皱皮木瓜[Chaenomeles speciosa(Sweet)Nakai]又名贴梗海棠,为蔷薇科(Rosaceae)木瓜属(Chaenomeles)的落叶灌木,栽培历史悠久,遗传资源丰富,是我国特有的经济树种[1]。木瓜果实被称为“百益之果”,果实中含可溶性固形物、可滴定酸、果胶、齐墩果酸、单宁、氮基酸、类黄酮、维生素C、超氧化物歧化酶等物质,集药用、食用价值于一身,是具有重大开发价值的珍品水果[2]。随着木瓜加工产业迅速发展,已研制出木瓜饮料、果脯、果酱、果酒、果醋等食用产品[3]。此外,木瓜保健产品也具有很大的市场潜力,木瓜作为一种药材,具有平肝舒筋、健脾开胃、祛风除湿、和胃化湿之效,可用于抗肿瘤、抑菌、利尿和治疗胃溃疡、糖尿病等,其含有的五环三萜类、黄酮类化合物和超氧化物歧化酶等还具有较高抗氧化活性[4-8]。因此,市场对木瓜果实的需求量大大提高,对果实的品质也有了更高的要求,在栽培中提高果实的产量和品质是提高市场竞争力的核心。
合理施肥是提高果实产量和品质的重要措施之一。在实际生产中,由于当地木瓜栽培技术水平低,缺乏平衡施肥技术,在生产上过多施用氮、磷、钾肥,而忽视中微量元素肥的施用,导致果实产量低、品质差[9]。研究表明,中微量元素对植物的生长发育和新陈代谢起着重要调控作用,对果品产量和品质的形成有着重要的影响。钙不仅是植物生长发育所必需的中量营养元素,更重要的是钙作为第二信使,在植物许多生理过程中起着重要作用[10]。张伟等[11]的研究表明,盛花期后20 d喷施钙肥可显著增加南果梨单果质量、横纵径和总钙含量,并减少石细胞积累;刘鑫铭等[12]的研究发现,钙肥施用对提升巨峰葡萄外观着色、内在品质及不同部位钙含量等均起到一定作用;镁是叶绿素的组成成分,促进叶绿素的形成,参与光合作用以及各类营养成分的合成[13]。镁还是植物体内多种酶的活化剂[14]。马晓丽等[15]的研究表明,土施和叶面喷施镁肥能够显著提高叶片镁含量,提升硝酸还原酶活性,增加可溶性蛋白和可溶性糖含量,增加果皮花色素含量,提高果实可溶性固形物含量,降低可滴定酸含量,提升了果实外在和内在品质;硼对植物的生理代谢、养分平衡以及有些酶的活性是必不可少的[16]。杨俊等[17]的研究显示,合理喷施硼肥能够使黄金蜜柚果实增大,可食率提高,裂瓣率和粒化指数下降,可溶性固形物、维生素C和总糖含量提高,可滴定酸含量降低,果肉着色向着更深、更红、更黄、更亮的方向转变。
生产中常用的2种施肥方式为根际施肥与叶面喷肥[18]。与根际土壤施肥相比,叶面喷肥可快速、简便地补充作物所需微量元素,直接作用于农作物叶片表面,通过分布在叶面的气孔、叶表面角质层的亲水小孔和叶片细胞的质外连丝被植物吸收,具有用量少、利用率高、肥效好等优点[19]。因此笔者在本研究中采用了叶面喷肥的方法。目前,叶面肥在粮食、蔬菜、瓜果方面都得到了广泛应用。赵银平等[20]的研究表明,喷施叶面肥可以提高设施番茄生长势和果实品质。谢英添等[21]的研究表明,7种叶面肥均能增加西瓜主茎粗与叶片叶绿素含量,提升西瓜产量。
对于皱皮木瓜施肥的研究,已有一些施用氮磷钾复合肥对果实产量和品质影响的报道[22],但增施中微量元素肥对木瓜果实产量和品质影响的研究较为鲜见。笔者在本研究中以皱皮木瓜长俊为试验作物,通过在果实发育期对果树叶片喷施不同浓度的钙肥、镁肥、硼肥,比较不同处理对木瓜果实品质和产量的影响,以此探寻木瓜叶面喷施钙肥、镁肥、硼肥的合理浓度,为木瓜科学施肥、平衡施肥提供理论依据,推动木瓜产业发展。
试验于2021 年在山东省临沂市河东区汤河镇木瓜园区内进行。汤河镇地处沂沭河冲积平原,属温带季风半湿润海洋性气候,四季分明。
供试土壤:土层深度为0~20 cm 时,pH 值为6.97,全盐含量(w,后同)0.17%,有机质9.52 g·kg-1,全氮0.9 g·kg-1,水解性氮114.8 mg·kg-1,有效磷90.79 mg·kg-1,速效钾149.01 mg·kg-1;土层深度为20~40 cm 时pH 值为6.86,全盐量0.17%,有机质6.36 g·kg-1,全氮0.58 g·kg-1,水解性氮91 mg·kg-1,有效磷57.48 mg·kg-1,速效钾96.39 mg·kg-1。
供试作物:选取园区内生长发育良好、树势相对一致、无明显病虫害的3年生皱皮木瓜长俊,株行距2 m×3 m。
供试肥料:无水氯化钙(CaCl2 ≥96%国药集团化学试剂有限公司)、无水硫酸镁(MgSO4 ≥98%国药集团化学试剂有限公司)、十水合四硼酸钠(Na2B4O7·10H2O ≥99.5% 国药集团化学试剂有限公司)。
试验以清水做对照,叶面肥设置钙、镁、硼肥低浓度、中浓度、高浓度各3个水平,共10个处理(具体用量及编号见表1)。每3株木瓜树为1个小区,1个小区为1次重复,每个处理3次重复。采用叶面喷施的方法,第1 次喷施时间为2021年6 月20 日,此后每隔10 d 左右喷1 次,共喷4 次。于无风的晴天16:00后周密均匀地将溶液肥喷施在果实和叶片上,直到滴液为止。每株树每次溶解肥料的用水量控制在500 mL,此用量刚好能使树叶正反两面喷透。其他栽培管理按正常田间管理进行。在果实成熟后采摘,测定单株产量,计数单株结实数,计算平均单果质量。并从每个处理中随机选取果形良好、成熟度一致、无明显病虫害和机械损伤的果实3 个,共取30 个果实作为样品,做好标记,放于车载冰箱中带回实验室,测量果实外在品质。用去离子水清洗后立即用液氮速冻,制成匀浆,于-80 ℃冰箱中保存备用,用于果实内部品质指标测定。
表1 中微量元素肥叶面喷施试验方案
Table 1 Test scheme of foliar spraying of microutrient fertilizer
处理Treatment对照Control低浓度Low concentration中浓度Medium concentration高浓度High concentration钙肥CaCl2 0镁肥MgSO4 0硼肥Na2B4O7·10H2O 0 C1(0.1%)M1(0.5%)B1(0.1%)C2(0.2%)M2(1.0%)B2(0.2%)C3(0.3%)M3(1.5%)B3(0.3%)
1.4.1 产量 采用普通台秤测定单株产量(g);计数法测定单株结实数;以单株产量与单株结实数的比值代表平均单果质量(g)。
1.4.2 外在品质 采用精度为0.02 mm 的游标卡尺测量果实纵、横径(cm);以纵径比横径代表果形指数。
1.4.3 口感品质 采用ATAGO PAL-1 数显折射仪测定可溶性固形物含量(%);酸碱中和滴定法测定可滴定酸含量(%);以可溶性固形物与可滴定酸含量的比值表示固酸比;采用EDTA 络合滴定法测定单宁含量(%);105 ℃杀青30 min,80 ℃烘干至恒质量测定含水量(%)。
1.4.4 营养品质 采用蒽酮比色法测定可溶性糖含量、淀粉含量(mg·g-1);咔唑比色法测定果胶含量(%);微波法测定类黄酮含量(mg·g-1);高效液相色谱法测定齐墩果酸含量(μg·g-1);2,6-二氯靛酚滴定法测定维生素C含量(mg·100 g-1);茚三酮显色法测定氨基酸含量(mg·kg-1);氮蓝四唑(NBT)光化还原法测定SOD 酶活性(U·g-1);G-250考马斯亮蓝法测定蛋白质含量(mg·g-1)。
试验数据使用Microsoft Excel 2010进行初步处理和图表绘制;使用IBM SPSS 22 进行方差分析(ANOVA)、相关性分析(Pearson)和主成分分析(PCA),运用LSD和Duncan法进行多重比较。
不同中微量元素肥处理对皱皮木瓜产量的影响如表2所示。结果表明,CK组木瓜果实每公顷产量为7105 kg,叶面喷施不同浓度钙、镁、硼肥,各处理单株产量差异显著,单株结实数差异极显著,平均单果质量差异不显著。单株产量变化范围是3 949.05~7 156.15 g,单株结实数变化范围是9.67~14.83个,平均单果质量变化范围是409.35~563.75 g。
表2 不同中微量元素肥处理对果实产量的影响
Table 2 Effect of different micronutrient fertilizer treatments on fruit yield
注:不同小写字母表示差异显著(p<0.05)。下同。
Note:Different small letters mean the difference between treatments is significant(p<0.05).The same below.
处理Treatment CK C1 C2 C3 M1 M2 M3 B1 B2 B3单果质量Fruit quality/g 409.35±8.90 b 458.98±33.72 ab 521.01±26.25 ab 511.48±85.76 ab 489.04±15.65 ab 445.05±8.28 ab 439.03±41.50 b 536.08±39.41 ab 563.75±37.10 ab 595.97±84.16 a单株产量Yield/g 3 949.05±222.24 c 5 185.93±421.43 abc 6 300.72±234.97 ab 5 812.59±1 302.25 abc 7 156.15±597.24 a 4 430.19±415.45 bc 4 532.78±602.62 bc 6 944.30±1 087.65 a 5 738.33±322.17 abc 5 933.89±483.84 abc单株结实数Fruit number 9.67±0.33 c 11.33±0.33 bc 12.17±0.60 bc 11.17±0.83 bc 14.83±1.36 a 9.83±0.93 c 10.17±0.44 bc 12.83±1.30 ab 10.50±0.29 bc 10.17±0.93 bc
多重比较结果表明:与CK 相比,处理M1 极显著提高单株产量,增幅分别为81.21%;处理B1、C2显著提高单株产量,增幅为75.85%、59.55%;其余处理单株产量与CK 差异不显著。与CK 相比,处理M1 极显著提高单株结实数,增幅为53.45%;处理B1 显著提高单株结实数,增幅为32.76%;其余处理单株结实数与CK 差异不显著。与CK 相比,处理B3、B2 均显著提高平均单果质量,增幅分别为45.59%、37.72%;其余处理平均单果质量与CK差异不显著。
2.2.1 不同处理下皱皮木瓜果实外在品质的差异不同中微量元素肥处理对皱皮木瓜果实外在品质的影响如表3所示。结果表明,叶面喷施不同浓度钙、镁、硼肥后,各处理果实纵径、横径、果形指数差异均不显著。纵径变化范围是11.82~15.50 cm,横径变化范围是7.98~10.37 cm,果形指数变化范围是1.34~1.73。
表3 不同中微量元素肥处理对果实外在品质的影响
Table 3 Effect of different micronutrient fertilizer treatments on the external quality of fruits
处理Treatment CK C1 C2 C3 M1 M2 M3 B1 B2 B3纵径Fruit vertical/cm 11.82±0.38 c 14.29±0.39 abc 15.08±0.79 ab 13.52±0.81 abc 13.77±0.91 abc 12.51±0.60 bc 14.67±0.71 ab 13.31±0.42 abc 13.41±1.51 abc 15.50±0.77 a横径Fruit width/cm 7.98±0.24 b 9.11±0.36 ab 9.04±0.87 ab 8.99±0.64 ab 9.12±0.66 ab 9.37±0.33 ab 10.02±0.10 ab 9.22±0.16 ab 8.82±0.95 ab 10.37±0.11 a果形指数Fruit index 1.51±0.01 ab 1.57±0.02 ab 1.73±0.24 a 1.52±0.04 ab 1.51±0.03 ab 1.34±0.03 b 1.46±0.07 ab 1.45±0.07 ab 1.52±0.01 ab 1.49±0.07 ab
多重比较结果表明:与CK 相比,处理B3 极显著提高果实纵径,增幅为31.11%;处理C2、M3、C1显著提高果实纵径,增幅分别为27.54%、24.06%、20.86%;其余处理果实纵径均提高,与CK差异不显著。与CK相比,处理B3、M3极显著提高果实横径,增幅分别为29.94%、25.63%;处理M2、B1、M1 显著提高果实横径,增幅为17.41%、15.60%、14.34%;其余处理果实横径均提高,与CK 差异不显著。所有处理果形指数与CK相比差异均不显著。
2.2.2 不同处理下皱皮木瓜果实口感品质的差异不同中微量元素肥处理对皱皮木瓜果实口感品质的影响如表4所示。结果表明,叶面喷施不同浓度钙、镁、硼肥后,各处理果实固酸比、可溶性固形物、可滴定酸、单宁含量差异极显著,含水量差异显著。可溶性固形物含量变化范围是7.77%~9.53%,可滴定酸含量变化范围是1.74%~2.54%,固酸比变化范围是3.40~5.06,单宁含量变化范围是0.47%~1.56%,含水量变化范围是86.40%~87.92%。
表4 不同中微量元素肥处理对果实口感品质的影响
Table 4 Effect of different micronutrient fertilizer treatments on fruit taste quality
处理Treatment CK C1 C2 C3 M1 M2 M3 B1 B2 B3 w(可溶性固形物)Soluble solid content/%7.77±0.22 c 7.90±0.06 bc 8.63±0.41 b 7.93±0.07 bc 8.37±0.41 bc 8.60±0.31 bc 8.00±0.29 bc 8.27±0.15 bc 8.23±0.03 bc 9.53±0.18 a w(可滴定酸)Titratable acid content/%2.29±0.02 ab 2.16±0.05 bcd 1.94±0.04 cde 1.85±0.04 de 2.22±0.09 bc 2.54±0.21 a 2.04±0.07 bcde 1.92±0.02 cde 1.74±0.04 e 1.91±0.16 cde固酸比Solid-acid ratio 3.40±0.08 e 3.66±0.11 de 4.45±0.20 abc 4.29±0.10 bcd 3.79±0.30 cde 3.43±0.31 e 3.93±0.10 cde 4.31±0.05 bcd 4.73±0.10 ab 5.06±0.50 a w(单宁)Tannin content/%1.12±0.23 b 1.04±0.09 bc 0.54±0.07 d 0.79±0.07 cd 1.18±0.08 b 0.47±0.06 d 0.78±0.07 cd 1.18±0.07 b 1.56±0.08 a 1.14±0.09 b w(水分)Water content/%86.83±0.12 bc 87.92±0.20 a 87.09±0.09 abc 86.40±0.14 c 87.23±0.48 abc 87.61±0.11 ab 87.26±0.01 ab 86.97±0.19 bc 87.23±0.28 abc 87.50±0.46 ab
多重比较结果表明:与CK相比,处理B3极显著提高果实可溶性固形物含量,增幅为22.75%;处理C2、M2显著提高果实可溶性固形物含量,增幅分别为11.16%、10.73%;其余处理果实可溶性固形物含量均提高,与CK 差异不显著。与CK 相比,处理B2、C3 极显著降低果实可滴定酸含量,降幅分别为23.71%、18.97%;处理B3、B1、C2显著降低果实可滴定酸含量,降幅分别为16.23%、16.09%、15.04%;其余处理果实可滴定酸含量均降低,与CK 差异不显著。与CK相比,处理B3、B2、C2极显著提高果实固酸比,增幅分别为48.99%、39.13%、30.87%;处理B1、C3 显著提高果实固酸比,增幅分别为26.86%、26.20%;其余处理果实固酸比均提高,与CK差异不显著。与CK相比,处理C1、C2、C3、M2、M3降低单宁含量,其余处理单宁含量升高。其中,处理C2、M2极显著降低果实单宁含量,降幅分别为58.22%、52.30%;处理M3、C3 显著降低果实单宁含量,降幅分别为30.49%、29.40%;处理B2极显著提高果实单宁含量,增幅为39.29%;其余处理果实单宁含量与CK差异不显著。与CK相比,除处理C3外,其余处理含水量均提高。其中,处理C1极显著提高果实含水量,增幅为1.25%;处理M2显著提高果实含水量,增幅为0.90%;其余处理果实含水量与CK差异不显著。含水量虽然差异显著,但不同处理间数据差别并不大,可能是重复间差异小的原因。
2.2.3 不同处理下皱皮木瓜果实营养品质的差异不同中微量元素肥处理对皱皮木瓜果实营养品质的影响如表5 所示。方差分析结果表明,叶面喷施不同浓度钙、镁、硼肥后,各处理果实淀粉、果胶、类黄酮、齐墩果酸、维生素C、氨基酸含量及SOD酶活性差异极显著,可溶性糖含量差异显著,蛋白质含量差异不显著。淀粉含量变化范围是128.90~182.97 mg·g-1,果胶含量变化范围是2.32%~5.70%,类黄酮含量变化范围是8.29~12.39 mg·g-1,齐墩果酸含量变化范围是305.24~646.48 μg·g-1,维生素C含量变化范围是138.07~199.44 mg·100 g-1,氨基酸含量变化范围是2 473.18~3 102.53 mg·kg-1,SOD酶活性变化范围是764.24~1 960.80 U·g-1,可溶性糖含量变化范围是213.83~277.62 mg·g-1,蛋白质含量变化范围是2.36~2.81 mg·g-1。
表5 不同中微量元素肥处理对果实营养品质的影响
Table 5 Effect of different micronutrient fertilizer treatments on the nutritional quality of fruits
处理Treatment CK C1 C2 C3 M1 M2 M3 B1 B2 B3处理Treatment CK C1 C2 C3 M1 M2 M3 B1 B2 B3 w(淀粉)Starch/(mg·g-1)128.90±15.59 c 129.05±15.98 c 167.88±12.98 ab 179.40±11.43 a 174.91±11.17 ab 168.20±5.51 ab 182.97±9.30 a 151.95±1.63 abc 141.71±8.74 bc 160.96±3.34 abc w(齐墩果酸)Oleanolic acid/(μg·g-1)320.03±6.75 fg 305.24±9.38 g 557.95±2.84 b 543.13±14.61 b 567.16±12.28 b 497.99±15.51 c 346.22±5.65 f 430.67±11.41 e 462.96±1.67 d 646.48±4.20 a w(果胶)Pectin/%2.32±0.60 c 3.73±1.02 abc 2.56±0.12 c 2.45±0.35 c 2.64±0.45 ab 3.78±0.15 abc 4.10±0.38 abc 5.70±0.62 a 5.50±0.81 a 4.55±0.77 ab w(类黄酮)Flavonoid/(mg·g-1)8.67±0.17 de 10.80±0.27 b 10.84±0.13 b 12.39±0.16 a 10.49±0.16 b 10.43±0.21 b 8.82±0.21 de 8.29±0.18 e 8.99±0.23 cd 9.50±0.25 c w(维生素C)Vitamin C/(mg·100 g-1)138.07±4.86 d 142.85±8.50 d 151.37±3.31 cd 165.96±5.62 bc 154.14±7.09 cd 157.23±9.73 cd 169.26±0.85 bc 183.10±6.87 ab 199.44±4.29 a 179.41±4.65 b w(氨基酸)Amino acid/(mg·kg-1)2 474.84±116.97 e 2 962.21±143.81 ab 2 820.60±29.30 abc 3 102.53±151.61 a 2 794.98±37.97 bc 2 845.01±75.87 b 2 520.54±35.35 de 2 567.43±16.81 cde 2 473.18±17.73 e 2 749.94±24.37 bcd w(可溶性糖)Soluble sugar/(mg·g-1)219.31±8.23 b 246.87±15.85 ab 240.51±15.49 b 217.38±4.06 b 213.98±5.10 b 232.52±12.79 b 213.83±2.34 b 242.38±9.80 ab 277.62±10.43 a 243.35±17.60 ab w(蛋白质)Protein/(mg·g-1)2.51±0.05 ab 2.37±0.02 b 2.52±0.12 ab 2.81±0.08 a 2.36±0.19 b 2.80±0.10 a 2.60±0.10 ab 2.47±0.10 ab 2.57±0.15 ab 2.56±0.06 ab超氧化物歧化酶活性SOD activity/(U·g-1)764.24±67.32 f 954.13±73.96 ef 1 217.43±73.22 de 1 701.54±129.63 ab 1 533.17±107.73 bc 1 034.96±90.09 ef 1 960.80±96.68 a 1 853.81±76.55 a 1 359.93±111.68 cd 1 782.74±56.39 ab
多重比较结果表明:与CK 相比,处理M3、C3、M1极显著提高果实淀粉含量,增幅分别为41.95%、39.18%、35.70%;处理M2、C2、B3 显著提高果实淀粉含量,增幅分别为30.49%、30.25%、24.88%;其余处理果实淀粉含量均提高,与CK 差异不显著。与CK相比,处理B1、B2极显著提高果实果胶含量,增幅分别为145.69%、137.07%;处理B3、M3 显著提高果实果胶含量,增幅分别为96.12%、76.72%;其余处理果实果胶含量均提高,与CK差异不显著。与CK相比,处理B1 使果实类黄酮含量降低,且差异不显著(p>0.05);处理C3、C2、C1、M1、M2、B3极显著提高果实类黄酮含量,其中C3 增幅最大,为42.86%;其余处理果实类黄酮含量均提高,与CK 差异不显著。与CK 相比,处理C1 使果实齐墩果酸含量降低,且差异不显著;处理M3使果实齐墩果酸含量提高,且差异不显著;其余处理均极显著提高果实齐墩果酸含量,其中B3增幅最大,为102.00%。与CK相比,处理B2、B1、B3、M3、C3极显著提高果实维生素C 含量,增幅分别为44.44%、32.61%、29.94%、22.59%、20.20%;处理M2显著提高果实维生素C含量,增幅为13.88%;其余处理果实维生素C 含量均提高,与CK差异不显著。与CK相比,处理B2使果实氨基酸含量降低,且差异不显著;处理C3、C1、M2、C2均极显著提高果实氨基酸含量,增幅分别为25.36%、19.69%、14.96%、13.97%;处理M1、B3 显著提高果实氨基酸含量,增幅分别为12.94%、11.12%;其余处理果实氨基酸含量均提高,与CK 差异不显著。与CK 相比,处理M3、B1、B3、C3、M1、B2、C2均极显著提高果实SOD 酶活性,增幅分别为156.57%、142.57%、133.27%、122.64%、100.61%、77.94%、59.30%。处理M2 显著提高果实SOD 酶活性;处理C1 能提高果实SOD 酶活性,但与CK 相比差异不显著。与CK相比,处理B2极显著提高果实可溶性糖含量,增幅为26.59%,其余处理对可溶性糖含量影响差异不显著。与CK 相比,所有处理对蛋白质含量影响差异均不显著,其中C3 影响最大,增幅为12.19%。
木瓜果实性状间的相关性分析见表6,由表6可知,各指标之间存在相关性。固酸比与可滴定酸含量呈极显著负相关,与单果质量、纵径、可溶性固形物、维生素C、齐墩果酸含量呈极显著正相关,与SOD 酶活性也存在显著正相关关系。其余性状间亦存在相关关系,各性状提供的信息发生重叠,各单项指标对皱皮木瓜评价所起的作用也不尽相同,不能直接利用单个指标准确评价不同处理对产量和品质影响的综合作用结果。因此,对皱皮木瓜果实的产量及品质共19 个果实品质指标进行主成分分析(PCA),采用KMO 检验法和Bartlett 球体检验法进行因子分析的适用性检验。结果显示,KMO 值等于0.608,Bartlett 球体检验sig 小于0.01,说明原变量适合做主成分分析。
表6 果实品质性状间的相关性分析
Table 6 Correlation analysis among fruit quality traits
化化性超物酶SOD氧歧活activity 1量黄含类酮Flavonoid content 1-0.113素量生维C含Vitamin Ccontent 1-0.331 0.541**果量墩含齐酸Oleanolic acid content 10.299 0.365*0.345胶量果含Pectin content 1-0.059 0.690**-0.498**0.325氨含Amino酸基量acid content 1-0.168 0.314-0.191 0.784**-0.027质白量蛋含Protein content 10.203-0.110 0.164 0.120 0.287 0.104粉量淀含Starch content 10.449*0.372*-0.042 0.420*0.245 0.267 0.454*性量溶含Soluble可糖sugar content 1-0.271-0.171-0.088 0.468**0.019 0.385*-0.212-0.157含Water水量10.166 0.176 content-0.160-0.152-0.066-0.106-0.109-0.066-0.097宁量单含Tannin content 1-0.032 0.314-0.244-0.283-0.333 0.449*-0.098 0.441*-0.457*0.045固Solid-酸比10.357 0.156 0.167 0.015 0.359 0.534**0.638**0.439*acid ratio-0.179-0.015-0.069定量滴含0.296 0.089 0.070 0.050可酸Titratable acid content1-0.838**-0.395*-0.121-0.022-0.313-0.238-0.587**-0.440*固量性含溶物可形Soluble solid content 1-0.091 0.601**0.063 0.106 0.080 0.297 0.084 0.082 0.201 0.642**0.322-0.056 0.193量质 单Fruit果quality 10.602**-0.265 0.510**0.077 0.042-0.002 0.257-0.195 0.066 0.132 0.314 0.194-0.051 0.233横Fruit径width 10.686**0.292-0.183 0.290-0.072 0.088 0.094 0.073-0.365*-0.035 0.175 0.255 0.202-0.067 0.313纵Fruit径vertical 10.627**0.845**0.499**-0.437*0.592**0.091 0.012 0.006 0.176-0.311 0.100 0.058 0.290 0.135 0.032 0.260结单实Fruit株数number 10.010 0.078-0.104-0.043-0.074-0.013 0.019-0.083-0.043 0.113-0.558**0.193-0.003 0.250 0.052 0.125 0.213量总Yield产10.780**0.070-0.001-0.056 0.196-0.325 0.341 0.159 0.029 0.073 0.297-0.300 0.247 0.273 0.440*0.390*0.118 0.400*性量活含酶Yield 量 量纵Fruit vertical 化单Fruit quality数横Fruit width 量物形量可Titratable acid content含量含 量歧量固Solid-acid ratio量 固单Tannin content实糖含Water content酸量含含量可Soluble sugar content酸C含含含 物结指Index 量 质性定比含量性含质酸含果素酮化标 产株单Fruit number径径果 溶量滴酸宁水溶粉白基胶墩生黄氧总可Soluble solid content淀Starch content蛋Protein content氨Amino acid content果Pectin content齐Oleanolic acid content维Vitamin C content类Flavonoid content超SOD activity
经计算得6 个主成分因子的特征向量。主成分特征值、贡献率、累计贡献率及其特征向量如表7 所示。由表7 可知,根据特征值大于1 的原则,得出6 个主成分,累积贡献率达到80.013%(>80%),基本保留了19 个指标的信息,达到果实品质分析的可信标准,因此可以采用这6 个主成分对皱皮木瓜果实品质进行综合评价。在6 个主成分中,第1 主成分特征值为4.958,方差贡献率为26.096%,主要由固酸比、维生素C 含量、可滴定酸含量、纵径、单果质量、可溶性固形物含量、SOD 酶活性、齐墩果酸含量和横径决定,反映果实口感和外形品质;第2 主成分特征值为3.262,方差贡献率为17.169%,主要由类黄酮、氨基酸、单宁、淀粉和果胶含量决定,反映果实营养品质;第3 主成分特征值为2.27,方差贡献率为11.948%,主要由单株产量决定,反映果实产量;第4 主成分特征值为2.032,方差贡献率为10.693%,由蛋白质含量和单株结实数决定;第5 主成分特征值为1.417,方差贡献率为7.456%,由含水量和可溶性糖含量决定;第6 主成分特征值为1.264,方差贡献率为6.652%。
表7 主成分特征向量、特征值及贡献率
Table 7 Principal component eigenvectors,eigenvalues and contribution rates
指标Index固酸比Solid-acid ratio维生素C含量Vitamin C content可滴定酸含量Titratable acid content纵径Fruit vertical单果质量Fruit quality可溶性固形物含量Soluble solid content超氧化物歧化酶活性SOD activity齐墩果酸含量Oleanolic acid content横径Fruit width类黄酮含量Flavonoid content氨基酸含量Amino acid content单宁含量Tannin content淀粉含量Starch content果胶含量Pectin content单株产量Yield per plant蛋白质含量Protein content单株结实数Fruit number per plant含水量Water content可溶性糖含量Soluble sugar content特征值Eigenvalue方差贡献率Variance contribution rate/%累积贡献率Accumulated contribution rate/%特征向量Eigenvector第1主成分The 1st principal component 0.396 0.331-0.313 0.301 0.293 0.285 0.278 0.259 0.239-0.070 0.002 0.160 0.146 0.229 0.221-0.070 0.091-0.036 0.097 4.958 26.096 26.096第2主成分The 2nd principal component 0.000-0.164 0.078 0.091 0.086 0.125 0.074 0.304 0.025 0.448 0.404-0.350 0.346-0.303 0.089 0.213 0.090-0.094-0.261 3.262 17.169 43.266第3主成分The 3rd principal component-0.011 0.216-0.121-0.364-0.431-0.197 0.169 0.074-0.336 0.064 0.103 0.112 0.106 0.133 0.458 0.041 0.381-0.142 0.043 2.270 11.948 55.213第4主成分The 4th principal component-0.142-0.246 0.095 0.173 0.084-0.069-0.110-0.015 0.236 0.062 0.085-0.019-0.201-0.095 0.281-0.615 0.502 0.177 0.022 2.032 10.693 65.906第5主成分The 5th principal component-0.120 0.099 0.378-0.147-0.020 0.315-0.139 0.168-0.016 0.041 0.185-0.081 0.067 0.297 0.110 0.124-0.061 0.566 0.421 1.417 7.456 73.362第6主成分The 6th principal component-0.251 0.057 0.281-0.083 0.040-0.012 0.461-0.109 0.195-0.355-0.302-0.223 0.342 0.099 0.051 0.016 0.119 0.169-0.380 1.264 6.652 80.013
以各个主成分方差贡献率占6个主成分累积方差贡献率的比率为权重,乘以各个主成分得分,得到不同处理的综合得分,获得数学模型比如下:
Y=0.326 1 Y1+0.214 6 Y2+0.149 3 Y3+0.133 6 Y4+0.093 2 Y5+0.083 1 Y6。
主成分得分和综合得分情况如表8所示。由表8 可知,各处理综合得分由高到低排序次为B3>M1>C2>C3>B1>M3>B2>M2>C1>CK。各处理综合得分均高于CK。由此可见,叶面喷施钙、镁、硼肥对木瓜果实品质和产量均有不同程度提升,其中,处理B3后综合得分最高,表明其对木瓜果实品质和产量的综合提升效果最好。
表8 不同中微量元素肥处理下果实综合得分及排序
Table 8 Overall fruit score and ranking under different micronutrient fertilizer treatments
处理Treatment综合得分排名Comprehensive ranking CK C1 C2 C3 M1 M2 M3 B1 B2 B3各主成分因子得分Score of each principal component factor第1主成分The 1st principal component-3.719-1.744 0.469 0.024 0.138-1.983 0.329 1.367 1.587 3.533第2主成分The 2nd principal component-1.723-0.612 1.727 2.876 1.255 1.230-0.369-1.817-2.883 0.317第3主成分The 3rd principal component-0.441-0.779-0.249 1.129 1.178-0.909-1.104 1.585 0.988-1.396第4主成分The 4th principal component-0.337 1.684 0.710-1.094 1.937-0.814-0.740 0.125-1.130-0.342第5主成分The 5th principal component-1.125 0.677-0.087-1.212-0.214 1.937-0.937-0.283 0.357 0.887第6主成分The 6th principal component-0.260-1.138-0.777-0.878 0.644 0.609 2.216 0.872-1.189-0.098主成分综合得分Composite principal component-1.820-0.623 0.508 0.461 0.783-0.396-0.139 0.356-0.170 1.041 10 934286571
果实的产量直接影响了经济效益,果实品质是外在品质和内在品质的综合[23],品质的优劣直接影响着消费者的选择,口感品质的优劣决定了果实的商品价值高低[24]。本试验中研究了叶面喷施不同浓度的CaCl2、MgSO4和硼砂溶液肥对木瓜果实产量和品质的影响。研究结果显示,不同处理下皱皮木瓜
果实产量和品质均有不同程度提高。
钙肥3个浓度中,0.1%CaCl2处理下果实单宁含量最低、果实含水量最高;0.3%CaCl2处理下果实类黄酮、蛋白质、氨基酸含量最高。主成分分析综合评价得分最高的是0.2%CaCl2。在实际生产中,若是想提高出汁率,降低果实涩味,可叶面喷施0.1%Ca-Cl2;若是主要考虑营养价值,可叶面喷施0.3% Ca-Cl2;若是想提高果实产量和品质综合价值,可叶面喷施0.2%CaCl2。
镁肥3 个浓度中,0.5%MgSO4处理下单株产量最高,单株结实量最多;1.5%MgSO4处理下果实淀粉含量、SOD酶活性最高。主成分分析综合评价得分最高的是0.5%MgSO4。在实际生产中,若是想总产量最高,创造最大经济效益,可叶面喷施0.5%Mg-SO4;若是主要考虑营养价值,可叶面喷施1.5%Mg-SO4;若是想提高果实产量和品质综合价值,可叶面喷施0.5%MgSO4。
硼肥3 个浓度中,0.1%硼砂溶液处理下果实果胶含量最高,0.2%硼砂溶液处理下果实维生素C、可溶性糖含量最高,可滴定酸含量最低,0.3%硼砂溶液处理下果实纵径、横径和单果质量最大,齐墩果酸、可溶性固形物含量最高,固酸比最大。0.3%硼砂溶液主成分分析综合评价得分最高。在实际生产中,叶面喷施0.3%硼砂溶液能使果实最大程度增大增重,提高外观品质;且能使固酸比比值最高,水果风味最佳;还能最大程度综合提高果实产量和品质。
笔者在本试验中仅研究单一喷施钙、镁、硼肥的效果,对于钙、镁、硼肥配施对皱皮木瓜果实产量和品质的影响尚不明确,需今后进一步探讨。
笔者在本研究中选用的3种中微量元素钙镁硼的3个浓度都能不同程度提高皱皮木瓜果实产量和品质。叶面喷施0.3%硼砂、0.5% MgSO4、0.2% Ca-Cl2溶液肥对提升皱皮木瓜果实产量和品质效果最好。
[1] 蒋小刚,林先明,张美德,王华,郭坤元.基于ISSR 分子标记的皱皮木瓜遗传多样性分析[J].分子植物育种,2020,18(21):7239-7245.
JIANG Xiaogang,LIN Xianming,ZHANG Meide,WANG Hua,GUO Kunyuan. Genetic diversity analysis of Chaenomeles speciosa (Sweet) Nakai based on ISSR molecular markers[J]. Molecular Plant Breeding,2020,18(21):7239-7245.
[2] 郭坤元,张美德,吴育中,杨春惠,喻晓峰,林先明.不同产区皱皮木瓜性状及成分指标的比较研究[J]. 中药材,2020,43(10):2396-2400.
GUO Kunyuan,ZHANG Meide,WU Yuzhong,YANG Chunhui,YU Xiaofeng,LIN Xianming. Comparative study on the characters and composition indexes of Chaenomeles speciosa fruits in different producing areas[J].Journal of Chinese Medicinal Materials,2020,43(10):2396-2400.
[3] 岳华峰,王玉忠,张宁,刘永恒,杨超伟,杨绍彬,李相宽.中国果用木瓜栽培育种技术研究及其综合开发利用新进展[J].世界林业研究,2020,33(4):88-93.
YUE Huafeng,WANG Yuzhong,ZHANG Ning,LIU Yongheng,YANG Chaowei,YANG Shaobin,LI Xiangkuan. Recent progress in cultivation and breeding techniques and comprehensive utilization of Chaenomeles spp. in China[J]. World Forestry Research,2020,33(4):88-93.
[4] 刘世尧,冉慧,毛运芝,陈欣瑜.綦江皱皮木瓜果实有机酸特征性成分鉴定与不同发育期变化规律[J].中国农业科学,2019,52(1):111-128.
LIU Shiyao,RAN Hui,MAO Yunzhi,CHEN Xinyu. Identification of the fruit characteristic organic acids of Chaenomeles speciosa from Qijiang,Chongqing by GC-MS and their dynamic change researching during its fruit developing period[J]. Scientia Agricultura Sinica,2019,52(1):111-128.
[5] 宋双双,王晓,杜金华,刘峰,DAN Staerk,耿岩玲,崔莉.不同品种皱皮木瓜过氧化物酶特性的比较研究[J].食品工业科技,2015,36(9):152-157.
SONG Shuangshuang,WANG Xiao,DU Jinhua,LIU Feng,DAN Staerk,GENG Yanling,CUI Li.Study on the characterization of POD from different cultivars of Chaenomeles spiciosa(Sweet) Nakai[J]. Science and Technology of Food Industry,2015,36(9):152-157.
[6] REN S,SUN Q,CHEN L,ZENG S,ZHAO H,LIU M L,YANG H,MING T Q,LU J J,XU H B. Research advances in phytochemistry,pharmacology and toxicology of oleanolic acid[J].Chinese Journal of Pharmacology and Toxicology,2021,35(10):770-771.
[7] ZHU S S,QIU Z C,QIAO X G,WATERHOUSE G I N,ZHU W Q,ZHAO W T,HE Q X,ZHENG Z J.Creating burdock polysaccharide-oleanolic acid-ursolic acid nanoparticles to deliver enhanced anti-inflammatory effects:Fabrication,structural characterization and property evaluation[J]. Food Science and Human Wellness,2023,12(2):454-466.
[8] CHEN L,SUN Q,ZENG S,ZHAO H,LIU M L,YANG H,REN S,MING T Q,LU J J,XU H B. Inhibition of colorectal cancer by ursolic acid via noncanonical hedgehog signaling pathway[J]. Chinese Journal of Pharmacology and Toxicology,2021,35(10):759-760.
[9] 王晋,王玉姣,王永博,王亚茹,李晓,李勇,王迎涛.梨树微量元素营养研究进展[J].果树学报,2021,38(6):995-1003.
WANG Jin,WANG Yujiao,WANG Yongbo,WANG Yaru,LI Xiao,LI Yong,WANG Yingtao.Research progress in micronutrients in pears[J].Journal of Fruit Science,2021,38(6):995-1003.
[10] 黄艳,文露,庞亚卓,黄本义,王进,吕秀兰.喷施钙肥对‘夏黑’葡萄果实糖酸积累的影响[J].中国土壤与肥料,2020(2):166-172.
HUANG Yan,WEN Lu,PANG Yazhuo,HUANG Benyi,WANG Jin,LÜ Xiulan.Effect of spraying calcium on sugar and acid accumulation in‘Summer Black’grape[J]. Soil and Fertilizer Sciences in China,2020(2):166-172.
[11] 张伟,刘畅,杜国栋,汪晓谦.喷施钙肥对梨果实品质和石细胞代谢的影响[J].中国果树,2022(1):34-39.
ZHANG Wei,LIU Chang,DU Guodong,WANG Xiaoqian. Effects of spraying calcium fertilizer on fruit quality and stone cell mmetabolism of pear[J].China Fruits,2022(1):34-39.
[12] 刘鑫铭,陈婷,雷龑.不同钙肥及其施用方式对巨峰葡萄果实品质的影响[J].福建农业学报,2021,36(11):1295-1301.
LIU Xinming,CHEN Ting,LEI Yan. Effects of calcium fertilizers and application methods on quality of Kyoho grapes[J]. Fujian Journal of Agricultural Sciences,2021,36(11):1295-1301.
[13] 李洪有,张素芝,陈庆富.玉米ZmMGT12 基因的表达分析及拟南芥遗传转化[J].分子植物育种,2018,16(18):5940-5946.
LI Hongyou,ZHANG Suzhi,CHEN Qingfu. Expression analysis of maize ZmMGT12 gene and genetic transformation of Arabidopsis[J].Molecular Plant Breeding,2018,16(18):5940-5946.
[14] 李延,刘星辉,庄卫民.植物Mg 素营养生理的研究进展[J].福建农业大学学报(自然科学版),2000,29(1):74-80.
LI Yan,LIU Xinghui,ZHUANG Weiming.Advances in magnesium nutritional physiology in plants[J]. Journal of Fujian Agriculture and Forestry University(Natural Science Edition),2000,29(1):74-80.
[15] 马晓丽,刘雪峰,杨梅,颜秋杨,袁项成,向苹苇.镁肥对葡萄叶片糖、淀粉和蛋白质及果实品质的影响[J].中国土壤与肥料,2018(4):114-120.
MA Xiaoli,LIU Xuefeng,YANG Mei,YAN Qiuyang,YUAN Xiangcheng,XIANG Pingwei. Effects of magnesium application on the leaves sugar,starch and protein content and the fruit quality of grapes[J]. Soil and Fertilizer Sciences in China,2018(4):114-120.
[16] 张世祺,程琛,林伟杰,李歆博,朱东煌,陈立松,郭九信,李延.‘琯溪蜜柚’园土壤和树体的硼素营养与果实粒化关系分析[J].果树学报,2019,36(4):468-475.
ZHANG Shiqi,CHENG Chen,LIN Weijie,LI Xinbo,ZHU Donghuang,CHEN Lisong,GUO Jiuxin,LI Yan.Analysis of boron nutrition status in soils and trees and its relationship with fruit granulation in‘Guanximiyou’pomelo[J]. Journal of Fruit Science,2019,36(4):468-475.
[17] 杨俊,伏晓科,周建华,解兰,赵建聪,张彬,刘明洁.树冠喷施硼肥和钙肥对‘黄金蜜柚’果实品质的影响[J].中国南方果树,2018,47(5):5-8.
YANG Jun,FU Xiaoke,ZHOU Jianhua,XIE Lan,ZHAO Jiancong,ZHANG Bin,LIU Mingjie. Effect of folia application of born and calcium on fruit quality of‘Huangjinmiyou’pumelo[J].South China Fruits,2018,47(5):5-8.
[18] 王丽娟,杨晓玉.不同叶面肥对番茄幼苗生长、干物质积累及耐旱性的影响[J].河南农业科学,2011,40(4):113-116.
WANG Lijuan,YANG Xiaoyu. Responses of growth,dry matter accumulation and drought tolerance of tomato seedlings to different foliar fertilizers treatment[J].Journal of Henan Agricultural Sciences,2011,40(4):113-116.
[19] 王炎,李振宙,周良,王雨,孔德章,黄小燕,刘昌敏,陈庆富,黄凯丰.叶面喷施硼肥对苦荞根际土壤养分、植株生长及产量的影响[J].南方农业学报,2018,49(2):253-257.
WANG Yan,LI Zhenzhou,ZHOU Liang,WANG Yu,KONG Dezhang,HUANG Xiaoyan,LIU Changmin,CHEN Qingfu,HUANG Kaifeng.Effects of foliar application of boron fertilizer on rhizosphere soil nutrient,plant growth and yield of Tartary buckwheat[J].Journal of Southern Agriculture,2018,49(2):253-257.
[20] 赵银平,赵增寿,孙利萍,高敏丽,史亮.叶面肥对设施番茄产量、品质及经济效益的影响[J].中国瓜菜,2022,35(1):60-64.
ZHAO Yinping,ZHAO Zengshou,SUN Liping,GAO Minli,SHI Liang. Effects of foliar fertilizer on yield,quality and economic benefit of green-house tomato[J]. China Cucurbits and Vegetables,2022,35(1):60-64.
[21] 谢英添,马江黎,吴文丽,孙兴祥,顾春荣.7 种不同叶面肥对西瓜生长、产量和品质的影响[J].中国瓜菜,2021,34(12):63-67.
XIE Yingtian,MA Jiangli,WU Wenli,SUN Xingxiang,GU Chunrong.Effects of foliar fertilizers on growth,yield and quality of watermelon[J]. China Cucurbits and Vegetables,2021,34(12):63-67.
[22] 李波.施肥对皱皮木瓜产量及果实品质影响[D].泰安:山东农业大学,2016.
LI Bo. Influence of fertilization on yield and quality of Chaenomeles speciosa fruit[D].Taian:Shandong Agricultural University,2016.
[23] 刘春艳,谢岳,李栋梅,张静,王振平.基于主成分分析的酿酒葡萄果实评价[J].北方园艺,2017(11):13-17.
LIU Chunyan,XIE Yue,LI Dongmei,ZHANG Jing,WANG Zhenping. Evaluation on fruit quality of wine grape based on Principal Component Analysis[J]. Northern Horticulture,2017(11):13-17.
[24] 孟凡丽,苏晓田,杨伟,张素敏.不同叶面肥对新嘎拉苹果果实品质的影响[J].北方园艺,2009(10):107-109.
MENG Fanli,SU Xiaotian,YANG Wei,ZHANG Sumin.The effect different foliar fertilizer treatment on fruit quality of New Gala apples[J].Northern Horticulture,2009(10):107-109.
Effect of foliar fertilizer on fruit yield and quality of Chaenomeles speciosa(Sweet)Nakai based on principal component analysis