红宝石苹果果实有机酸组分及苹果酸代谢酶活性分析

杨光凯1,薛诗怡1,李嘉祯1,李汇斌1,高 燕1,2,张小军1,2*,郝燕燕1,2*

1山西农业大学园艺学院,山西 太谷 030801;2果树种质创制和利用山西省重点实验室,太原 030031)

摘 要:【目的】测定红宝石苹果果实有机酸组成及其含量,分析苹果酸含量变化与其代谢相关酶的关系,探究红宝石果实低酸特性的生理基础。【方法】以不同生长发育期红宝石和富士2001苹果果实为试验材料,采用蒽酮比色法测定果实总糖含量,高效液相色谱法测定有机酸组分及含量,测定分析果实苹果酸相关代谢酶活性及与苹果酸含量的相关性。【结果】红宝石苹果果实中有机酸成分主要为苹果酸、草酸、柠檬酸、酒石酸和琥珀酸5种,与富士2001苹果果实中有机酸组分一致,其皆以苹果酸为主。不同发育期2个苹果品种果实中总糖含量相近,但总酸含量差异显著。对果实有机酸不同组分定量分析,发现果实总酸含量差异主要是由苹果酸含量差异所致。进一步分析苹果酸含量与其相关代谢酶活性之间的相关性,发现在发育前期红宝石苹果果实中苹果酸含量大量积累,主要是该时期NAD-苹果酸脱氢酶(NAD-MDH)活性增强促进了苹果酸的大量合成,以及NADP-苹果酸酶(NADP-ME)活性降低减少了苹果酸的分解,富士2001苹果与之类似。【结论】红宝石苹果是苹果酸为主的低酸型苹果品种,NADP-ME和NAD-MDH在其果实苹果酸积累中起主要协同调控作用。

关键词:红宝石苹果;有机酸;高效液相色谱;苹果酸代谢酶

苹果是世界四大水果之一,在我国已有两千多年栽培历史。我国苹果种植面积和产量均居世界首位,但在单产和果品质量等方面,与日本、美国、新西兰等国家还存在一定的差距。提高果品品质已成为我国苹果产业高质量发展亟需解决的问题之一[1]。果实糖酸组分及含量是果实风味的重要组成部分,近年来有关果实糖酸形成及代谢调控相关研究已受到广泛关注[2-3]。糖酸比是园艺植物果实风味评价的重要指标,而果实有机酸组分与含量影响着糖酸比[3-4]

果实有机酸根据碳结构可分为脂肪族羧酸(苹果酸、酒石酸等)、糖衍生有机酸(葡萄糖醛酸等)和酚酸(硝酸、水杨酸等)[5]。大多数园艺植物果实中含有一种或两种主要有机酸,按照成熟果实中有机酸的组分及含量可分为:柠檬酸型(柑橘类水果)、苹果酸型(苹果、梨等)和酒石酸型(葡萄等)[6]。在苹果果实中,苹果酸为主要有机酸,约占总有机酸含量的90%,且野生苹果较栽培苹果酸性更强,果实苹果酸含量变化更大[5,7]。已有研究表明果实苹果酸主要由草酰乙酸(OAA)经苹果酸脱氢酶(NAD-MDH)作用在细胞质中合成,并通过NAD-MDH 和NADP 苹果酸酶(NADP-ME)降解为OAA 和丙酮酸[8]。此外,苹果酸还可分别通过三羧酸(TCA)循环和乙醛酸循环在线粒体和乙醛氧体中生成,其合成代谢途径主要受到苹果酸脱氢酶(NAD-MDH)的调控[9-11]。除NAD-MDH 外,NADP-ME 和PEPC(磷酸烯醇式丙酮酸羧化酶)在苹果酸代谢中也扮演着重要角色,是苹果酸代谢的关键酶[12]。目前,已在苹果[13-14]、梨[15-16]、桃[17-18]、杏[19-20]、李[21]等多种果实中证实NAD-MDH、NADP-ME 和PEPC 3 种酶协同作用影响果实苹果酸的积累。红宝石苹果是山西省农业科学院果树研究所于20世纪80年代选育的苹果品种,低酸高糖是其一大特色。课题组前期调查发现,红宝石苹果果实在整个发育期几乎感觉不到酸味,而公认的低酸品种富士2001 苹果则酸味较明显。为探究红宝石苹果果实超低酸特性的生理机制,笔者在本研究中以红宝石苹果和富士2001 苹果果实为试验材料,分析2个品种果实中有机酸组分、不同发育阶段含量,苹果酸代谢酶活性的差异及动态变化规律,探究红宝石苹果果实低酸的生理基础,为进一步研究红宝石苹果果实有机酸代谢的分子机制奠定基础。

1 材料和方法

1.1 材料

试验材料为红宝石苹果和富士2001苹果,成熟期皆为10月下旬,树龄8年,乔化栽培,砧木为平邑甜茶,株行距4 m×5 m。分别选取2个品种长势一致且良好的3株树进行样品采集。红宝石苹果和富士2001苹果均于2020年5月20日开始采集样品,共取样7 次,分别为:花后40 d、花后80 d、花后110 d、花后140 d、花后155 d、花后170 d以及花后200 d。每次取样在每一植株树冠外围不同方向各选取3个大小较一致,且整体状况良好的果实。样品前处理:果实去皮去核切成小块并混合样品后加液氮速冻,保存于超低温冰箱(-80 ℃),用于总糖、有机酸含量测定及苹果酸代谢相关酶活性分析。

1.2 方法

1.2.1 果实总糖含量测定 果实总糖含量采用蒽酮比色法测定。

1.2.2 果实有机酸含量测定 果实有机酸提取及含量测定参考郭燕等[22]的方法。准确称取1.00 g果肉,加入适量液氮研磨成粉末,加入适量超纯水使提取液达到5 mL,室温水浴超声提取30 min,12 000 r·min-1离心15 min后将上清液转移到10 mL的容量瓶中,残渣再加入超纯水5 mL,再次离心15 min,合并上清液,用超纯水定容,提取液过0.45 μm微孔滤膜,利用U3000型高效液相色谱仪测定有机酸含量。果实总酸含量由各有机酸含量相加计算得出。

色谱条件:色谱柱为Syncronis C18 柱(5 μm,4.6 mm×250 mm);流动相为0.01 mol·L-1 KH2PO4,pH 为2.5(磷酸调节);流速0.5 mL·min- 1;柱温40 ℃;进样量10 μL;检测器为VWD紫外检测器,检测波长215 nm。各有机酸标准品均为色谱纯。5种有机酸均能在20 min内被完全分离,且峰形正常,分离效果良好。各有机酸被分离的先后顺序依次为草酸、酒石酸、苹果酸、柠檬酸、琥珀酸。根据单个标准品的保留时间确定各有机酸组分,各有机酸标准曲线回归方程的R2为0.997 2~0.999 2,线性关系良好,回收率为99.5%~101.5%,精密度较高,符合分析方法的要求。果实中有机酸含量的测定作3 次重复,采用峰面积归一法计算含量,最终含量(w)用mg·g-1表示。

1.2.3 果实苹果酸相关代谢酶活性测定 参照王鹏飞等[23]和史娟等[24]的方法,所有操作在0~4 ℃环境下进行。将1.00 g 果肉加液氮迅速研磨成粉末,加6 mL 提取缓冲液[0.2 mol·L-1 Tris-HCl 缓冲液(pH=8.2)、0.6 mol·L-1蔗糖、10 mmol·L-1异抗坏血酸],4 ℃下12 000 r·min-1 离心20 min,取上清液定容至10 mL,取其中5 mL 用于测定NAD-MDH(NAD-苹果酸脱氢酶)和NADP-ME(NADP-苹果酸酶)活性,剩余酶液加入透析袋,4 ℃下在大量提取缓冲液中透析过夜,用于测定PEPC(磷酸烯醇式丙酮酸羧化酶)活性。采用UV-2450 型紫外可见分光光度计测定酶活性,以1 min OD 值变化0.01 作为1 个酶活性单位,酶活性(以蛋白质计)表示为(U·mg-1),3次重复。

1.2.4 数据处理 用Excel 2010和Origin 2019软件进行数据分析和绘图,用DPS数据处理系统进行差异显著性分析(Duncan 新复极差法),应用SPSS 软件进行相关性分析。

2 结果与分析

2.1 果实中可溶性糖含量的变化

由图1可知,在整个果实发育期,红宝石苹果果实可溶性糖含量的动态变化趋势与富士2001 苹果基本一致,整体呈增加趋势。在果实发育初期(花后40~80 d)和果实发育后期(花后170~200 d)二者可溶性糖含量差异不显著,在花后110 d可溶性糖含量差异逐渐增大,至花后155 d可溶性糖含量差异达到最大,此时呈显著差异。在果实整个生长发育期内红宝石苹果果实可溶性糖含量始终低于富士2001苹果果实。

图1 苹果果实发育过程中可溶性糖含量的变化
Fig.1 Changes of soluble sugar content during apple fruit development

多重比较采用Duncan 新复极差法,不同小写字母表示不同品种不同时期果实在p<0.05 水平上有显著性差异。下同。
Statistical multiple comparisons were done according to the Duncan multiple, different small letters indicate significant difference at 0. 05 level among the different cultivar in the different stages p0.05).The same below.

2.2 果实总酸含量的变化

由图2可知,随着果实生长发育,红宝石苹果果实总酸含量的变化趋势与富士2001苹果基本一致,整体呈降低趋势。在果实发育初期(花后40~80 d)先下降,后又缓慢升高。花后140 d,总酸含量达到最高。此后,随着果实的成熟,总酸含量开始下降至果实成熟时(花后200 d)降到最低,但在花后155 d 富士2001苹果果实总酸含量呈增加趋势,这与红宝石苹果果实趋势相反。在整个果实生长发育期内,红宝石苹果果实总酸含量始终低于富士2001 苹果果实,且差异显著。

图2 苹果果实发育过程中总酸含量的变化
Fig.2 Changes of total acid content during apple fruit development

2.3 果实有机酸含量的变化

2.3.1 苹果酸 由图3可知,苹果酸是红宝石苹果和富士2001 苹果果实最主要的有机酸,其含量在2 个品种果实整个生长发育过程中比例均较高,且含量变化趋势与总酸基本一致。2个品种果实中苹果酸含量的大量积累主要在果实发育前期,随着果实成熟,苹果酸含量逐渐降低。不同的是,红宝石苹果果实在花后140~170 d苹果酸含量缓慢降低,而富士2001苹果果实在同一时期却先降低后升高。果实发育初期,红宝石苹果果实苹果酸含量为3.15 mg·g-1,占总酸的89.03%,果实成熟时占总酸的91.80%,富士2001 苹果果实苹果酸含量是红宝石苹果果实的2.41~4.63倍。在整个发育过程中,红宝石苹果果实苹果酸含量始终显著低于富士2001苹果果实。

图3 苹果果实发育过程中苹果酸含量的变化
Fig.3 Changes of malic acid content during apple fruit development

2.3.2 柠檬酸 由图4 可知,在果实整个发育过程中,2个品种果实柠檬酸含量整体均呈降低趋势,且含量均较低。在果实发育初期,红宝石苹果果实柠檬酸含量先升高后降低,而富士2001苹果果实先降低后升高。在果实膨大期(花后110~140 d),二者果实柠檬酸含量及变化趋势相近,均呈下降趋势。在花后140~170 d,红宝石苹果果实柠檬酸含量先缓慢升高后迅速降低,而富士2001苹果果实柠檬酸含量呈下降趋势。花后170~200 d 二者果实柠檬酸含量缓慢升高。此时,红宝石苹果果实柠檬酸含量占总酸的2.35%,而富士2001 苹果果实柠檬酸含量占总酸的0.79%。

图4 苹果果实发育过程中柠檬酸含量的变化
Fig.4 Changes of citric acid content during apple fruit development

2.3.3 草酸 由图5 可知,红宝石苹果和富士2001苹果果实草酸含量在花后80~140 d 变化趋势较为相近,而花后140~200 d 变化趋势差异较大。红宝石苹果果实中草酸含量在果实发育初期变化不大,花后140~170 d 含量急剧升高,在花后170 d 达到最高0.024 mg·g-1,而后呈下降趋势,花后200 d 草酸含量为0.012 mg·g-1。而富士2001 苹果果实草酸含量从花后40~140 d 呈降低趋势,含量为0.008~0.000 9 mg·g-1。随后保持平稳,直至果实成熟。

图5 苹果果实发育过程中草酸含量的变化
Fig.5 Changes of oxalic acid content during apple fruit development

2.3.4 酒石酸 由图6可知,在整个果实发育时期,红宝石苹果和富士2001 苹果果实酒石酸含量变化趋势类似。在果实发育初期二者果实酒石酸含量均呈现先增加后减少的趋势,在花后140~155 d,二者酒石酸含量急剧升高并达到最高,分别为0.019 mg·g-1和0.015 mg·g-1,后又急剧下降。不同的是,红宝石苹果果实在花后170 d酒石酸含量下降趋势渐缓,而富士2001苹果果实在花后155 d整体呈现迅速下降趋势。直至果实成熟时,红宝石苹果果实酒石酸含量为0.011 mg·g-1,高于富士2001苹果果实酒石酸含量的0.001 3 mg·g-1

图6 苹果果实发育过程中酒石酸含量的变化
Fig.6 Changes of tartaric acid content during apple fruit development

2.3.5 琥珀酸 由图7 可知,在果实整个生长发育时期,红宝石苹果及富士2001 苹果果实中琥珀酸含量变化整体呈降低趋势。红宝石苹果果实琥珀酸含量在果实发育初期为0.288 mg·g-1,占总酸的8.36%,随着果实的生长发育,至果实成熟时含量为0.121 mg·g-1。2个品种果实中琥珀酸含量均在幼果期迅速下降,直至果实膨大期又缓慢上升。不同的是,在花后140~170 d 红宝石苹果果实琥珀酸含量先上升后下降,花后170 d 后琥珀酸含量又逐渐上升,而富士2001苹果果实柠檬酸含量变化趋势与红宝石苹果果实相反。

图7 苹果果实发育过程中琥珀酸含量的变化
Fig.7 Changes of succinic acid content during apple fruit development

2.4 苹果酸代谢相关酶活性的变化

2.4.1 NAD-苹果酸脱氢酶(NAD-MDH) 由图8可知,在果实整个生长发育期,红宝石苹果和富士2001 苹果果实中NAD-MDH 活性变化趋势较为相似。幼果期二者果实酶活性变化趋势基本一致,NAD-MDH活性均出现不同程度降低,花后155 d活性突然升高,至花后170 d活性达到最高,其中红宝石苹果果实为2 827.49 U·mg-1,富士2001 苹果为4 401.66 U·mg-1。在果实整个生长发育阶段,红宝石苹果果实NAD-MDH活性一直低于富士2001苹果。

图8 苹果果实发育过程中NAD-MDH 活性的变化
Fig.8 Changes of NAD-MDH activity during apple fruit development

2.4.2 NADP-苹果酸酶(NADP-ME) 由图9可知,红宝石苹果和富士2001 苹果果实中NADP-ME 活性变化差异较大,整体趋势大致相反。红宝石苹果果实中NADP-ME 活性在果实发育初期先降低,后呈现一直升高的状态,至果实成熟期(花后200 d)达到最高,为5.08 U·mg-1。而富士2001 苹果果实中NADP-ME 活性在果实发育初期(花后80 d)和花后155 d均呈先增高、后降低趋势,在花后140 d活性最低,为0.21 U·mg-1

图9 苹果果实发育过程中NADP-ME 活性的变化
Fig.9 Changes of NADP-ME activity during apple fruit development

2.4.3 磷酸烯醇式丙酮酸羧化酶(PEPC) 由图10可知,红宝石苹果和富士2001苹果果实中PEPC活性变化差异较大。红宝石苹果果实中PEPC活性变化趋势整体呈W形,在幼果期,PEPC活性迅速降低,在花后80 d又缓慢升高,花后110 d后又逐渐下降至最低,为19.09 U·mg-1,随着果实成熟,PEPC活性又逐渐升高,直至果实成熟。除花后145~170 d,其余时期红宝石苹果果实酶活性均高于富士2001。富士2001苹果在果实发育初期PEPC活性迅速降至最低,为23.54 U·mg-1,之后又缓慢升高,在果实成熟期趋于稳定。

图10 苹果果实发育过程中PEPC 活性的变化
Fig.10 Changes of PEPC activity during apple fruit development

2.4.4 果实中苹果酸含量与其代谢酶活性相关性分析 对红宝石苹果和富士2001苹果果实的苹果酸含量和其代谢酶活性进行相关性分析(表1),红宝石苹果和富士2001 苹果果实中NAD-MDH 活性与苹果酸含量的变化呈极显著正相关,相关系数分别为0.78、0.66;NADP-ME活性与苹果酸含量的变化呈极显著负相关,相关系数分别为-0.67、-0.81;而果实中PEPC活性与苹果酸含量的变化呈显著正相关,相关系数分别为0.76、0.69。

表1 苹果果实中苹果酸含量与其代谢酶活性的相关性
Table 1 Correlation between malic acids content and some enzymes activities in apple fruits

注:*表示在p<0.05 水平上显著相关,**表示在p<0.01 水平上极显著相关。
Note:* indicates significant correlation at p<0.05,** indicates extremely significant correlation at p<0.01.

品种Cultivar红宝石中苹果酸含量Malic acids content in Hongbaoshi富士2001中苹果酸含量Malic acids content in Fuji2001 NAD-苹果酸脱氢酶NAD-MDH 0.78**0.66**NADP-苹果酸酶NADP-ME-0.67**-0.81**磷酸烯醇式丙酮酸羧化酶PEPC 0.76*0.69*

3 讨 论

果实风味是衡量果实品质的重要指标,其受果实中有机酸组分及含量的影响[25]。果实中有机酸组分及含量受遗传特性、生态条件及栽培管理水平的影响[5,16-17]。刘清鹤等[15]的研究发现梨果实中有机酸主要由苹果酸、柠檬酸、酒石酸和奎宁酸组成,为苹果酸优势型。桃果实中有机酸主要由苹果酸、柠檬酸、奎宁酸和莽草酸组成,苹果酸含量最高,约占总酸含量的60.61%[26]。葡萄果实主要有机酸为酒石酸、苹果酸和柠檬酸[27]。高萌[28]的研究发现43 个栽培苹果品种果实中苹果酸含量为1.72~10.10 mg·g-1,而红宝石苹果成熟期果实总酸含量为2.48 mg·g-1,为低酸型品种。笔者在本研究中发现,红宝石苹果果实中有机酸主要为苹果酸、草酸、柠檬酸、酒石酸和琥珀酸,这与徐爱红等[29]在红富士苹果中研究一致。相较于富士2001苹果,红宝石苹果总糖含量与之相近,但有机酸含量在整个果实发育期均显著低于富士2001苹果,这也是其风味较浓郁的主要原因。

在果实生长发育过程中,总糖、有机酸是影响果实糖酸风味的重要因子[30-31]。本研究中红宝石苹果果实中总糖含量变化规律与富士2001 苹果基本一致,呈不断增加趋势,至成熟期达到最高。2个品种果实总酸含量存在较大差异,在整个果实发育期红宝石苹果果实苹果酸含量占总酸含量的89%,富士2001苹果则为97%;但富士2001苹果成熟果实总酸含量约是红宝石的2.54倍。由此可知二者总酸含量的差异主要是由苹果酸含量的差异所致。红宝石苹果果实中苹果酸含量在整个发育过程中呈现降低-升高-降低的趋势,且始终显著低于富士2001 苹果。此外,红宝石苹果果实中还有一定含量的柠檬酸、酒石酸、琥珀酸和草酸,其含量均高于对照品种富士2001苹果。其中柠檬酸、酒石酸和琥珀酸三者含量变化趋势与富士2001苹果类似,但红宝石苹果果实中草酸含量在果实发育后期先急剧升高,后急剧下降,富士2001苹果草酸含量变化则呈现缓慢下降的趋势,这种差异成因有待进一步研究。

果实生长发育过程中苹果酸含量变化由NADMDH、NADP-ME、PEPC、CS(柠檬酸合酶)等多种代谢酶共同调控,且受遗传特性与自然环境的影响[21,23,29]。笔者在本研究中发现,红宝石苹果果实中NAD-MDH、PEPC活性与苹果酸含量存在极显著或显著正相关关系,而NADP-ME 活性与苹果酸含量存在极显著负相关关系,这表明红宝石苹果果实苹果酸含量变化受到PEPC、NAD-MDH、NADP-ME 3种酶共同调控,这与史娟等[24]在红富士苹果中的研究结果较一致。在果实整个发育期,红宝石苹果果实中NAD-MDH 活性变化趋势与富士2001 苹果相近,但NAD-MDH 活性一直显著低于富士2001 苹果,这可能是2个品种果实发育期果实苹果酸含量较大差异的重要因素。在果实发育后期,红宝石苹果和富士2001苹果果实中苹果酸降解关键酶NADP-ME活性均迅速升高,且红宝石苹果果实NADP-ME 酶活性显著高于富士2001 苹果。综上可知,NADMDH和NAD-ME活性差异是红宝石苹果果实苹果酸含量显著低于富士2001苹果的主要原因。

4 结 论

红宝石苹果果实中有机酸组分包含苹果酸、柠檬酸、草酸、酒石酸和琥珀酸等5 种,且主要有机酸为苹果酸,与富士2001苹果一致。红宝石苹果果实总糖含量与富士2001苹果相近,但有机酸含量显著低于富士2001苹果,属低酸型特异种质资源。红宝石苹果和富士2001苹果果实中苹果酸含量差异主要是果实发育期NAD-MDH和NADP-ME活性差异所致。

参考文献:

[1] 王南南,孙昊琪,柳伟杰,马春晖.苹果不同着果部位对果实品质的影响[J].北方园艺,2020(2):51-56.WANG Nannan,SUN Haoqi,LIU Weijie,MA Chunhui. Effects of different fruiting parts of apple on fruit quality[J]. Northern Horticulture,2020(2):51-56.

[2] 李晓颖,谭洪花,房经贵,韩键,宋长年.果树果实的风味物质及其研究[J].植物生理学报,2011,47(10):943-950.LI Xiaoying,TAN Honghua,FANG Jinggui,HAN Jian,SONG Changnian.Flavor compounds of fruit trees and their research[J].Plant Physiology Journal,2011,47(10):943-950.

[3] ABOU-ZAMZAM A M,WALLACE A. Some characteristics of the mitochondrial and soluble forms of malate dehydrogenase in lemon fruits[J]. Biochimica et Biophysica Acta (BBA) – Enzymology,1970,220(3):396-409.

[4] 吴昌琦,贾璐婷,樊进补,张臻,马敏,张苏铃,刘志强,任雅倩,王利斌,张绍铃.园艺作物果实糖酸转化研究进展[J].中国果菜,2020,40(11):39-47.WU Changqi,JIA Luting,FAN Jinbu,ZHANG Zhen,MA Min,ZHANG Suling,LIU Zhiqiang,REN Yaqian,WANG Libin,ZHANG Shaoling. Research progress on sugar-acid conversion in horticultural crops[J].China Fruit&Vegetable,2020,40(11):39-47.

[5] MA B Q,CHEN J,ZHENG H Y,FANG T,OGUTU C,LI S H,HAN Y P,WU B H. Comparative assessment of sugar and malic acid composition in cultivated and wild apples[J]. Food Chemistry,2015,172:86-91.

[6] 陈发兴,刘星辉,陈立松.果实有机酸代谢研究进展[J].果树学报,2005,22(5):526-531.CHEN Faxing,LIU Xinghui,CHEN Lisong. Advances in research on organic acid metabolism in fruits[J]. Journal of Fruit Science,2005,22(5):526-531.

[7] MA B Q,LIAO L,FANG T,PENG Q,OGUTU C,ZHOU H,MA F W,HAN Y P.A Ma10 gene encoding P-type ATPase is involved in fruit organic acid accumulation in apple[J]. Plant Biotechnology Journal,2019,17(3):674-686.

[8] ETIENNE A,GÉNARD M,LOBIT P,MBEGUIÉ-A-MBÉGUIÉ D,BUGAUD C.What controls fleshy fruit acidity?A review of malate and citrate accumulation in fruit cells[J]. Journal of Experimental Botany,2013,64(6):1451-1469.

[9] 李航,陶海青,陈益香,龚成宇,杨科,龚荣高.2 种中国樱桃果实有机酸积累及代谢相关酶活性的研究[J].西北农业学报,2019,28(12):2019-2026.LI Hang,TAO Haiqing,CHEN Yixiang,GONG Chengyu,YANG Ke,GONG Ronggao. Study on the accumulation of organic acids and the activities of metabolism-related enzymes in two Chinese cherry fruits[J].Acta Agriculturae Boreali-Occidentalis Sinica,2019,28(12):2019-2026.

[10] 刘玉莲,车飞,王海,陈佰鸿,陈年来.苹果果实中糖、酸和花青苷的组分及含量特征分析[J]. 西北林学院学报,2016,31(6):236-242.LIU Yulian,CHE Fei,WANG Hai,CHEN Baihong,CHEN Nianlai.Analysis of the composition and content characteristics of sugar,acid and anthocyanin in apple fruit[J].Journal of Northwest Forestry University,2016,31(6):236-242.

[11] 魏国芹,孙玉刚,孙杨,杨兴华.甜樱桃果实发育过程中糖酸含量的变化[J].果树学报,2014,31(S1):103-109.WEI Guoqin,SUN Yugang,SUN Yang,YANG Xinghua.Changes of sugar and acid content during fruit development of sweet cherry[J].Journal of Fruit Science,2014,31(S1):103-109.

[12] CRYTAL S,LAURENT G D,GRANT R C,CHRISTOPHER M F,KATHLEEN L S. Regulation of malate metabolism in grape berry and other developing fruits[J]. Phytochemistry,2009,70(11):1329-1344.

[13] NOUR V,TRANDAFIR I,IONICA M E.Compositional characteristics of fruits of several apple(Malus domestica Borkh.)cultivars[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca,2010,38(3):228-233.

[14] ZHANG Y Z,LI P M,CHENG L L. Developmental changes of carbohydrates, organic acids, amino acids, and phenolic compounds in‘Honeycrisp’apple flesh[J]. Food Chemistry,2010,123(4):1013-1018.

[15] 刘清鹤,荆琳,王成荣,宋健坤,杨英杰,李鼎立,王然.鲁秀梨果实在生长发育中后期及贮藏过程中糖酸累积的变化[J].果树学报,2022,39(5):743-751.LIU Qinghe,JING Lin,WANG Chengrong,SONG Jiankun,YANG Yingjie,LI Dingli,WANG Ran.Changes of sugar and acid accumulation in Luxiu pear fruit in the middle and late stages of growth and development and during storage[J]. Journal of Fruit Science,2022,39(5):743-751.

[16] 杨盛,白牡丹,郝国伟,张晓伟,杜海燕,高鹏,郭黄萍.‘玉露香’梨果实发育过程中糖、酸积累特性研究[J]. 果树学报,2019,36(8):1013-1019.YANG Sheng,BAI Mudan,HAO Guowei,ZHANG Xiaowei,DU Haiyan,GAO Peng,GUO Huangping. Study on the characteristics of sugar and acid accumulation during fruit development of‘Yuluxiang’pear[J]. Journal of Fruit Science,2019,36(8):1013-1019.

[17] 赵永红,李宪利,姜泽盛,王长健,杨富林.设施油桃果实发育过程中有机酸代谢的研究[J]. 中国生态农业学报,2007,61(5):87-89.ZHAO Yonghong,LI Xianli,JIANG Zesheng,WANG Changjian,YANG Fulin. Study on organic acid metabolism during fruit development of facility nectarine[J]. Chinese Journal of Eco-Agriculture,2007,61(5):87-89.

[18] ETIENNE C,MOING A,DIRLEWANGER E,RAYMOND P,MONET R,ROTHAN C. Isolation and characterization of six peach cDNAs encoding key proteins in organic acid metabolism and solute accumulation involvement in regulating peach fruit acidity[J].Physiologia Plantarum,2002,114(2):259-270.

[19] 陈美霞,赵从凯,陈学森,郝会军,张宪省.杏果实发育过程中有机酸积累与相关代谢酶的关系[J].果树学报,2009,26(4):471-474.CHEN Meixia,ZHAO Congkai,CHEN Xuesen,HAO Huijun,ZHANG Xiansheng. Relationship between accumulation of organic acid and organic acid-metabolizing enzymes during apricot fruit development[J]. Journal of Fruit Science,2009,26(4):471-474.

[20] 郑惠文,张秋云,李文慧,章世奎,席万鹏.新疆杏果实发育过程中可溶性糖和有机酸的变化[J]. 中国农业科学,2016,49(20):3981-3992.ZHENG Huiwen,ZHANG Qiuyun,LI Wenhui,ZHANG Shikui,XI Wanpeng.Change in soluble sugars and organic acids of Xin-Jiang apricot during fruit development and ripening[J]. Scientia Agricultura Sinica,2016,49(20):3981-3992.

[21] 王小红,陈红,董晓庆.‘蜂糖李’果实发育过程中有机酸含量变化及其与苹果酸代谢相关酶的关系[J].果树学报,2018,35(3):293-300.WANG Xiaohong,CHEN Hong,DONG Xiaoqing.Changes of organic acid content during fruit development of‘Fengtangli’and its relationship with enzymes related to malate metabolism[J].Journal of Fruit Science,2018,35(3):293-300.

[22] 郭燕,梁俊,李敏敏,赵政阳.高效液相色谱法测定苹果果实中的有机酸[J].食品科学,2012,33(2):227-230.GUO Yan,LIANG Jun,LI Minmin,ZHAO Zhengyang. Determination of organic acids in apple fruit by high performance liquid chromatography[J].Food Science,2012,33(2):227-230.

[23] 王鹏飞,薛晓芳,穆晓鹏,张建成,曹琴,杜俊杰.不同酸度欧李果实有机酸积累特性与相关代谢酶活性分析[J].中国农业科学,2013,46(19):4101-4109.WANG Pengfei,XUE Xiaofang,MU Xiaopeng,ZHANG Jiancheng,CAO Qin,DU Junjie. Analysis on the accumulation characteristics of organic acids and the activities of related metabolic enzymes in the fruits of chinese dwarf cherry with different acidity[J].Scientia Agricultura Sinica,2013,46(19):4101-4109.

[24] 史娟,李方方,马宏,李中勇,徐继忠.不同中间砧对苹果果实苹果酸代谢关键酶活性及其相关基因表达的影响[J].园艺学报,2016,43(1):132-140.SHI Juan,LI Fangfang,MA Hong,LI Zhongyong,XU Jizhong.Effects of different interstocks on key enzyme activity and related gene expression of malate metabolism in apple fruit[J].Acta Horticulturae Sinica,2016,43(1):132-140.

[25] 刘静轩,曲常志,许海峰,苏梦雨,房鸿成,王楠,姜生辉,王意程,张宗营,陈学森.新疆红肉苹果杂交二代2 个功能型株系果实风味品质的评价[J].果树学报,2017,34(8):988-995.LIU Jingxuan,QU Changzhi,XU Haifeng,SU Mengyu,FANG Hongcheng,WANG Nan,JIANG Shenghui,WANG Yicheng,ZHANG Zongying,CHEN Xuesen. Evaluation of fruit flavor quality of two functional type lines of Xinjiang red-fleshed apple hybrid second generation[J]. Journal of Fruit Science,2017,34(8):988-995.

[26] 靳志飞,杨家全,陈红,安华明.八个贵州地方桃品种果实甜酸风味品质分析[J].植物科学学报,2015,33(1):90-97.JIN Zhifei,YANG Jiaquan,CHEN Hong,AN Huaming.Analysis on sweet and sour flavor quality of eight local peach varieties in Guizhou[J].Plant Science Journal,2015,33(1):90-97.

[27] 牛生洋,刘崇怀,刘强,樊秀彩,张颖,孙磊,张晓利,姜建福.葡萄种质果实有机酸组分及其含量特性[J].食品科学,2022,43(12):228-234.NIU Shengyang,LIU Chonghuai,LIU Qiang,FAN Xiucai,ZHANG Ying,SUN Lei,ZHANG Xiaoli,JIANG Jianfu.Organic acid components and content characteristics of grape germplasm fruit[J].Food Science,2022,43(12):228-234.

[28] 高萌.苹果种质资源有机酸含量评价及酸含量调控候选基因MtPEPP 功能分析[D].杨凌:西北农林科技大学,2020.GAO Meng. Evaluation of organic acid content in apple germplasm resources and functional analysis of the candidate gene MtPEPP for acid content regulation[D]. Yangling:Northwest A&F University,2020.

[29] 徐爱红,徐臣善,刘丽霞,刘丽云.授粉品种对‘红富士’苹果果实有机酸积累和代谢关键酶活性的影响[J].植物生理学报,2020,56(9):1955-1962.XU Aihong,XU Chenshan,LIU Lixia,LIU Liyun. Effects of pollinated cultivars on the accumulation of organic acids and the activities of key metabolic enzymes in‘Red Fuji’apple fruit[J].Plant Physiology Journal,2020,56(9):1955-1962.

[30] 李娅楠,闫雷玉,张波,杨舜博,赵政阳.不同苹果品种果实糖酸组分特征研究[J].果树学报,2021,38(11):1877-1889.LI Ya’nan,YAN Leiyu,ZHANG Bo,YANG Shunbo,ZHAO Zhengyang. Study on the characteristics of sugar and acid components in fruits of different apple varieties[J]. Journal of Fruit Science,2021,38(11):1877-1889.

[31] 刘羽,刘盛雨,卢娟芳,于庆帆,席万鹏.新疆红肉苹果3 个品系的风味品质与抗氧化能力评价[J].中国农业科学,2017,50(8):1495-1504.LIU Yu,LIU Shengyu,LU Juanfang,YU Qingfan,XI Wanpeng.Flavor quality and antioxidant capacity evaluation of three strains of Xinjiang red-fleshed apple[J]. Scientia Agricultura Sinica,2017,50(8):1495-1504.

Analysis of organic acid components and malic acid metabolizing enzyme activity in Hongbaoshi apple fruits

YANG Guangkai1, XUE Shiyi1, LI Jiazhen1, LI Huibin1, GAO Yan1, 2, ZHANG Xiaojun1, 2*, HAO Yanyan1,2*
(1Horticultural College, Shanxi Agricultural University, Taigu 030801, Shanxi, China;2Shanxi Provincial Key Laboratory of Fruit Tree Germplasm Creation and Utilization,Taiyuan 030031,Shanxi,China)

Abstract:【Objective】The studies on the contents and components of sugars and acids in fruit have been widely concerned.Among them, the contents and components of organic acids are the important indicators to determine the quality and flavor of fruit.Thus, to determine and explore the physiological basis of low organic acid characteristics in Hongbaoshi apple fruit, the components and contents of organic acids in Hongbaoshi apple fruit and the relationship between the changes of malic acid contents and metabolism-related enzyme activities were analyzed.【Methods】In the current study, the Hongbaoshi and Fuji 2001 apple fruits at different growth stages were taken as experimental materials,the total sugar contents were measured by anthrone-colorimetric method,and the components and contents of organic acids were determined by high performance liquid chromatography.Finally,the activities of malate-related metabolic enzymes and their correlation with the malate content were determined and analyzed.【Results】The organic acids in Hongbaoshi fruit were mainly malic acid, oxalic acid, citric acid,tartaric acid and succinic acid.Among them, the content of malic acid was the highest (accounting for more than 89% of the total acid).The organic acids in Hongbaoshi fruits were consistent with those in Fuji 2001 fruits,and the malic acid was the main component.In addition,the malic acid content in Hongbaoshi fruits at different developmental stages accounted for 89.03%-91.80% of the total acid contents, and the latter was 97.65%-98.56%, indicating that the different components of organic acids in fruits showed that the difference in total acid content in fruits was mainly caused by the difference in malic acid content.During the whole fruit developmental period,the changes of total sugar and total acid contents in Hongbaoshi fruits were basically consistent with those of Fuji 2001, the content of malic acid in the former fruit was significantly lower than that in Fuji 2001,and it was found that the key period of malic acid accumulation was at the early stage of fruit development with an up-down-up trend,while the citric acid,oxalic acid and succinic acid showed a decreasing trend overall,and the content of tartaric acid increased sharply at the later stage of fruit development and then decreased. Compared with Fuji 2001,the changing trends of malic acid,citric acid,tartaric acid,succinic acid and total sugar were more consistent, the opposite was true for oxalic acid at the later stage of fruit development, and the contents of malic acid, total sugar and total acid were higher than those of Hongbaoshi during the whole fruit developmental process. Furthermore, at the early stage of fruit development, the activity of NADP-ME enzyme in the fruit of Hongbaoshi first decreased,and then continued to increase,the activity of PEPC enzyme decreased sharply as well as the NAD-MDH enzyme that caused the content of malic acid to accumulate slowly, while the NAD-MDH activity in the fruit of Fuji 2001 increased rapidly at the early stage of fruit development,which was exactly the opposite of Hongbaoshi.Then through analyzing the correlation between malate content and malate-related metabolic enzyme activities, it showed that the content of malic acid in the fruit of Hongbaoshi accumulated more at the early stage of fruit development because of the increased activity of NAD-malate dehydrogenase (NAD-MDH),which promoted the synthesis of malic acid in this period, and reduced NADP-malicase (NADP-ME)activity,which reduced the breakdown of malic acid.It had little relationship with phosphoenolpyruvate carboxylase(PEPC)activity and it was similar to Fuji 2001.At the later stage of fruit development,the NAD-MDH activity in both cultivars increased briefly and then decreased rapidly,while the NADP-ME activity of Hongbaoshi kept increasing,and the NADP-ME activity of Fuji 2001 first increased and then decreased,resulting in the degradation of malic acid in the two fruits being greater than the synthesis.In addition,the NAD-MDH was the key enzyme in the accumulation of malic acid in Hongbaoshi and Fuji 2001 fruits.【Conclusion】Hongbaoshi apple is a low-acid-type cultivar,which was dominated by malic acid.The early stage of fruit development is a critical period for the accumulation of malic acid.NADPME and NAD-MDH enzymes play a major synergistic role in the accumulation of malic acid in the fruit.

Key words: Hongbaoshi apple; Organic acids; High performance liquid chromatography; Malate metabolizing enzymes

中图分类号:S661.1

文献标志码:A

文章编号:1009-9980(2023)05-0884-09

DOI:10.13925/j.cnki.gsxb.20220451

收稿日期2022-08-19

接受日期:2022-12-03

基金项目山西省重点研发计划重点项目子课题(201703D211001-04);山西省基础研究计划项目(20210302123396);山西农业大学引进人才科研启动项目(2014YJ01)

作者简介杨光凯,男,在读硕士研究生,主要从事园艺植物栽培生理与品质调控研究。Tel:17835876535,E-mail:2640062267@qq.com

*通信作者 Author for correspondence.E-mail:haoyy@sxau.edu.cn;E-mail:zhangxj0906@126.com