大别山山核桃坚果种仁主要营养及功能性成分含量变异分析

代英超1,夏国华2*,朱先富3,张深梅4,黄坚钦2

1浙江清凉峰国家级自然保护区管理局,浙江 临安 311311;2浙江省森林芳香植物康养功能研究重点实验室·浙江农林大学林业与生物技术学院,杭州 311300;3金寨县富东生态农业开发有限公司,安徽 金寨 237341;4松阳县自然资源和规划局,浙江 松阳 323400)

摘 要:【目的】探讨不同地理种源大别山山核桃种仁主要营养物质及功能性成分多样性以及变异规律,为大别山山核桃种质资源利用提供参考。【方法】对大别山山核桃主产区19个天然种群198个单株的11个坚果种仁主要营养物质及功能性成分进行测定,进行单因素方差、多重比较、相关性、主成分等分析。【结果】大别山山核桃天然种群坚果种仁主要营养及功能性成分含量多样性丰富,单因素方差分析、多重比较表明大别山山核桃11个性状在种群间存在丰富变异(p<0.01);表型分化系数表明种群间平均分化系数为68.68%,种群间变异是主要变异来源。大别山山核桃营养及功能性成分含量变异幅度为2.30%~25.18%,平均变异系数为13.46%,其中脂肪含量的变异幅度最小,β-维生素E含量的变异幅度最大,JGXZ种群的多样性最为丰富;相关性分析表明种仁性状各成分之间达到显著相关的共10对,脂肪含量与其他组分的相关性最显著,淀粉、δ-维生素E含量与其他性状均不存在相关性;11个性状的主成分分析中前4个主成分的累计贡献率为78.742%,各营养及功能在成分中均占有重要位置。【结论】大别山山核桃天然种源种仁主要营养物质及功能性成分遗传变异丰富,选择育种潜力大,脂肪含量最为稳定;遗传多样性保护及种质资源收集应尽可能增加种群数量。

关键词:大别山山核桃;营养物质;功能性成分;表型变异;多样性;天然种群

大别山山核桃(Carya dabieshanensis M.C.Liu&Z.J.Li)隶属胡桃科(Juglandaceae)山核桃属(Carya Nutt.),特产于中国安徽、湖北和河南三省交界的大别山山区(115°~116°E,29°~31°N),主要分布于安徽金寨县、霍山县、湖北罗田和河南商城等地。现有大别山山核桃投产林均为天然起源、人工抚育更新而成,大别山山核桃呈岛屿状分布,群体分化明显,遗传变异丰富,而且果大、壳薄,出油率高,不饱和脂肪酸、矿质元素、可溶性糖含量亦比山核桃(C. cathayensis Sarg.)丰富,是中国特有的优良干果和木本油料树种。前人对其研究主要集中在分类学[1-2]、生态学[3-5]、遗传多样性[6-9]、坚果表型和油脂组分[10-12]等方面,但大别山山核桃天然林分布区域、不同地理种源坚果种仁的营养及功能性成分遗传变异的系统分析尚未见报道。

种质资源的营养组分含量变化可以反映基因型对环境变化的适应性,是了解生物遗传变异的重要线索[13-14]。在林木中,由于对特殊生境的适应,天然种群拥有更加丰富的表型和基因变异,而种仁营养及功能性成分含量的变异对于干果和木本油料树种来说尤为重要。笔者在本研究中以大别山山核桃主产区19个天然种群198个植株的坚果种仁为研究对象,测定分析种仁主要营养及功能性成分含量,采用单因素方差分析、多重比较、变异分析、相关性分析和主成分分析等方法研究不同种群坚果营养及功能性成分变异规律,旨在揭示大别山山核桃的遗传变异规律,为大别山山核桃营养品质评价、功能性成分选择育种、核心种质资源库的建立和资源保护提供参考。

1 材料和方法

1.1 材料来源和样品采集

在大别山山核桃种质资源调查的基础上,从大别山山核桃在中国的中心分布区金寨县、罗田县、霍山县收集了19个天然种群的果实样品,每个种群选择树龄40 a(年)以上、生长健康的植株进行采样,植株间相距50 m以上,原则上每种群的样本数应在10株以上,但部分种群由于群体数量少,样本数不足10 株,共采集19 个天然种群的198 个植株,采用全球卫星定位系统(GPS)测定单株的经纬度及海拔。每个植株采集树冠中上部外围果实,每株采集1.5~3.0 kg,称量后放置于编织网中,及时带回,并对样品进行去壳,浮选,保留饱满籽粒,敲取种仁,称重后保存至4 ℃低温冰箱冷藏,备用。

1.2 山核桃仁主要营养及功能性成分测定方法

试验按照国家标准方法进行测定:脂肪含量、蛋白质含量根据GB 5009.6—2016 测定;淀粉和可溶性糖含量根据蒽酮比色法测定;角鲨烯含量根据LS/T 6120—2017 测定;维生素E 含量根据GB 5009.82—2016 测定;单宁含量根据NY/T 1600—2008测定;总酚含量根据Folin-Ciocaltea法测定[15-18]

1.3 数据处理

采用Minitab7 软件进行单因素方差分析,对11个营养和功能性成分进行单因素方差分析和多重比较,其线性模型:Yiki+eik。式中,Yik为第i个种群的第k个观测值,αi为第i个种群的效应值,eik为第i个种群内第k个体的随机误差。在SPSS 23.0软件中进行相关性分析、主成分分析,并计算各营养成分性状的变异系数(CV)、表型分化系数(Vst)。变异系数CV=σ/x¯σ分别代表性状的标准差和均值;表型分化系数Vst=σ2t/s/(σ2t/s+σ2s)。σ2t/sσ2s分别为种群间和种群内的方差值[19]。基于样本功能成分的测量均值,采用Pearson相关系数和双尾检验进行相关性分析。利用不同居群不同数据的平均值进行主成分分析。

2 结果与分析

2.1 营养物质及功能性成分的变异规律

大别山山核桃11个种仁主要营养及功能性成分在种群内和种群间的方差分析(表1)表明,11个性状在种群间存在极显著差异(p<0.01),说明大别山山核桃营养及功能性成分在种群间存在较大的组分变异。多重比较(表2)表明,脂肪含量以JWB 种群最高,其次为JYLW、JWZD、JGY 和JYL 种群,均与JWB种群差异不显著,而JWB种群与其他种群的差异均达到显著水平,JBQ种群脂肪含量最低。蛋白质含量以JSZC种群最高,达到(10.48±0.98)g·100 g-1,除与JTY 种群差异不显著外,与其他种群均差异显著,其次为JTY 种群,达到(10.04±0.99)g·100 g-1,JWZC 种群最低。角鲨烯、单宁、总酚和α-维生素E 含量均以JBQ 种群最高,分别为(471.52±21.20)mg · kg- 1、(64.01±53.38)g·kg- 1、(96.91±8.77)g·kg-1和(1.51±0.37)mg·kg-1,其中角鲨烯较高的种群有JSS、JYLW,含量均超过400 mg·kg-1,JWZC 种群最低(177.85±17.22 mg·kg-1),仅为JBQ 的37.72%;单宁含量较高的种群有JGSW、JSS、JSZL,含量均超过50 g·kg- 1;JGY 种群总酚含量最低(46.81±4.22 g·kg-1),仅为JBQ 的48.30%;α-维生素E含量较高的种群还有JSZL、LJX、HTJB;总酚含量除与JGSW 种群差异不显著外,与其他种群均差异显著;JBQ 种群的单宁、角烯鲨含量与其他18 个种群均差异显著。β-维生素E 含量最高的是JSZL 种群,达到0.49 mg·100 g-1,除与HTJB差异不显著外,与其他18个种群的差异都较为显著。γ-维生素E含量最高的是JCSZ 种群,达到32.35 mg·100 g-1,除与JWZD、JBQ、JGXL种群差异不显著外,与其他15个种群均差异显著。

表1 大别山山核桃各种群间营养成分及功能性成分的方差分析
Table 1 Variance analysis of phenotypic traits of main and functional ingredients composition among C.dabieshanensis populations

注:**表示差异极显著(p<0.001)。
Note:**indicates extremely significant difference(p<0.001).

指标Index脂肪含量Fat content蛋白质含量Protein content淀粉含量Starch content可溶性糖含量Sugar content总酚含量Total phenol content单宁含量Tannin content角鲨烯含量Squalene content α-维生素E含量α-vitamin E content β-维生素E含量β-vitamin E content γ-维生素E含量γ-vitamin E content δ-维生素E含量δ-vitamin E content均方Mean square种群间Among populations 57.891 8.339 2.900 7.215 1 644.48 540.07 60.560 1.400 0.260 75.193 0.576种群内Within populations 2.461 0.530 0.282 0.670 66.802 29.930 1.270 0.210 0.060 8.324 0.008 F值F value种群间Among populations 23.520**15.739**10.267**10.772**24.620**22.573**49.360**67.372**40.074**9.033**72.091**

表2 不同种群的大别山山核桃种仁主要营养及功能性成分多重比较分析
Table 2 Contents of main nutrients and functional components Multiple comparison analysis of main nutrients and functional components among C. dabieshanensis population

E)素生w(δ-维δ-vitamin E content/(mg·100 g-1)0.00±0.00 e E)素生w(γ-维γ-vitamin E content/30.84±3.12 ab E)(mg·100 g-1)素生w(β-维β-vitamin E content/0.00±0.00 g E)(mg·100 g-1)素生w(α-维α-vitamin E content/1.51±0.37 a(mg·100 g-1)酚)w(总Total phenol content/(g·kg-1)96.91±8.77 a宁)w(单Tannin content/64.01±53.38 a(g·kg-1)烯)鲨w(角Squalene content/(mg·kg-1)471.52±21.20 a糖)性溶w(可Sugar content/(g·100 g-1)6.95±0.70 d粉)w(淀Starch content/(g·100 g-1)3.05±0.77 cd质)白w(蛋Protein content/(g·100 g-1)8.84±0.42 bc肪)w(脂Fat content/(g·100 g-1)60.64±1.34 e种Population群JBQ 0.29±0.14 c 32.35±2.94 a 0.03±0.05 fg 0.43±0.02 f 74.35±7.05 c 44.46±71.60 de 286.95±37.53 d 8.33±1.03 a 4.38±1.23 a 8.86±0.77 bc 61.82±1.46 de JCSZ 0.29±0.06 c 28.03±1.23 c 0.28±0.06 cd 1.01±0.13 c 74.64±5.69 c 43.63±10.40 de 185.48±17.67 g 5.92±0.92 k 2.18±0.32 ef 9.56±0.62 b 63.29±1.45 cd JGSL 0.41±0.07 b 23.37±0.79 f 0.32±0.09 c 0.64±0.06 e 91.09±11.80 a 54.61±32.46 b 198.96±16.34 fg 7.24±0.91 c 2.44±0.24 e 8.61±0.52 cd 62.84±1.33 d JGSW 0.74±0.14 a 30.61±2.34 ab 0.38±0.12 b 0.90±0.13 cd 66.68±8.29 d 36.39±50.00 f 324.72±37.49 c 6.57±0.84 e 3.30±0.54 c 8.79±0.82 c 63.50±2.19 cd JGX 0.76±0.14 a 27.07±2.70 cd 0.32±0.12 c 0.37±0.08 f 81.42±12.09 b 49.64±47.76 c 312.45±21.33 cd 6.39±0.59 f 3.03±0.43 cd 8.40±0.70 cd 64.55±2.06 c JGXN 0.28±0.22 c 24.24±13.56 e 0.01±0.02 g 0.60±0.34 e 62.93±43.07 de 46.25±57.50 cd 228.42±35.72 ef 5.58±0.83 m 2.07±0.48 ef 8.92±0.78 bc 64.78±2.16 c JGXZ 0.19±0.04 d 29.19±2.49 bc 0.01±0.03 g 0.76±0.14 d 46.81±4.22 f 38.15±54.61 ef 207.69±29.40 fg 6.36±0.84 g 2.51±0.41 de 7.60±0.68 de 67.95±1.05 ab JGY 0.00±0.00 e 0.79±0.07 a 29.35±1.07 bc 25.76±1.45 d 0.00±0.00 g 0.16±0.07 e 1.02±0.09 c 0.64±0.08 e 78.08±12.04 bc 59.01±51.89 e 58.19±44.13 ab 37.99±54.10 ef 429.50±35.58 b 233.47±25.11 ef 7.56±0.75 b 4.96±0.76 q 3.02±0.52 cd 2.90±0.77 d 8.31±0.37 cd 10.48±0.98 a 62.10±1.67 de 65.50±1.52 bc JSSJSZC 0.26±0.03 cd 23.91±1.46 f 0.49±0.08 a 1.28±0.06 b 64.91±48.50 de 51.96±2.02 bc 437.33±72.2 ab 6.18±1.34 h 3.79±1.02 b 8.20±0.79 d 64.76±1.41 c JSZL 0.21±0.03 d 25.69±1.61 d 0.09±0.04 f 0.44±0.06 f 62.44±10.02 de 40.05±36.22 e 289.52±45.71 d 5.20±0.87 m 2.77±0.45 de 10.04±0.99 ab 65.73±1.44 bc JTY 0.36±0.06 bc 29.85±1.67 b 0.17±0.05 e 1.43±0.21 ab 52.09±35.37 f 38.74±32.93 ef 229.31±20.65 ef 5.11±0.68 p 2.79±0.28 de 7.34±0.68 e 69.53±0.80 a JWB 0.29±0.11 c 26.45±3.82 cd 0.18±0.05 de 1.32±0.31 b 61.56±39.64 de 44.71±58.63 d 177.85±17.22 g 5.72±0.56 l 4.00±0.91 ab 7.05±0.61 e 67.23±1.63 b JWZC 0.33±0.05 c 32.03±2.81 a 0.03±0.04 g 0.85±0.14 d 53.17±7.00 ef 35.35±24.85 f 217.59±24.95 f 6.22±0.81 g 2.59±0.28 de 7.79±0.48 de 68.02±1.20 ab JWZD 0.27±0.07 cd 27.42±2.01 cd 0.09±0.06 fg 0.62±0.15 e 63.53±10.05 de 41.28±39.62 de 278.64±53.59 de 5.16±1.33 o 1.67±0.40 f 8.79±0.94 cd 67.44±2.24 ab JYLY 0.27±0.03 cd 25.62±0.86 d 0.05±0.08 fg 0.45±0.07 f 64.45±60.11 de 43.11±41.61 de 408.35±46.89 b 5.97±0.38 j 2.67±0.25 de 8.10±0.41 d 68.95±0.82 ab JYLW 0.28±0.05 c 27.63±2.09 c 0.43±0.12 ab 1.25±0.17 b 71.40±7.03 cd 44.51±44.49 d 290.58±40.34 d 5.98±0.53 i 2.88±0.45 d 8.00±0.82 d 65.78±1.41 bc HTJB 0.26±0.04 cd 27.48±1.89 cd 0.24±0.04 d 1.37±0.09 ab 56.32±75.86 ef 44.85±48.14 d 249.01±34.68 e 5.16±0.71 n 3.18±0.47 cd 7.85±0.45 de 66.77±1.18 b LJX

2.2 种群间营养及功能性成分的表型分化

表型分化系数是种群间表型分化大小的反映,其值越大,表明种群间的遗传分化和遗传变异越大[20]。11个营养及功能性成分含量在种群间和种群内的方差分量及分化系数(表3)表明,11个性状在群体间的表型分化系数介于47.19%~87.96%之间,其中δ-维生素E含量的分化系数最大,为87.80%,其次是α-维生素E、角烯鲨和总酚含量,均高于平均分化系数,说明δ-维生素E、α-维生素E、角烯鲨和总酚含量在种群间的分化较大;淀粉含量的分化系数最小,仅为47.19%,可溶性糖含量次之,说明淀粉、可溶性糖含量在种群间分化较小,相对稳定。11个性状种群间表型分化系数平均为68.88%,表明大别山山核桃种仁营养及功能性成分变异主要存在于种群间,贡献率达到68.88%,而种群内的贡献率为31.12%,种群间的多样性高于种群内多样性。

表3 大别山山核桃各种群间营养及功能性成分的表型分化系数分析
Table 3 The variance components of phenotypic traits of main and functional ingredients composition and the phenotype differential coefficients among different populations of C.dabieshanensis

指标Index脂肪含量Fat content蛋白质含量Protein content淀粉含量Starch content可溶性糖含量Sugar content总酚含量Total phenol content单宁含量Tannin content角鲨烯含量Squalene content α-维生素E含量α-vitamin E content β-维生素E含量β-vitamin E content γ-维生素E含量γ-vitamin E content δ-维生素E含量δ-vitamin E content均值Mean方差分量Variancecomponent种群间Among population 5.346 0.753 0.252 0.631 152.170 49.778 5 722.458 0.132 0.024 6.613 0.055-种群内Within population 2.461 0.530 0.282 0.670 66.802 23.925 1 226.967 0.018 0.006 4.290 0.008-方差分量百分比Variancecomponentpercentage/%种群间Among population 68.47 58.70 47.19 48.52 69.49 67.54 82.34 87.80 78.86 60.65 87.96 68.87种群内Within populations 31.53 41.30 52.81 51.48 30.51 32.46 17.66 12.20 21.14 39.35 12.04 31.13分化系数Differentiation coefficient/%68.67 58.70 47.19 48.52 69.49 67.54 82.34 87.80 78.86 60.65 87.96 68.88

2.3 主要营养及功能性成分的变异特征

大别山山核桃19个种群间种仁主要营养及功能性成分变异系数(表4)介于2.30%~25.18%之间,平均变异系数为13.46%,其中β-维生素E含量变异系数最大,达到25.18%,其次为淀粉、α-维生素E、β-维生素E、δ-维生素E含量,均大于平均变异系数;脂肪含量变异系数最小,仅为2.3%,其次为蛋白质含量,变异系数为7.91%,说明脂肪、蛋白质含量相对稳定,尤其是脂肪含量。在种群水平上,19个种群不同性状的平均变异系数介于7.09%~27.34%之间,其中JGXZ 种群的多样性最为丰富,JYL种群次之,而JSS、JBQ和JYLW种群的营养组分和功能性成分多样性程度相对较低。

表4 不同种群的大别山山核桃种仁主要营养及功能性成分的变异系数
Table 4 Coefficient of variation of main nutrients and functional ingredients composition among C.dabieshanensis populations%

种群Population JBQ JCSZ JGSL JGSW JGX JGXN JGXZ JGY JSS JSZC JSZL JTY JWB JWZC JWZD JYLY JYLW HTJB LJX均值Mean脂肪含量Fat content 2.21 2.36 2.28 2.12 3.45 3.20 3.34 1.55 2.68 2.31 2.18 2.19 1.15 2.43 1.76 3.32 1.19 2.15 1.77 2.30蛋白质含量Protein content 4.79 8.63 6.45 6.01 9.31 8.28 8.72 8.94 4.47 9.39 9.63 9.86 9.30 8.64 6.18 10.66 5.10 10.23 5.69 7.91淀粉含量Starch content 25.15 28.04 14.55 9.65 16.45 14.25 23.11 16.25 17.12 26.49 26.98 16.07 10.12 22.68 10.81 24.08 9.35 15.72 14.73 17.98可溶性糖含量Sugar contentr 10.09 12.42 15.59 12.50 12.77 9.18 14.83 13.15 9.93 15.27 21.65 16.81 13.23 9.72 12.99 25.72 6.34 8.79 13.83 13.41总酚含量Total phenol content 9.05 9.49 7.62 12.95 12.43 14.85 6.84 9.01 15.42 8.79 7.47 16.05 6.79 6.44 13.17 15.82 9.33 9.83 13.47 10.78单宁含量Tannin content 8.34 16.11 23.83 5.94 13.74 9.62 12.43 14.31 7.59 14.24 3.90 9.05 8.50 13.11 7.03 9.60 9.65 10.00 10.73 10.93角鲨烯含量Squalene content 4.50 13.08 9.52 8.21 11.55 6.83 15.64 14.16 8.28 10.75 16.52 15.79 9.01 9.68 11.47 19.23 11.48 13.88 13.93 11.76 α-维生素E含量α-vitamin E content 24.89 5.57 13.13 10.18 14.16 22.15 56.46 17.97 8.83 12.06 4.64 13.28 14.47 23.33 15.97 24.03 16.48 13.65 6.26 16.71 β-维生素E含量β-vitamin E content-16.6 20.47 27.84 32.96 36.49 22.36 28.25-41.58 15.71 42.87 28.58 25.61 14.84 64.30 15.92 28.47 15.48 25.18 γ-维生素E含量γ-vitamin E content 10.13 9.08 4.38 3.37 7.65 9.96 55.95 8.53 3.65 5.62 6.10 6.28 5.60 14.43 8.78 7.31 3.34 7.55 6.89 9.72 δ-维生素E含量δ-vitamin E content-49.75 19.6 16.13 19.19 18.56 81.09 23.83-9.41 11.48 15.12 16.60 39.63 16.00 25.46 11.13 18.03 15.95 21.42均值Mean 9.01 15.56 12.49 10.45 13.97 13.94 27.34 14.18 7.09 14.17 11.48 14.85 11.21 15.97 10.82 20.87 9.03 12.57 10.79 13.46

2.4 主要营养及功能性成分的相关分析

主要营养及功能性成分含量的相关分析(表5)表明,11个性状间的相关性相对较弱,达到极显著相关的性状仅7对(p<0.01),达到显著相关的性状为3对(p<0.05)。脂肪含量与其他主要营养及功能性成分的相关性极显著,与总酚含量(-0.815)、可溶性糖含量(-0.682)、单宁含量(-0.670)、蛋白质含量(-0.456)均存在极显著负相关。蛋白质含量与α-维生素E含量(-0.459)存在显著负相关;可溶性糖含量与总酚含量存在极显著正相关,与单宁含量存在显著正相关;总酚含量与单宁含量存在极显著正相关;单宁含量与角鲨烯含量存在极显著正相关;β-维生素E含量与γ-维生素E含量(-0.501)存在显著负相关。淀粉、δ-维生素E含量与其他性状均不存在相关性,这说明淀粉、δ-维生素E含量是相对独立的性状。

表5 不同种群的大别山山核桃种仁主要营养及功能性成分的相关性分析
Table 5 Analysis of correlation between phenotypic traits of main and functional ingredients composition
in C.dabieshanensis populations

注:**表示在p<0.01 水平上极显著相关,*表示在p<0.05 水平上显著相关。
Note:**indicates extremely significant correlation at p<0.01,*indicates significant correlation at p<0.05.

指标Index脂肪含量Fat content蛋白质含量Protein content淀粉含量Starch content可溶性糖含量Sugar content总酚含量Totalphenolcontent单宁含量Tannin content角鲨烯含量Squalene content α-维生素E含量α-vitamin E content β-维生素E含量β-vitamin E content γ-维生素E含量γ-vitamin E content δ-维生素E含量δ-vitamin E content脂肪含量Fat content 1-0.456**-0.264-0.682**-0.815**-0.670**-0.372 0.000-0.077-0.151 0.081蛋白质含量Protein content 1-0.221-0.083 0.264-0.018-0.051-0.459*-0.044-0.139 0.282淀粉含量Starch content 1 0.423 0.088 0.157 0.254 0.214 0.211 0.076 0.032可溶性糖含量Sugar contentr 1 0.595**0.500*0.344-0.146-0.114 0.327-0.218总酚含量Total phenol content 1 0.812**0.431-0.011 0.136-0.088-0.110单宁含量Tannin content 1 0.584**0.283 0.004-0.146-0.444角鲨烯含量Squalene content 1 0.124-0.020-0.004-0.314 α-维生素E含量α-vitamin E content 1 0.236 0.123-0.376 β-维生素E含量β-vitamin E content 1-0.501*0.446 γ-维生素E含量γ-vitamin E content 1-0.146 δ-维生素E含量δ-vitamin E content 1

2.5 主要营养及功能性成分的主成分分析

根据大别山山核桃19 个种群11 个主要营养及功能性成分的平均值,进行主成分分析(表6),得到4个特征值大于1的主成分,累积贡献率为78.742%,基本涵盖11个主要营养及功能性成分的主要信息。第一主成分的贡献率32.771%,主要表征脂肪(-0.867)、可溶性糖(0.770)、总酚(0.881)、单宁(0.881)、角烯鲨(0.654)含量;第二主成分的贡献率为18.483%,主要包含蛋白质(0.767)、α-维生素E(-0.622)、δ-维生素E(0.675)含量等;第三主成分的贡献率为15.673%,包含α-维生素E(0.537)、β-维生素E(0.843)、γ-维生素E(-0.588)含量,表征维生素E的含量;第四主成分贡献率为11.815%,表征淀粉(0.676)含量。

表6 各主成分的特征值及方差贡献率
Table 6 Analysis on matrix eigenvalue,percentage of variance,cumulative contribution rate

主成分Principal components 123456789 10 11初始特征值Initial eigenvalue特征值Eigenvalues 3.605 2.033 1.724 1.300 0.775 0.674 0.470 0.266 0.090 0.053 0.011方差贡献率Variance-contribution rates/%32.771 18.483 15.673 11.815 7.042 6.126 4.277 2.418 0.816 0.478 0.102累积方差贡献率Cumulative-contribution rates/%32.771 51.254 66.927 78.742 85.784 91.910 96.187 98.605 99.420 99.898 100.000主成分特征值Principal component eigenvalue特征值Eigenvalues 3.605 2.033 1.724 1.300方差贡献率Variance-contribution rates/%32.771 18.483 15.673 11.815累积方差贡献率Cumulative-contribution rates/%32.771 51.254 66.927 78.742

表7 大别山山核桃的主成分分析
Table 7 Analysis on the load capacity of principal component

指标Index脂肪含量Fat content蛋白质含量Protein content淀粉含量Starch content可溶性糖含量Sugar content总酚含量Totalphenolcontent单宁含量Tannin content角鲨烯含量Squalene content α-维生素E含量α-vitamin E content β-维生素E含量β-vitamin E content γ-维生素E含量γ-vitamin E content δ-维生素E含量δ-vitamin E content特征值Eigenvaluess贡献率contribution rates累积贡献率cumulative contribution rates主成分Principal component 1-0.867 0.121 0.358 0.770 0.865 0.881 0.654 0.145-0.009 0.100-0.368 3.605 32.771 32.771 2-0.318 0.767-0.185-0.061 0.314-0.075-0.110-0.622 0.373-0.456 0.675 2.033 18.483 51.254 3 0.112-0.349 0.356-0.227 0.039 0.167 0.089 0.537 0.843-0.588 0.173 1.724 15.673 66.927 4-0.132-0.170 0.676 0.429-0.130-0.334-0.182-0.114 0.161 0.450 0.458 1.300 11.815 78.742

3 讨 论

3.1 大别山山核桃种仁主要营养及功能性成分的变异来源

种群间的变异反映了地理、生殖隔离上的差异,是种内多样性的重要体现,其意义大于种群内的变异[21-22]。方差分析和多重比较表明,大别山山核桃的主要营养及功能性成分在种群间存在极显著差异,这与张深梅等[9]、夏国华等[10]对大别山山核桃表型性状和脂肪酸组分的研究结果一致。种群间营养及功能性成分含量的平均分化系数表明,种群间的变异程度大于种群内的变异,种群间变异是大别山山核桃主要营养及功能性成分变异的主要来源,这可能与大别山山核桃集中分布在海拔600~800 m的大别山山区,种群地理分布呈岛屿状间断分布,生境片段化现象明显,地理隔离阻碍了种群间的花粉传播和基因交流,导致不同种群间的遗传分化加剧有关。王正加等[8]研究发现大别山山核桃的基因流为0.730 6,Wright[23]认为群体间的基因流值若小于1,有限的基因流是促使群体发生遗传分化的主要原因[24]。张深梅等[9]研究发现沙河乡祝畈村长源林场(JSZC)与沙河乡祝畈村卢孝武(JSZL)种群相隔仅11.1 km,但与果实和坚果相关的10个性状中,除了蒲壳厚度和坚果果壳厚度外,其余8个性状均存在显著差异,本研究表明大别山山核桃主要营养及功能性成分含量在两种群间差异显著,营养组分含量分化明显,这可能是因为大别山山核桃虽是雌雄同株植物,但花粉的有效传播距离远低于一般风媒花植物;而大别山山核桃种子颗粒大,主要靠啮齿动物传播,其有效传播距离小于种群间的地理距离,使得种群间基因交流困难,从而加大了种群间的遗传分化。同时,近缘种山核桃存在无融合生殖现象[25-26],大别山山核桃也可能存在无融合生殖现象,有利于维持种群地理隔离产生的分化。

3.2 大别山山核桃种仁主要营养及功能性成分组分的变异特征

变异系数是衡量各观测值离散程度的统计量,变异系数越大,观测值离散程度越大,多样性越丰富[27]。大别山山核桃11个主要营养及功能性成分的平均变异系数为13.46%(>10%),大别山山核桃主要营养及功能性成分遗传变异丰富。脂肪、淀粉、蛋白质、γ-维生素E 含量等4 个组分的变异系数小于10%,而脂肪的变异系数最小,仅为4.18%,这与杜洋文等[11]、王江铭等[12]的研究结果一致。坚果类种仁脂肪含量均相对稳定,山核桃[28]CV=4.88%)、薄壳山核桃[29]CV=7.22%)、核桃[30]Juglansregia)(CV=4.06%)等的变异系数均小于10%。在种群水平上,不同种群内的变异系数介于7.09%~27.34%之间,JYLY、JGXZ种群变异相对更丰富。这种多层次的变异为优质种质资源筛选和生物多样性保护提供了物质基础[31]

3.3 大别山山核桃种仁主要营养及功能性成分的相关性

植物性状间的相关性是提高育种效率的理论基础。对大别山山核桃11 个主要营养及功能性成分含量的相关性分析显示,相关系数达到显著水平以上的有10对,显示了主要营养及功能性成分间存在一定的相关性,这种相关性为选择少量指标判别种源优劣提供了科学依据,同时也说明大别山山核桃主要营养及功能性成分在适应特定的生境条件下有特定的关联性。脂肪含量与总酚、蛋白质、淀粉、可溶性糖、单宁含量之间存在极显著的负相关,说明在坚果成分中,脂肪含量越高,总酚、蛋白质、淀粉、可溶性糖、单宁含量越低。蛋白质含量与α-维生素E含量之间存在显著负相关,β-维生素E含量与γ-维生素E 含量之间存在显著负相关,可溶性糖含量与总酚含量存在极显著正相关,与单宁含量存在显著正相关,总酚含量与单宁含量存在极显著正相关,单宁含量与角鲨烯含量存在极显著正相关,这说明可溶性糖、总酚、单宁、角烯鲨含量之间存在共同促进的关系。虽然脂肪含量在种群间和种群内的变异系数均较小,但相关性分析表明脂肪含量是表征大别山山核桃种仁品质的重要营养组分,与其他营养组分的相关性极显著,这与解红恩等[32]对山核桃成熟过程中粗脂肪含量与粗蛋白和可溶性糖含量均存在极显著负相关的结果一致。因此,在大别山山核桃优良种源的选择中,可以选用脂肪、总酚、蛋白质、可溶性糖、单宁含量作为主要指标;若该规律在单株间也存在,可作为今后优良单株选择的主要指标。

主成分分析是通过几个变量来揭示多个变量内部结构的统计方法,一方面可以消除评价指标之间的相关影响,另一方面用少数几个综合指标代替原指标进行分析且保留了绝大部分信息量,其确定指标权重的方法客观合理[33]。本研究中4个主成分的累计贡献率为78.22%,前4个主成分涵盖11个主要营养及功能性成分中78.22%的信息,主成分因子足以代表原始因子所代表的大部分信息,且各营养及功能性成分在整体中均占有重要位置,这与多重比较显示大别山山核桃营养及功能性成分间差异显著相一致,说明大别山山核桃种仁各性状的多方向性和复杂性,在品种选育中可根据育种目标调整各主成分特征值的大小[34],选择适宜品种,大别山山核桃在选择育种方面具有较大的潜力。

4 结 论

大别山山核桃天然种源坚果主要营养及功能性成分含量在种群和物种水平上多样性丰富,主要营养物质及功能性成分选择育种潜力大。11 个主要营养和功能性成分中脂肪含量最为稳定,且与其他组分相关性极显著;其他组分离散程度较高,群体分化明显。大别山山核桃种群间的变异是种仁主要营养和功能性成分变异的主要来源,要重视不同地理种群间目标性状的分布规律,遗传多样性保护及种质资源收集应尽可能增加种群数量。

参考文献:

[1] 郭传友,黄坚钦,王正加,方炎明.安徽天堂寨大别山山核桃群落的初步研究[J].广西植物,2004,24(2):97-101.GUO Chuanyou,HUANG Jianqin,WANG Zhengjia,FANG Yanming. Preliminary study on the Carya dabieshanensis community of Tiantangzhai Mountains in Anhui province[J]. Guihaia,2004,24(2):97-101.

[2] 刘茂春,黎章矩.中国山核桃属一新种[J].浙江林学院学报,1984,1(1):41-43.LIU Maochun,LI Zhangju.Anew species of Carya from China[J].Journal of Zhejiang Forestry College,1984,1(1):41-43.

[3] 于一苏,张旭东,孟令杰.大别山山核桃天然林生长特性调查分析[J].中国野生植物,1990,9(3):26-30.YU Yisu,ZHANG Xudong,MENG Lingjie. Investigation and analysis on the growth characteristics of Carya cathayensis natural forest in Dabei Mountain[J]. Chinese Wild Plant Resources,1990,9(3):26-30.

[4] 张旭东,黄成林,叶志琪.大别山山核桃林植物组成与区系特征研究[J].应用生态学报,1995,6(S1):150-152.ZHANG Xudong,HUANG Chenglin,YE Zhiqi. Floristic composition and its characteristics of Carya cathayensis forest on Dabieshan Mountain[J]. Chinese Journal of Applied Ecology,1995,6(S1):150-152.

[5] 郭传友,黄坚钦,王正加,方炎明.大别山山核桃天然群体种实性状表型多样性[J].经济林研究,2007,25(3):15-18.GUO Chuanyou,HUANG Jianqin,WANG Zhengjia,FANG Yanming. Phenotypic diversity of fruit characters in Carya dabieshanensis[J].Nonwood Forest Research,2007,25(3):15-18.

[6] 黄坚钦,章滨森,王正加,郭传友.中国山核桃属植物种间亲缘关系RAPD 分析[J].西南林学院学报,2003,23(4):1-3.HUANG Jianqin,ZHANG Binsen,WANG Zhengjia,GUO Chuanyou. RAPD Analysis on genetic relationship among species in genus Carya[J]. Journal of Southwest Forestry College,2003,23(4):1-3.

[7] HUANG Y J,XIAO L H,ZHANG Z R,ZHANG R,WANG Z J,HUANG C Y,HUANG R,LUAN Y M,FAN T Q,WANG J H,SHEN C,ZHANG S M,WANG X W,RANDALL J,ZHENG B S,WU J S,ZHANG Q X,XIA G H,XU C M,CHEN M,ZHANG L S,JIANG W K,GAO L Z,CHEN Z D,LESLIE C A,GRAUKE L J,HUANG J Q.The genomes of pecan and Chinese hickory provide insights into Carya evolution and nut nutrition[J].GigaScience,2019,8(5):036.

[8] 王正加,黄有军,郭传友,黄坚钦,王华芳.大别山山核桃种群遗传多样性研究[J].植物生态学报,2006,30(3):534-538.WANG Zhengjia,HUANG Youjun,GUO Chuanyou,HUANG Jianqin,WANG Huafang.RAPD analysis on genetic diversity of Carya dabieshanensis populations[J]. Journal of Plant Ecology,2006,30(3):534-538.

[9] 张深梅,奚建伟,洪俊彦,夏国华,李岩,黄兴召,朱先富,黄坚钦.大别山山核桃果实与叶片性状的表型多样性研究[J].林业科学研究,2020,33(1):152-161.ZHANG Shenmei,XI Jianwei,HONG Junyan,XIA Guohua,LI Yan,HUANG Xingzhao,ZHU Xianfu,HUANG Jianqin. A study on phenotypic diversity of fruit and leaf traits in Carya dabieshanensis[J].Forest Research,2020,33(1):152-161.

[10] 夏国华,朱先富,俞春莲,代英超,王正加,黄坚钦,刘力.不同地理种源大别山山核桃坚果表型性状和脂肪酸组分分析[J].果树学报,2014,31(3):370-377.XIA Guohua,ZHU Xianfu,YU Chunlian,DAI Yingchao,WANG Zhengjia,HUANG Jianqin,LIU Li.Variability of phenotypic characters and fatty acid composition of endemic hickory nuts (Carya dabieshanensis) from different geographical provenances[J].Journal of Fruit Science,2014,31(3):370-377.

[11] 杜洋文,邓先珍,周席华,姚小华,晏绍良.不同大别山山核桃优树含油率与脂肪酸组分含量分析[J].西南林业大学学报(自然科学),2019,39(3):124-131.DU Yangwen,DENG Xianzhen,ZHOU Xihua,YAO Xiaohua,YAN Shaoliang.Oil content and fatty acid composition of superior Carya dabieshanensis trees in Dabieshan[J].Journal of Southwest Forestry University(Natural Sciences),2019,39(3):124-131.

[12] 王江铭,饶盈,郑永明,朱先富,黄坚钦,夏国华.山核桃与大别山山核桃种仁营养成分比较分析[J].果树学报,2020,37(11):1694-1700.WANG Jiangming,RAO Ying,ZHENG Yongming,ZHU Xianfu,HUANG Jianqin,XIA Guohua. Comparative analysis of kernel nutrients between Carya cathayensis and Carya dabieshanensis[J].Journal of Fruit Science,2020,37(11):1694-1700.

[13] 杨旭,杨志玲,程小燕,谭美.不同种源三叶崖爬藤表型多样性分析[J].植物资源与环境学报,2019,28(3):78-83.YANG Xu,YANG Zhiling,CHENG Xiaoyan,TAN Mei.Analysis on phenotypic diversity of Tetrastigma hemsleyanum from different provenances[J]. Journal of Plant Resources and Environment,2019,28(3):78-83.

[14] 吕伟,韩俊梅,文飞,任果香,王若鹏,刘文萍.不同来源芝麻种质资源的表型多样性分析[J]. 植物遗传资源学报,2020,21(1):234-242.LÜ Wei,HAN Junmei,WEN Fei,REN Guoxiang,WANG Ruopeng,LIU Wenping. Phenotypic diversity analysis of sesame germplasm resources[J].Journal of Plant Genetic Resources,2020,21(1):234-242.

[15] 中华人民共和国国家卫生和计划生育委员会.食品安全国家标准:食品中氨基酸的测定:GB 5009.124—2016[S].北京:中国标准出版社,2017.National Health and Family Planning Commission of the People’s Republic of China.National food safety standard:Determination of amino acid in foods:GB 5009.124—2016[S].Beijing:China Standards Press,2017.

[16] 中华人民共和国国家卫生和计划生育委员会.食品安全国家标准:食品中多元素的测定:GB 5009.268—2016[S].北京:中国标准出版社,2017.National Health and Family Planning Commission of the People’s Republic of China.National food safety standard:Determination of Multi-element in foods:GB 5009.268—2016[S]. Beijing:China Standards Press,2017.

[17] 中华人民共和国国家卫生和计划生育委员会.食品安全国家标准:食品中脂肪的测定:GB 5009.6—2016[S].北京:中国标准出版社,2017.National Health and Family Planning Commission of the People’s Republic of China.National food safety standard:Determination of fat in foods:GB 5009.6—2016[S]. Beijing:China Standards Press,2017.

[18] 中华人民共和国国家卫生和计划生育委员会.食品安全国家标准:食品中脂肪酸的测定:GB 5009.168—2016[S].北京:中国标准出版社,2017.National Health and Family Planning Commission of the People’s Republic of China.National food safety standard:Determination of fatty acids in foods:GB 5009.168—2016[S]. Beijing:China Standards Press,2017.

[19] 葛颂,王明庥,陈岳武. 用同工酶研究马尾松群体的遗传结构[J].林业科学,1988,24(4):399-409.GE Song,WANG Mingxiu,CHEN Yuewu.An analysis of population genetic structure of masson pine by isozyme technique[J].Scientia Silvae Sinicae,1988,24(4):399-409.

[20] 武艳虹,樊泽璐,李佳,郭晋宏,郭雅坤,王祎玲.茶条槭自然种群种子和果实表型多样性研究[J].广西植物,2018,38(6):795-803.WU Yanhong,FAN Zelu,LI Jia,GUO Jinhong,GUO Yakun,WANG Yiling. Phenotypic diversity of seeds and fruits in natural populations of Acer ginnala in China[J]. Guihaia,2018,38(6):795-803.

[21] 李斌,顾万春,卢宝明.白皮松天然群体种实性状表型多样性研究[J].生物多样性,2002,10(2):181-188.LI Bin,GU Wanchun,LU Baoming.A study on phenotypic diversity of seeds and cones characteristics in Pinus bungeana[J].Biodiversity Science,2002,10(2):181-188.

[22] 李因刚,柳新红,马俊伟,石从广,朱光权.浙江楠种群表型变异[J].植物生态学报,2014,38(12):1315-1324.LI Yingang,LIU Xinhong,MA Junwei,SHI Congguang,ZHU Guangquan. Phenotypic variations in populations of Phoebe chekiangensis[J]. Chinese Journal of Plant Ecology,2014,38(12):1315-1324.

[23] WRIGHT S.The genetical structure of populations[J].Annals of Eugentics,1951,15(4):323-354.

[24] 曲若竹,侯林,吕红丽,李海燕.群体遗传结构中的基因流[J].遗传,2004,26(3):377-382.QU Ruozhu,HOU Lin,LÜ Hongli,LI Haiyan.The gene flow of population genetic structure[J].Hereditas,2004,26(3):377-382.

[25] ZENG Y R,HOU W,SONG S,FENG S S,SHEN L,XIA G H,WU R L. A statistical design for testing apomictic diversification through linkage analysis[J]. Briefings in Bioinformatics.2014,15(2):306-318.

[26] ZHANG B,WANG Z J,JIN S H,XIA G H,HUANG Y J,HUANG J Q. A pattern of unique embryogenesis occurring via apomixis in Carya cathayensis[J]. Biologia Plantarum,2012,56(4):620-627.

[27] 徐豪,刘明国,董胜君,吴月亮,张皓凯.东北杏种质资源多样性及其地理变化[J].植物生态学报,2019,43(7):585-600.XU Hao,LIU Mingguo,DONG Shengjun,WU Yueliang,ZHANG Haokai.Diversity and geographical variations of germplasm resources of Armeniaca mandshurica[J]. Chinese Journal of Plant Ecology,2019,43(7):585-600.

[28] 夏玉洁,姚小华,任华东,王开良,常君,傅松玲,滕建华,邵慰忠.22 个山核桃无性系果实营养成分的比较分析[J].中国粮油学报,2018,33(4):49-55.XIA Yujie,YAO Xiaohua,REN Huadong,WANG Kailiang,CHANG Jun,FU Songling,TENG Jianhua,SHAO Weizhong.Comparative analysis of the nutritional components of 22 Carya cathayensis clones[J]. Journal of the Chinese Cereals and Oils Association,2018,33(4):49-55.

[29] 常君,任华东,姚小华,杨水平,张潇丹,张成才,王开良.41 个薄壳山核桃品种果实营养成分与脂肪酸组成的比较分析[J].西南大学学报(自然科学版),2021,43(2):20-30.CHANG Jun,REN Huadong,YAO Xiaohua,YANG Shuiping,ZHANG Xiaodan,ZHANG Chengcai,WANG Kailiang.A comparative analysis of nutritional components and fatty acid composition of 41 pecan varieties[J]. Journal of Southwest University(Natural Science Edition),2021,43(2):20-30.

[30] 王滑,潘刚,马庆国,裴东.西藏不同居群核桃核仁中脂肪酸成分的含量变化[J].经济林研究,2015,33(3):126-129.WANG Hua,PAN Gang,MA Qingguo,PEI Dong. Varieties of fatty acid contents in kernels from different walnut populations of Tibet[J].Nonwood Forest Research,2015,33(3):126-129.

[31] 李伟,林富荣,郑勇奇,李斌.皂荚南方天然群体种实表型多样性[J].植物生态学报,2013,37(1):61-69.LI Wei,LIN Furong,ZHENG Yongqi,LI Bin.Phenotypic diversity of pods and seeds in natural populations of Gleditsia sinensis in southern China[J]. Chinese Journal of Plant Ecology,2013,37(1):61-69.

[32] 解红恩,黄有军,薛霞铭,许长寿,刘力.山核桃果实生长发育规律[J].浙江林学院学报,2008,25(4):527-531.XIE Hong’en,HUANG Youjun,XUE Xiaming,XU Changshou,LIU Li. Growth and development of the Carya cathayensis nut[J].Journal of Zhejiang Forestry College,2008,25(4):527-531.

[33] 苏彦苹,赵爽,王明,王宝庆,巴合提牙尔·克热木,齐国辉,李保国.8 个新疆早实核桃优株坚果品质变异分析及综合评价[J].河北农业大学学报,2016,39(3):31-36.SU Yanping,ZHAO Shuang,WANG Ming,WANG Baoqing,Bahetiyaer·Keremu,QI Guohui,LI Baoguo. Variation analysis and comprehensive evaluation on nut quality of precocious walnut strains in Xinjiang[J]. Journal of Agricultural University of Hebei,2016,39(3):31-36.

[34] 范伟强,尹婧,王超楠,黄志银,李梅,张红,刘晓晖,张胜雪,张斌. 33 个大白菜品种表型遗传多样性评价[J]. 中国瓜菜,2021,34(10):32-38.FAN Weiqiang,YIN Jing,WANG Chaonan,HUANG Zhiyin,LI Mei,ZHANG Hong,LIU Xiaohui,ZHANG Shengxue,ZHANG Bin. Phenotypic genetic diversity evaluation of 33 Chinese cabbage varieties[J].China Cucurbits and Vegetables,2021,34(10):32-38.

Variation analysis of main nutrients and functional components in different populations of Carya dabieshanensis

DAI Yingchao1,XIA Guohua2*,ZHU Xianfu3,ZHANG Shenmei4,HUANG Jianqin2
(1Administrative Bureau of Zhejiang Qingliangfeng National Nature Reserve,Linan 311311,Zhejiang,China;2Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions/School of Forestry and Bio-technology, Zhejiang A & F University,Hangzhou 311300,Zhejiang,China;3Jinzhai Fudong Ecologyl Agricultural Development Co.,Ltd.,Jinzhai 237341,Anhui,China;4Songyang Natural Resources and Planning Bureau,Songyang 323400,Zhejiang,China)

Abstract:【Objective】The study aimed to investigate the diversity and variation pattern of the contents of main nutrients and functional components in nut kernels of Carya dabieshanensis in the nature distribution of Dabie mountain area, in order to provide reference for the nutritional quality evaluation, the new variety breeding.【Methods】Based on the records of the resource investigation of C.dabieshanensis, 198 germplasm resources from 19 natural populations were collected in Jinzhai County, Luotian County and Huoshan County, respectively. 1.5-3.0 kg healthy mature fruits were randomly selected from the periphery of each sample for nutrient determination, and the distance between the treess was over 50 meters.11 main nutrients and functional components were determined.The protein content was determined by spectrophotometry.The content of fat was determined with the Soxhlet extractor method.The dannin was quantified with spectrophotometry method. The starch and soluble sugars were determined by anthranone colorimetry. The qualene was determined with gas chromatography and the vitamin E with high performance liquid chromatography.One-way ANOVA and multiple comparisons were performed using Minitab7 software,and coefficient of variation(CV),phenotypic differentiation coefficient(Vst)of each nutrient component trait were calculated.The correlation analysis and principal component analysis were performed using SPSS23.0 software.【Results】The natural population of C.dabieshanensis had abundant diversity in the contents of main nutrients and functional components in nut kernels. The one-way ANOVA showed that there were significant differences (p<0.01) in nutrients and functional components between the differnt populations. The multi-comparison of 11 characters in the 19 populations of C. dabieshanensis showed that there were significant differences in nutrients and functional components between the different populations.The highest fat content was in the JWB population, reaching (67.95±1.05) g·100 g-1, followed by the JYLW, JWZD, JGY and JYL populations, although they had no significant difference with the JWB population, while the difference between the JWB population and other populations reached significant level.The protein content of the JSZC opulation was highest, reaching (10.48±0.98) g·100 g-1, except that it had no significant difference with the JTY population,it had significant difference with other populations.The content of squalene,tannin,total phenol and α-vitamin E were all highest the JBQ population, which were (471.52±21.20) mg·kg-1,(64.01±53.38)g·kg-1,(96.91±8.77)g·kg-1 and(1.51±0.37)mg·kg-1,respectively.The content of β-vitamin E was highest in the JSZL population,reaching 0.49 mg·100 g-1,it was significantly different from the other 18 populations except for the HTJB.The content of γ-vitamin E was highest in the JYCS population, reaching 32.35 mg·100 g-1, except for no significant difference with the JWZD, JBQ and JGXL populations,it had significant difference with the other 15 populations.The mean phenotypic differentiation coefficient was 68.68%among the populations,indicating that the variance among the populations was the main source of the phenotypic variation. The average variation coefficient of the 11 traits ranged from 2.3%to 25.18%,with an average of 13.46%.The variation coefficient of the fat was smallest, only 2.3%, followed by the protein, 7.91%; and the variation coefficient of the β-vitamin E was highest,reaching 25.18%,followed by the starch,α-vitamin E,β-vitamin E,δ-vitamin E.At population level, the average variation coefficients were 7.09%-27.34%, and the JGXZ population had the most abundant diversity. The correlation analysis revealed that the 10 pairs had significant correlation in main nutrients and functional components, the fat had the greatest correlation with the other components, and had extremely significant negative correlation with the total phenol (-0.815), soluble sugar(-0.682), tannin (-0.670) and protein (-0.456), respectively. The significantly negative correlation between the total phenol,soluble sugar,tannin,protein was detected,whereas,there were no significantly correlations about the starch and δ-vitamin E.The principal component analysis showed that the cumulative contribution rate of the first four principal components in this study was 78.22%, it basically could cover the main information of the 11 main nutrients and functional ingredients.The first principal component represented the fat, soluble sugar, total phenol, tannin and squalene; the second principal component represented the protein,α-vitamin E, δ-vitamin E.The third principal component represented the content of β-vitamin E, and the fourth principal component represented the content of starch.Each main nutrients and functional components occupied an important position in the ingredients.【Conclusion】The content of main nutritional and functional components in the natural population of C. dabieshanensis had rich diversity both within the populations and between the populations,the main nutrients and functional components had great potential for selective breeding. The fat was the most stable content, and it had the greatest correlation with the other components. The main source of variation about the main nutrients and the functional components existed in between the populations.

Key words: Carya dabieshanensis; Main nutrients; Functional components; Phenotypic variation; Diversity;Nature populations

中图分类号:S664.1

文献标志码:A

文章编号:1009-9980(2023)05-0959-10

DOI:10.13925/j.cnki.gsxb.20220512

收稿日期2022-10-18

接受日期:2022-12-09

基金项目浙江省农业新品种选育重大科技专项(2021C02066-12);安徽省科技厅长三角科技创新联合攻关专项(202004G01020005);浙江省科技厅科技援助项目(2020C26007)

作者简介代英超,女,工程师,研究方向:山核桃种质资源开发利用。Tel:15869101455,E-mail:767191206@qq.com

*通信作者 Author for correspondence.Tel:13516725263,E-mail:zjfc_ghxia@126.com