jiahao,DUAN Yaqian,IE Lanchun,SONG Liyan,ZHAO Wensheng,FANG Siyu,ZHAO Jiateng. Factor analysis and comprehensive evaluation of the fruit quality of‘Yangjiaocui’melons[J]. Scientia Agricultura Sinica,2019,52(24):4582-4591.
[27] 陈美艳,赵婷婷,刘小莉,韩飞,张鹏,钟彩虹.猕猴桃品种‘金艳’果实品质因子分析与综合评价[J].植物科学学报,2021,39(1):85-92.CHEN Meiyan,ZHAO Tingting,LIU Xiaoli,HAN Fei,ZHANG Peng,ZHONG Caihong. Factor analysis and comprehensive evaluation of fruit quality of‘Jinyan’kiwifruit(Actinidia eriantha × Actinidia chinensis)[J]. Plant Science Journal,2021,39(1):85-92.
[28] 靳荣线,李峰,邹明,孔维丽,刘翼成,赵建选.基于主成分分析法的不同等级香菇品质评价[J].中国瓜菜,2022,35(8):50-56.JIN Rongxian,LI Feng,ZOU Ming,KONG Weili,LIU Yicheng,ZHAO Jianxuan. Evaluation of Lentinula edodes quality based on principal component analysis[J].China Cucurbits and Vegetables,2022,35(8):50-56.
Quality analysis and comprehensive evaluation of 35 Actinidia argute accessions