我国属于大陆性季风气候,夏季雨热同季,葡萄病害发生严重,避雨栽培是隔离雨水减少病害发生的有效途径[1]。目前,避雨栽培技术在我国多地得到了广泛应用,推广应用面积已超过26.67 万hm2,特别是在长江中下游地区[2]。近年来,北方地区也有一定应用[3],该技术已被作为山东省果茶站的主推技术。
目前应用的避雨棚膜材料主要有聚氯乙烯(PVC)、聚乙烯(PE)、聚乙烯-聚醋酸乙烯酯共聚物(EVA)以及聚烃烯(PO)膜等[4],以PO膜应用最为广泛。不同棚膜材料透光和保温性能均存在差异,进而影响葡萄叶片光合能力,主要体现在光合日变化上,晴天露地栽培光合日变化主要呈单峰曲线,叶片净光合速率中午最低且下午得不到恢复[5]。避雨栽培葡萄叶片光合速率日变化呈双峰型变化曲线[6],上午随光照度和温度上升,叶片净光合速率快速升高,10:00 左右达到峰值,中午受强光和高温胁迫的影响,出现“光合午休”现象[7],随着光照度和温度的降低,16:00 出现第二个高峰,但第二个高峰一般小于第一个高峰。而阴雨天或者温度较低的多云情况下,葡萄叶片净光合速率日变化也会出现单峰的情况,峰值出现在10:00左右[8]。虽然避雨栽培具有遮光作用,但避雨棚内光照度仍然高于葡萄的光饱和点,处于强光照带[9]。因此,调控避雨棚内的光照度和温度是缓解高温强光胁迫、避免或者缓解植物光合午休、提高净光合速率的重要措施。
Coverlys TF150®是一种内部涂有防雾滴PE 涂层的新型机织物,该棚膜材料耐拉强度大,抗撕裂性强,不需要钢管或者钢丝拱梁,直接在树干上方跨过立柱顶端形成三角形覆盖,操作简便,可实现无骨架覆盖,较常规避雨棚大大降低了钢管或者钢丝骨架成本及外加压膜绳固定的劳动力成本。目前,Coverlys TF150®尚未在我国葡萄避雨栽培上应用,其对葡萄光合特性和生长发育的研究未见报道。因此,笔者在山东地区开展Coverlys TF150®对赤霞珠和巨峰植株生长发育及光合特性的影响研究,以期为该棚膜材料在我国葡萄避雨栽培上的应用提供理论依据。
试验于2021 年5—9 月在山东农业大学园艺试验站进行,选用1年生巨峰和赤霞珠自根苗为试材,于3 月初定植在外口径37 cm、内口径34 cm、盆高24.5 cm 的塑料盆中,基质为中性壤土、河沙及有机肥按照2∶1∶1的体积比配制而成,待生长到6~7枚叶片时,每个处理分别选取长势相同的30株赤霞珠和巨峰苗,在盆上方分别搭建避雨棚,棚的肩高为1.2 m,棚顶距地面2 m,避雨棚分别用PO 膜和Coverlys TF150®膜覆盖,Coverlys TF150®购自博优纺织品(威海)有限公司,8 元·m- 2。经测定,Coverlys TF150®的透射率为65.23%,PO 膜的透射率为74.05%。
1.2.1 葡萄叶面积、叶厚度和叶质量的测定 于7月中旬分别采集赤霞珠和巨峰不同处理下第6节位叶片10 枚,将叶片平铺在坐标纸上,拍照并用Digimizer 软件测定叶面积;用天平测量叶片质量,精确到0.01 g;用游标卡尺测量叶片厚度,精确到0.01 mm。
1.2.2 葡萄叶片叶绿素含量的测定 参照赵世杰等[10]的方法,用打孔器取第9节位葡萄叶片测定,每个处理3次生物学重复。
1.2.3 葡萄叶片光合作用测定 参照管雪强等[11]的方法,选择7 月中旬的晴天,分别在2 种棚膜下随机选择第6 节位叶片,用Ciras-3(PPSystems,英国)光合仪08:00—16:00 每隔2 h 测定1 次,测定净光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)、蒸腾速率(Tr)等指标,每个处理10次重复。
1.2.4 葡萄叶片叶绿素荧光参数的测定 参照付晴晴等[12]的方法,选择7 月中旬的晴天,用FMS-2型便携脉冲调制式荧光仪(Hansatech,英国)对葡萄第6 节位叶片叶绿素荧光参数日变化(08:00—16:00)进行测定。测定程序如下:对光适应下(活化光照度约1000 μmol·m-2·s-1)的各株系葡萄叶片先打60 s 作用光(1000 μmol·m-2·s-1),然后打测量 光(<0.05 μmol·m-2·s-1)测得叶片最小荧光(Fo’),再打饱和脉冲光(12 000 μmol·m-2·s-1)测得光适应下的最大荧光值(Fm’),作用光下Ft 稳定后即为稳态荧光(Fs),关闭叶夹对叶片进行30 min 的暗适应后测定初始荧光(Fo),打12 000 μmol·m-2·s-1的饱和脉冲光,使原初电子受体QA 全部处于还原状态,测定暗适应下的最大荧光(Fm)。
1.2.5 葡萄植株鲜质量、新梢长度和粗度测定 每个处理随机取10株葡萄植株,用天平测定地上部和地下部的鲜质量,精确到0.01 g;用卷尺测量新梢长度,精确到0.1 cm;用游标卡尺测量茎粗,精确到0.01 mm。
1.2.6 葡萄枝条贮藏营养的测定 于休眠季节1月中旬,每个处理随机取10株葡萄植株,选取第3节位枝条,烘干研磨,参照赵世杰等[10]的方法,用蒽酮比色法测定枝条可溶性糖含量和淀粉含量,3次重复。
使用Microsoft Excel 2016 处理数据和作图,利用SPSS 26.0软件对数据进行独立样本T检验分析,用LSD法进行差异显著性检验。
2.1.1 Coverlys TF150®对葡萄叶片最大光化学效率(Fv/Fm)的影响 由图1 可见,Coverlys TF150®下巨峰和赤霞珠叶片最大光化学效率(Fv/Fm)均为双峰曲线,10:00达到一天中最高,08:00最低。PO膜下巨峰和赤霞珠叶片Fv/Fm 08:00为一天中最高,12:00最低,随后逐渐升高,但在16:00前均低于Coverlys TF150®。Coverlys TF150®较PO 膜显著提高了10:00—14:00巨峰和赤霞珠叶片的Fv/Fm,但08:00和16:00 Fv/Fm有所降低。与PO 膜相比,10:00、12:00、14:00 Coverlys TF150®下巨峰叶片Fv/Fm分别升高了7.41%、5.00%和3.61%,赤霞珠叶片Fv/Fm分别显著提高了4.76%、5.00%和6.17%。
图1 Coverlys TF150®对巨峰(A)和赤霞珠(B)叶片最大光化学效率(Fv/Fm)影响
Fig.1 Effects of Coverlys TF150®on the maximum photochemical efficiency of PSⅡ(Fv/Fm)of leaves of Kyoho(A)and Cabernet Sauvignon(B)
*代表有显著性差异(p<0.05)。下同。
*indicates significant difference at p<0.05.The same below.
2.1.2 Coverlys TF150®对葡萄叶片实际光化学效率(ΦPSⅡ)、光化学淬灭系数(qP)、电子传递速率(ETR)的影响 ΦPSⅡ表示在光照条件下PSⅡ反应中心部分关闭后的实际光化学效率,反映叶片在光下用于电子传递的能量占吸收光能的比例;qP是光化学猝灭系数,反映PSⅡ天线色素捕获光能用于光化学电子传递的份额;ETR 代表光合量子传递效率。如图2 所示,Coverlys TF150®下巨峰和赤霞珠叶片ΦPS Ⅱ、ETR 和qP日变化均为双峰曲线,在10:00和14:00达到高峰,并且10:00 一般高于14:00。10:00—14:00 Coverlys TF150®下巨峰和赤霞珠叶片ΦPSⅡ、ETR 和qP 均高于PO 膜,08:00 和16:00 低于PO 膜。与PO 膜相比,10:00、12:00、14:00 Coverlys TF150®下 巨 峰 叶 片ΦPSⅡ分别显著提高7.14%、13.64%和17.39%,赤霞珠叶片ΦPSⅡ分别提高7.14%、8.70%和12.50%,也达到了显著水平。
图2 Coverlys TF150®对巨峰(A、C 和E)和赤霞珠(B、D 和F)叶片ΦPSⅡ、qP、ETR 的影响
Fig.2 Effects of Coverlys TF150®on actual PSⅡefficiency(ΦPSⅡ),photochemical quenching coefficient(qP)and electron transport rate(ETR)of leaves of Kyoho(A,C and E)and Cabernet Sauvignon(B,D and F)
2.2.1 Coverlys TF150®对葡萄叶片净光合速率(Pn)的影响 由图3 所示,Coverlys TF150®下巨峰和赤霞珠葡萄叶片的净光合速率为双峰曲线,10:00 和14:00为葡萄叶片的净光合速率的两个峰值,高于一天中其他时间,且10:00净光合速率显著高于14:00。PO膜下6 节位葡萄叶片净光合速率呈先下降后上升的趋势,12:00净光合速率为一天中最低,08:00为PO膜一天中净光合速率最高的时间。10:00—14:00 Coverlys TF150®下葡萄叶片的净光合速率显著高于PO 膜,巨峰叶片净光合速率分别比PO 膜高18.80%、24.65%和25.34%,赤霞珠叶片净光合速率分别比PO 膜高20.00%、30.18%和20.00%,08:00 和16:00 低于PO 膜。葡萄叶片光合日变化面积图经积分可得,Coverlys TF150®下巨峰和赤霞珠叶片净光合速率日变化面积分别为402 720 μmol·m-2和4 293 620 μmol·m-2,分别比PO 膜增加了13.80%和14.39%。
图3 Coverlys TF150®对巨峰(A)和赤霞珠(B)葡萄叶片净光合速率(Pn)的影响
Fig.3 Effects of Coverlys TF150®on net photosynthetic rate(Pn)of Kyoho(A)and Cabernet Sauvignon(B)grape leaves
2.2.2 Coverlys TF150®对葡萄叶片胞间二氧化碳浓度(Ci)的影响 由图4 可见,12:00—14:00 Coverlys TF150®下巨峰和赤霞珠叶片Ci均显著高于PO膜,而10:00 无显著差异,但08:00 和16:00 显著低于PO 膜。与PO 膜相比,12:00 和14:00 巨峰叶片Ci分别提高了27.35%和19.31%,赤霞珠叶片Ci分别提高了21.30%和14.76%。
图4 Coverlys TF150®对巨峰(A)和赤霞珠(B)葡萄叶片胞间二氧化碳浓度(Ci)的影响
Fig.4 Effects of Coverlys TF150®on the intercellular carbon dioxide concentration(Ci)of grape leaves of Kyoho(A)and Cabernet Sauvignon(B)
2.2.3 Coverlys TF150®对葡萄叶片气孔导度(Gs)和蒸腾速率(Tr)的影响 如图5 所示,10:00—14:00 Coverlys TF150®下巨峰和赤霞珠叶片Gs和Tr高于PO 膜,而08:00 和16:00 低于PO 膜。10:00 CoverlysTF150®下巨峰和赤霞珠叶片Gs较PO膜分别显著提高27.75%和38.06%;Tr 分别显著提高50.94%和27.31%。12:00 Coverlys TF150®下较PO 膜下巨峰和赤霞珠叶片Gs分别显著提高38.34%和36.40%,Tr分别显著提高15.48%和24.81%。
图5 Coverlys TF150®对巨峰(A 和C)和赤霞珠(B 和D)叶片气孔导度(Gs)和蒸腾速率(Tr)的影响
Fig.5 Effects of Coverlys TF150®on stomatal conductance(Gs)and transpiration rate(Tr)of leaves of Kyoho(A and C)and Cabernet Sauvignon(B and D)
如图6 所示,与PO 膜相比,Coverlys TF150®覆盖处理下巨峰和赤霞珠葡萄叶片质量、叶面积和叶绿素含量显著增加,叶片质量分别提高了31.60%和10.35%,叶面积分别提高了8.77%和15.01%,叶片叶绿素含量分别提高了31.45%和9.41%。同时,Coverlys TF150®覆盖显著提高了巨峰叶片厚度,提高了14.81%,赤霞珠叶片厚度无显著差异。
图6 Coverlys TF150®对葡萄叶片质量(A)、厚度(B)、面积(C)以及叶绿素含量(D)的影响
Fig.6 Effect of Coverlys TF150®on leaf mass(A),leaf thickness(B),leaf area(C)and chlorophyll content(D)of grape leaves
由表1可见,Coverlys TF150®覆盖较PO膜显著提高了葡萄植株地上部和地下部鲜质量,巨峰地上部和地下部鲜质量分别提高了10.73%和17.83%,赤霞珠地上部和地下部鲜质量分别增加了19.33%和19.96%,并提高了盆栽葡萄的根冠比,以巨峰更为明显,较PO 膜提高了8.78%,但未达到显著水平。Coverlys TF150®覆盖显著提高了巨峰新梢长度,较PO 膜提高了14.49%;显著增粗了赤霞珠新梢,增幅19.96%,巨峰新梢粗度也有一定程度的提高,但无显著差异。与PO 膜相比,Coverlys TF150®覆盖使盆栽植株枝条可溶性糖含量升高,巨峰达到显著水平,提高了25.00%;显著增加了盆栽植株枝条淀粉含量,巨峰和赤霞珠分别提高了25.00%和21.21%。
表1 Coverlys TF150®对葡萄生长发育及枝条贮藏营养的影响
Table 1 Effects of Coverlys TF150®on grape growth and nutrient storage in branches
注:不同小写字母代表差异显著(p<0.05)。
Note:Different small letters indicate significant difference at p<0.05.
品种Varieties巨峰Kyoho赤霞珠Cabernet Sauvignon处理Treatment Coverlys TF150®PO膜PO film Coverlys TF150®PO膜PO film地上部鲜质量Fresh shoot mass/g 65.71±1.16 a 58.66±3.27 b 59.40±1.87 a 47.92±1.28 b地下部鲜质量Fresh root mass/g 105.79±5.77 a 86.90±2.80 b 83.11±5.81 a 66.52±4.55 b根冠比Root shoot ratio 1.61±0.11 a 1.48±0.13 a 1.40±0.11 a 1.39±0.10 a新梢长度New shoot length/cm 84.00±2.43 a 68.47±3.15 b 74.20±5.20 a 71.80±0.36 a新梢粗度New shoot roughness/mm 4.82±0.26 a 4.57±0.14 a 4.69±0.13 a 3.74±0.34 b w(可溶性糖)Soluble sugar content/(mg·g-1)0.20±0.02 a 0.16±0.01 b 0.23±0.02 a 0.20±0.02 a w(淀粉)Starch content/(mg·g-1)0.40±0.02 a 0.32±0.03 b 0.40±0.01 a 0.33±0.03 b
叶绿素荧光是研究光合作用的探针,能辅助说明光合作用的强弱。PSⅡ是最初发生光抑制的部位[13-14],Fv/Fm反映了光系统Ⅱ(PSⅡ)受损伤的程度,当植物受到胁迫时Fv/Fm 会降低[15]。10:00—14:00 Coverlys TF150®下巨峰和赤霞珠叶片Fv/Fm显著高于PO膜,有研究表明,田间强光天气下葡萄叶片09:00即发生光抑制[5],Coverlys TF150®较PO 膜透射率降低,由此表明,Coverlys TF150®减轻了10:00—14:00植株受胁迫的程度。强光胁迫不是直接破坏PSⅡ,而是通过产生ROS 来降低植物PS Ⅱ的修复能力[16-17],通过抑制植物的最大光修复速率来降低PSⅡ整体活性,从而导致净光合速率下降。强光胁迫会使PSⅡ受到损伤,光反应受到抑制,光化学效率降低,电子传递受到阻碍[18]。与PO 膜相比,10:00—14:00 Coverlys TF150®提高了巨峰和赤霞珠叶片实际光化学效率(ΦPSⅡ)、光化学淬灭系数(qP)和电子传递速率(ETR)。由此可见,10:00—14:00 Coverlys TF150®提高了葡萄叶片PSⅡ活性,增加了叶绿素吸收的光能用于光化学反应的比例,有利于电子传递,进一步提高净光合速率。
光合作用是葡萄生长发育以及生物量积累的基础[11],主要由叶片发育状况和环境因素共同影响。叶片发育状况主要包括叶片质量、厚度、面积及叶绿素含量等。叶绿素是光合作用的基础[19],Coverlys TF150®下巨峰和赤霞珠叶片叶绿素含量显著高于PO 膜,这与Coverlys TF150®降低了透光率有关,说明Coverlys TF150®能够有效缓解午间强光胁迫,减轻强光胁迫对叶绿素含量的影响[20]。叶片结构组成与光合性能密切相关[21],Coverlys TF150®下巨峰和赤霞珠叶片叶面积较大,能截获更多的光能,有利于增强葡萄的光合作用。环境条件光照、温度、湿度会影响光合作用,其中光照最为显著。光是光合作用的能源,光照不足会使同化力短缺,导致光合作用的关键酶没有充分活化而限制光合作用,而光照度过高会造成植物吸收的光能超过其自身能够利用的能力,导致过剩激发能的累积[15],产生ROS,造成严重的光抑制。10:00—14:00外界温度较高并伴随着强光,强光对高温胁迫具有加剧作用[22]。Coverlys TF150®下巨峰和赤霞珠叶片净光合速率日变化面积分别比PO膜高13.80%和12.21%,可能由于Coverlys TF150®降低了10:00—14:00 光照度,缓解了强光胁迫,延长了光合有效时间,并提高了蓝光所占比例[23],有利于增强光合作用。
强光胁迫不仅会降低葡萄叶片净光合速率,而且减少光合作用的同化物,限制葡萄生长发育[24]。研究表明强光胁迫会抑制植物生长发育,降低植物生物量,尤其是对叶片生物量的影响最大[25]。Coverlys TF150®较PO 膜缓解了10:00—14:00 产生的强光胁迫,从而提高了巨峰和赤霞珠新梢的长度和粗度,显著提高了生物量,且增加了巨峰和赤霞珠枝条可溶性糖和淀粉含量,为树体越冬和来年的生长发育奠定了基础[26]。
Coverlys TF150®较PO 膜缓解了“光合午休”现象,减轻了10:00—14:00叶片PSⅡ光抑制的程度,显著提高了巨峰和赤霞珠叶片质量、面积以及叶绿素含量,增强了光合能力,增加了葡萄植株生物量和枝条贮藏营养的积累量。
[1]MENG N,REN Z Y,YANG X F,PAN Q H.Effects of simple rain-shelter cultivation on fatty acid and amino acid accumulation in‘Chardonnay’grape berries[J].Journal of the Science of Food and Agriculture,2018,98(3):1222-1231.
[2]MENG J F,NING P F,XU T F,ZHANG Z W.Effect of rainshelter cultivation of Vitis vinifera cv.Cabernet Gernischet on the phenolic profile of berry skins and the incidence of grape diseases[J].Molecules,2012,18(1):381-397.
[3]王紫寒,张伟,关利平,邵小杰.避雨栽培对泽香葡萄微环境和果实品质的影响[J].中外葡萄与葡萄酒,2015(3):14-17.WANG Zihan,ZHANG Wei,GUAN Liping,SHAO Xiaojie.Effects of rain-shelter cultivation on the microclimate and fruit quality of Zexiang (V.vinifera L.)[J].Sino-Overseas Grapevine&Wine,2015(3):14-17.
[4]王玲.PMMA 避雨微环境对草莓生长及其果实品质的影响研究[D].重庆:西南大学,2018.WANG Ling.Effects of PMMA micro-environmental greenhouse on the growth and fruit quality of strawberry[D].Chongqing:Southwest University,2018.
[5]孙永江.葡萄光系统Ⅱ及光合碳同化对高温强光的响应机理[D].泰安:山东农业大学,2016.SUN Yongjiang.The response mechanisms of photosystem Ⅱand photosynthetic carbon assimilation in grapevine leaves to high temperature and strong light[D].Taian:Shandong Agricultural University,2016
[6]陈冲.避雨栽培葡萄光合特性研究[D].长沙:湖南农业大学,2011.CHEN Chong.Studies on photosynthetic characteristics of grape in rain- shelter- cultivation[D].Changsha:Hunan Agricultural University,2011.
[7]李晋.避雨栽培在北方葡萄生产中的应用初探[D].秦皇岛:河北科技师范学院,2014.LI Jin.Application of rain shelter cultivation in northern grape production[D].Qinhuangdao:Hebei Normal University of Science&Technology,2014.
[8]戴美松.江南地区大棚促成-避雨栽培对葡萄光合特性影响的研究[D].南京:南京农业大学,2004.DAI Meisong.Study of photosynthetic characteristics of grapevine cultivated in F-C&R-S-C plastic greenhouse at South area of Yangtse river[D].Nanjing:Nanjing Agricultural University,2004.
[9]孙恩虹,张凯,韩旭,武强,叶坤,张建平.避雨栽培对葡萄生长微环境与果实可溶性固形物含量的影响[J].农学学报,2021,11(12):80-86.SUN Enhong,ZHANG Kai,HAN Xu,WU Qiang,YE Kun,ZHANG Jianping.Effect of rain-shelter cultivation on grapevine canopy microclimate and soluble solid content of grape[J].Journal of Agriculture,2021,11(12):80-86.
[10]赵世杰,苍晶.植物生理学实验指导[M].北京:中国农业出版社,2016:55-57.ZHAO Shijie,CANG Jing.Experimental guidance of plant physiology[M].Beijing:China Agriculture Press,2015:55-57.
[11]管雪强,王俊芳,王恒振,杨东岳,尚明华,刘洪勇,孙玉霞,王世平.摘叶对‘赤霞珠’葡萄光合能力的影响[J].中外葡萄与葡萄酒,2020(6):11-15.GUAN Xueqiang,WANG Junfang,WANG Hengzhen,YANG Dongyue,SHANG Minghua,LIU Hongyong,SUN Yuxia,WANG Shiping.Effects of leaf removal on photosynthetic capacity of Vitis vinifera cv.Cabernet Sauvignon[J].Sino-Overseas Grapevine&Wine,2020(6):11-15.
[12]付晴晴,孙永江,翟衡,杜远鹏.盐胁迫对葡萄种间杂交砧木F1 株系光合特性的影响[J].植物生理学报,2017,53(9):1640-1648.FU Qingqing,SUN Yongjiang,ZHAI Heng,DU Yuanpeng.Effect of salt stress on photosynthetic characteristics in grape rootstock of interspecific F1 hybrids[J].Plant Physiology Communications,2017,53(9):1640-1648.
[13]GAO S,NIU J F,CHEN W Z,WANG G C,XIE X J,PAN G H,GU W H,ZHU D L.The physiological links of the increased photosystem Ⅱactivity in moderately desiccated Porphyra haitanensis (Bangiales,Rhodophyta) to the cyclic electron flow during desiccation and re- hydration[J].Photosynthesis Research,2013,116(1):45-54.
[14]TU W F,LI Y,LIU W,WU L S,XIE X Y,ZHANG Y M,WILHELM C,YANG C H.Spring ephemerals adapt to extremely high light conditions via an unusual stabilization of photosystemⅡ[J].Frontiers in Plant Science,2016,6:1189.
[15]刘敏,房玉林.高温胁迫对葡萄幼树生理指标和超显微结构的影响[J].中国农业科学,2020,53(7):1444-1458.LIU Min,FANG Yulin.Effects of heat stress on physiological indexes and ultrastructure of grapevines[J].Scientia Agricultura Sinica,2020,53(7):1444-1458.
[16]SCHRAMEYER V.KRÄMER W,HILL R,JEANS J,LARKUM A W D,BISCHOF K,CAMPBELL D A,RALPPH P J.Under high light stress two Indo-Pacific coral species display differential photodamage and photorepair dynamics[J].Marine Biology,2016,163(8):168.
[17]GARSTKA M,VENEMA J H,RUMAK I,GIECZEWSKA K,ROSIAK M,KOZIOL-LIPINSKA J,KIERDASZUK B,VREDENBERG W J,MOSTOWSKA A.Contrasting effect of darkchilling on chloroplast structure and arrangement of chlorophyllprotein complexes in pea and tomato:Plants with a different susceptibility to non-freezing temperature[J].Planta,2007,226(5):1165-1181.
[18]秦玲,康文怀,齐艳玲,蔡爱军.盐胁迫对酿酒葡萄叶片细胞结构及光合特性的影响[J].中国农业科学,2012,45(20):4233-4241.QIN Ling,KANG Wenhuai,QI Yanling,CAI Aijun.Effects of salt stress on mesophyll cell structures and photosynthetic characteristics in leaves of wine grape (Vitis spp.)[J].Scientia Agricultura Sinica,2012,45(20):4233-4241.
[19]张永超,梁国玲,秦燕,刘文辉,贾志锋,刘勇,马祥.老芒麦衰老过程中叶片叶绿素和光合作用变化特征及对养分的响应[J].草业学报,2022,31(1):229-237.ZHANG Yongchao,LIANG Guoling,QIN Yan,LIU Wenhui,JIA Zhifeng,LIU Yong,MA Xiang.Characteristics of chlorophyll and photosynthesis in leaves and their response to nutrients during aging of Elymus sibiricus[J].Acta Prataculturae Sinica,2022,31(1):229-237.
[20]康伟健.强光照光时间影响玉米光合作用适应的机制[D].泰安:山东农业大学,2017.KANG Weijian.Adaptive mechanisms of photosynthesis to irradiation time under strong light in maize seedlings[D].Taian:Shandong Agricultural University,2017.
[21]李秀,李刘龙,李慕嵘,尹立俊,王小燕.不同小麦品种旗叶叶绿素含量、叶片显微结构及产量对花后遮光的响应机制[J].作物学报,2023,49(1):286-294.LI Xiu,LI Liulong,LI Murong,YIN Lijun,WANG Xiaoyan.Effects of shading postanthesis on flag leaf chlorophyll content,leaf micro-structure and yield of different wheat varieties[J].Acta Agronomica Sinica,2023,49(1):286-294.
[22]张谨薇,孟清波,马万成,杨凯丽,王兴龍,穆亚宁,李青云.LED 光源对辣椒幼苗生长和光合特性的影响[J].中国瓜菜,2021,34(6):60-63.ZHANG Jinwei,MENG Qingbo,MA Wancheng,YANG Kaili,WANG Xinglong,MU Yaning,LI Qingyun.Effects of LED light on the growth and photosynthetic characteristics of pepper seedling[J].China Cucurbits and Vegetables,2021,34(6):60-63.
[23]CHEN L S,LI P M,CHENG L L.Effects of high temperature coupled with high light on the balance between photooxidation and photoprotection in the sun-exposed peel of apple[J].Planta,2008,228(5):745-756.
[24]罗海波,马苓,段伟,李绍华,王利军.高温胁迫对“赤霞珠”葡萄光合作用的影响[J].中国农业科学,2010,43(13):2744-2750.LUO Haibo,MA Ling,DUAN Wei,LI Shaohua,WANG Lijun.Influence of heat stress on photosynthesis in Vitis vinifera L.cv.Cabernet Sauvignon[J].Scientia Agricultura Sinica,2010,43(13):2744-2750.
[25]柴胜丰,韦霄,史艳财,王满莲,邹蓉,唐辉.强光胁迫对濒危植物金花茶幼苗生长和叶绿素荧光参数的影响[J].植物研究,2012,32(2):159-164.CHAI Shengfeng,WEI Xiao,SHI Yancai,WANG Manlian,ZOU Rong,TANG Hui.Effect of strong light stress on the growth,biomass and chlorophyll fluorescence parameters in seedlings of endangered plant Camellia nitidissima[J].Bulletin of Botanical Research,2012,32(2):159-164.
[26]史祥宾,王海波,王孝娣,王宝亮,郑晓翠,王志强,冀晓昊,刘凤之.自然生草对巨峰葡萄产量和品质及枝条贮藏营养的影响[J].中外葡萄与葡萄酒,2016(4):14-17.SHI Xiangbin,WANG Haibo,WANG Xiaodi,WANG Baoliang,ZHENG Xiaocui,WANG Zhiqiang,JI Xiaohao,LIU Fengzhi.Effects of natural grass on yield,fruit quality and cane storage nutrient of Kyoho grapevine[J].Sino-Overseas Grapevine &Wine,2016(4):14-17.
Effects of Coverlys TF150®on the growth and photosynthetic characteristics of grape plants