山楂是一种原产于中国的特色水果[1],作为中国特有的药食同源食品,富含维生素、矿物质营养元素、有机酸、果胶和黄酮类化合物,具有软化血管、开胃消食、活血化瘀、强心降脂等作用[2-4]。研究还发现山楂中含有的黄酮类物质可清除自由基,有助于增强机体免疫力,延缓衰老[5-6]。黄山楂金如意是从野生山楂的芽变中选育的优质早熟新品种,抗病丰产、适应性强,果实色泽金黄,酸度低、甜度高、香糯适口、可直接大量鲜食,营养价值较传统山楂高3~5倍。然而,鲜果货架期仅15 d,贮藏过程中,果实容易因水分蒸发、微生物感染等出现萎蔫、腐烂等问题,严重影响山楂鲜食口感和营养价值[7]。因此,开发绿色、有机的高性能保鲜涂膜材料改善山楂鲜果贮藏品质,具有深远的研究意义。
常见的保鲜涂膜材料以有机高分子为原料,通过形成致密的交联网络结构,对果蔬起到物理阻隔作用,降低微生物侵染,抑制水分蒸发和氧化,延长果蔬贮藏时间[8-10]。壳聚糖(chitosan,Ch)是一类源于虾蟹壳的天然阳离子多糖,具有储量丰富、成膜性好、可降解、生物相容性好等优点[11]。将壳聚糖涂膜应用到番茄、葡萄、草莓等多种果蔬,保鲜效果良好[12-15]。但壳聚糖涂膜力学性能差,抗菌和抗氧化性能弱[16],通过添加植物精油可以提高涂膜的抗菌能力[17-18]。精油的疏水特性还可以提高涂膜的耐水性。但精油也存在分散性差、与膜基材界面相容性弱等问题,造成涂膜内部结构不均匀。利用刚性纳米颗粒与精油复合形成皮克林乳液,可以提高精油分散性和稳定性[19]。同时,纳米颗粒表面的活性基团可以与膜基材之间形成多重相互作用,提高精油与膜基材间界面相容性,改善涂膜的力学性能。
笔者在本研究中选取壳聚糖为成膜基材,利用咖啡酸(caffeic acid,CA)对纤维素纳米晶(cellulose nanocrystals,CNC)进行表面改性得到咖啡酸表面修饰的纤维素纳米晶(CA@CNC),提高CNC 表面活性官能团密度[20]。将改性后的CNC 包裹肉桂精油(cinnamon essential oil,CEO)形成皮克林乳液,进一步将乳液与壳聚糖复合构建纤维素纳米晶-肉桂精油-壳聚糖复合保鲜涂膜(CA@CNC-CEO-Ch),考查乳液添加量对制备的复合涂膜的结构稳定性、力学强度、抗菌和抗氧化等性能的影响,优化复合涂膜性能。将制备的CA@CNC-CEO-Ch 涂膜用于黄果山楂保鲜。探究复合涂膜材料对贮藏过程中山楂果实硬度、可溶性固形物含量、可滴定酸含量的影响,为改善山楂果实贮藏品质提供新思路。
试验用新鲜黄山楂金如意采摘于元氏县轩鑫农业生态园有限公司果园。季铵化壳聚糖(食品级,取代度>1.2)和咖啡酸(食品级,纯度>90%)购自西安秋禾生物科技有限公司,醋酸、氢氧化钠、乙醇等购自中国上海国药集团化学试剂有限公司,均为分析纯级。
MS7-H550-Pro 磁力搅拌器;GZ 机械搅拌器;DDS-11A电导率仪;GY-1水果硬度计;ES电子分析天平;DK-S12恒温水浴锅;温湿度记录仪。
称取CNC 分散液(3%)100 g,加入3 g CA 后调节溶液pH 值至9.0,室温下搅拌12 h 后用蒸馏水透析24 h,冻干后得到CA@CNC 固体粉末。将1 g CA@CNC冻干粉末分散于15 mL水中,待分散均匀后缓慢滴加肉桂精油0.5 mL,利用超声波细胞破碎仪处理15 min即可得到肉桂精油皮克林乳液。
将6 g壳聚糖溶解于294 g 1%的醋酸水溶液中,室温下搅拌4 h,静置脱泡。将上述制备好的皮克林乳液加入壳聚糖溶液中,搅拌均匀后倒入聚苯乙烯培养皿中在60 ℃干燥12 h得到CA@CNC-CEO-Ch复合膜(表1)。涂膜对黄山楂的保鲜效果测试参照之前的研究[17]。将新鲜黄山楂果实洗净擦拭干净后浸没于保鲜溶液中2 min 后取出自然风干,装入聚乙烯保鲜袋中置于20 ℃、相对湿度60%环境下贮藏。改变皮克林乳液添加量得到不同组分构成的涂膜,参照上述方法用于黄山楂果实保鲜。
表1 涂膜材料制备参数
Table 1 Preparation Parameters of coating materials
注:体积分数为肉桂精油或皮克林乳液体积与壳聚糖溶液体积的比值。“-”表示无。
Note:The volume fraction is the ratio of the volume of cinnamon essential oil or pickering lotion to the volume of chitosan solution.“-”means none.
样品编号Sample No.样品名称Sample ID w(壳聚糖)Chitosan mass fraction/%φ(肉桂精油)Cinnamon essential oil volume fraction/φ(皮克林乳液)Pickering emulsion volume fraction/%1 2 3 4 5 Ch CEO-Ch CA@CNC-CEO-Ch-1 CA@CNC-CEO-Ch-2 CA@CNC-CEO-Ch-3 2.0 2.0 2.0 2.0 2.0%-5.0--1.0 2.0 5.0---
将涂膜裁成哑铃状,利用万能力学试验机测试其力学性能,拉伸速率为1 mm·min-1;利用流变仪对溶液黏度进行测试,应变值设为10%;用抑菌圈法测试不同涂膜对3 种山楂易感菌种沙门氏菌、枯草芽孢杆菌、黑曲霉菌的抗菌性;称重测定山楂果实贮藏过程中质量变化,计算得到失重率(%)=(初始质量-测试时质量)/初始质量×100;统计贮藏过程中果实腐烂情况得到果实腐烂率(%)=腐烂果实数目/果实总量×100;采用硬度计测定黄山楂果实硬度;可溶性固形物含量采用手持式糖度计测定;维生素C含量采用2,6—二氯靛酚滴定法测定。利用MTT法表征涂膜材料的细胞毒性。将293T细胞置于24孔板中培养24 h(8×103个·孔-1,37 ℃),添加涂膜样品冻干粉末,共培养24 h 后加入MTT 染料,利用酶标仪测定溶液在450 nm处的吸光度,计算得到细胞存活率。
称取黄山楂2 kg,晒干后粉碎置于无水乙醇中浸泡24 h,过滤后减压悬蒸得到黄山楂浸提液。用无水乙醇将浸提液稀为1 mg·mL-1的溶液。向溶液中加入0.2 mmol·L-1 DPPH溶液0.5 mL,混合均匀后在室温下反应1 h,测定溶液在波长517 nm 处的吸光度,计算得到自由基清除率。DPPH 自由基清除率(%)=[1-(A1-A2)/A0]×100,其中A1为加入样品后与DPPH 混合液吸光度;A2为样品与无水乙醇混合液吸光度;A0为DPPH蒸馏水溶液吸光度。
图1-A 为制备的CA@CNC-CEO-Ch 复合涂膜的结构。CA@CNC 作为刚性纳米颗粒包覆在肉桂精油表面形成皮克林乳液,起到稳定精油结构的作用。经过咖啡酸修饰的CNC 表面含有丰富的邻苯二酚基团、羟基、羧基等活性基团,可以与壳聚糖分子上的氨基形成静电作用、阳离子-π 键,提高精油与壳聚糖分子间界面相互作用。如图1-B 所示,与肉桂精油相比,制备的CA@CNC-CEO 乳液粒径降低至160 nm,且随着贮藏时间延长至第10 天,粒径未发生明显变化,表现出良好的稳定性。
图1 CA@CNC-CEO-Ch 涂膜的结构
Fig.1 Structure of the CA@CNC-CEO-Ch film
A.涂膜结构示意图;B.肉桂精油和皮克林乳液不同储存时间下的粒径。
A.Schematic diagram of film structure;B.Particle size of cinnamon essential oil and pickering emulsion under different storage time.
当黏度过高或过低时,溶液成膜性差,在果实表面分布不均匀,降低涂膜保鲜效果[21]。如图2-A所示,肉桂精油的加入导致溶液黏度明显下降。而随着皮克林乳液添加量提高,乳液对壳聚糖分子的交联效果增强,溶液黏度显著增高[22]。当转速提高时,溶液黏度显著降低,表现出剪切变稀的特点,方便涂膜液在使用过程中浸渍和喷涂。进一步考察皮克林乳液对涂膜拉伸性能的影响。如图2-B 所示,壳聚糖涂膜(Ch)的最大拉伸强度为17.1 MPa,断裂伸长率为3.6%。肉桂精油造成涂膜内部结构不均匀,破坏了壳聚糖分子间氢键作用,导致CEOCh 涂膜的拉伸强度降低至13.8 MPa。皮克林乳液作为交联点可以提高涂膜内部高分子网络交联密度,避免应力集中,提高涂膜的力学性能。随着乳液添加量提高,制备的涂膜拉伸强度和韧性逐渐增强,断裂应力最高可达30.3 MPa。断裂伸长率提高至4.1%。
图2 乳液对溶液黏度和涂膜力学性能的影响
Fig.2 Effect of emulsion addition on viscosity and mechanical properties of coating solution
A.涂膜溶液剪切黏度;B.涂膜材料的拉伸-应变曲线。
A.Shear viscosity of coating solution;B.Tensile strain curve of coating material.
气体阻隔能力对涂膜材料保鲜性能的发挥具有重要意义[23]。肉桂精油具有较强疏水性,但由于自身分散性较差,与壳聚糖分子弱界面相互作用,导致涂膜内部因相分离而变得疏松,使CEO-Ch 涂膜的水蒸气透过量提高,阻水能力下降。随着精油与CA@CNC复合形成皮克林乳液,精油分散性和结构稳定性提高,与壳聚糖分子间界面相容性改善。随着皮克林乳液添加量提高,涂膜致密程度得到提高,对水蒸气和氧气的阻隔能力显著增强。如图3-A所示,CA@CNC-CEO-Ch-3 的气体阻隔能力最强,涂膜的水蒸气透过率从最高的1660 g·m-2·d-1降低至668 g·m-2·d-1,氧气透过率从13 160 g·m-2·d-1降低至672 g·m-2·d-1,表明制备的CA@CNC-CEO-Ch 复合涂膜可以显著抑制水蒸气和氧气透过。
图3 涂膜材料的气体阻隔能力和抗氧化性能
Fig.3 Gas barrier capacity and antioxidant activity of the coating material
咖啡酸上的邻苯二酚基团具有优异的抗氧化活性,可以提升涂膜的抗氧化能力,增强涂膜保鲜效果。通过测试涂膜DPPH自由基清除率探究其抗氧化能力。如图3-B所示,肉桂精油加入后,涂膜的自由基清除率从25.9%增加至32.2%。随着皮克林乳液添加量提高,涂膜抗氧化能力增强。CA@CNCCEO-Ch 复合涂膜的自由基清除率逐渐提高至70.6%,表明咖啡酸可以与肉桂精油协同提高涂膜的抗氧化性能。
肉桂精油具有优异的抗菌活性,可用于改善涂膜的抗菌性能[24]。与Ch 涂膜相比,CEO-Ch 对易感菌种-沙门氏菌、枯草芽孢杆菌、黑曲霉菌的抑制作用更加明显。随着乳液添加量提高,CA@CNCCEO-Ch涂膜对三类易感菌种的抑菌圈进一步增加至25.4和14.3 mm,增幅超过25%。这主要是由于皮克林乳液的形成提高了精油的分散性和稳定性。而乳液表层CNC的包覆作用以及咖啡酸分子与壳聚糖间的多重相互作用可以改善精油的释放性能,防止流失和暴释现象,提高涂膜抗菌性能。此外,涂膜料还表现出良好的生物相容性(图4-A)。如图4-B 所示,当与细胞进行共培养时,复合涂膜仍未表现出明显的细胞毒性,细胞存活率可保持在92%以上。
图4 涂膜材料的抑菌性能和细胞毒性
Fig.4 Antibacterial properties and cytotoxicity of the coating materials
山楂采摘后由于水分蒸发导致外表发生萎蔫褶皱,口感失去脆性,严重影响其经济价值。涂膜内部致密的交联网络可以起到物理阻隔作用,减缓水分散失。涂膜中的壳聚糖和咖啡酸具有良好的亲水性,起到保湿作用。精油的疏水特性也可以抑制果实水分蒸发。对贮藏不同时间的山楂果实的失重率进行测试,考察涂膜的保湿效果。如图5-A所示,随着贮藏时间延长,山楂果实失重率逐渐升高。相较于空白组,经过涂膜处理的黄山楂果实失重率显著降低。随着涂膜中皮克林乳液添加量提高,CA@CNC-CEO-Ch-3 对抑制黄山楂水分流失效果最佳。这主要是由于涂膜交联密度和疏水性随着乳液含量的提高而增加,提高了涂膜对水分的阻隔能力[25]。同时,乳液稳定性的增加还可以提高涂膜力学性能,避免翘曲、开裂,提高保鲜效果。
图5 不同处理对黄山楂失重率和腐烂率的影响
Fig.5 The weight loss rate and decay rate of Crataegus pinnatifida Bge.var.major N.E.Br with different treatments methods.
果实腐烂率是考察涂膜保鲜性能最直观的指标。如图5-B所示,与空白组相比,经过涂膜处理的黄山楂果实腐烂率明显下降。空白组在第5天开始出现腐烂,在第40 天时腐烂率超过60%。利用Ch涂膜处理的黄山楂果实第10天出现腐烂,在第40天时腐烂率降低至45%。肉桂精油的添加进一步延缓黄山楂果实的腐烂,提高涂膜防腐效果。与Ch 和CEO-Ch 相比,CA@CNC-CEO-Ch 复合涂膜处理的黄山楂果实延后至第15天开始腐烂,第40天腐烂率降低至30%,表明CA@CNC-CEO-Ch复合涂膜可以对黄山楂进行有效保护。这是由于覆盖在黄山楂果实表面的涂膜对外部微生物起物理阻隔作用,抑制霉菌侵入,同时肉桂精油的抗菌性进一步降低黄山楂果实被微生物侵染的概率,减缓黄山楂果实的软化和腐烂[26]。
进一步考察涂膜对黄山楂果实硬度的影响。如图6-A 所示,黄山楂鲜果初始硬度为10.2 kg·cm-2。随着贮藏时间延长,山楂果实硬度显著下降,贮藏40 d 后硬度为3.2 kg·cm-2。利用Ch 涂膜处理的黄山楂果实在贮藏40 d 后果实硬度为4.6 kg·cm-2,而经CA@CNC-CEO-Ch-3 复合涂膜处理后的山楂果实在贮藏40 d后硬度最高,可达5.4 kg·cm-2,表明涂膜的保鲜效果显著提升。
图6 不同处理对黄山楂果实硬度、可溶性固形物、可滴定酸和维生素C 含量的影响
Fig.6 The fruit hardness,soluble solid,titratable acid and vitamin C content of Crataegus pinnatifida Bge.var.major N.E.Br with different treatment methods
黄山楂果实在贮藏过程中由于自身代谢作用会消耗养分,导致果实内可溶性固形物含量下降,因此可溶性固形物含量可作为衡量果实新鲜程度的一项重要指标。如图6-B所示,在贮藏前期,山楂果实中的可溶性固形物含量缓慢上升,在第10天时达到峰值,之后迅速下降。未经涂膜处理的山楂在贮藏40 d后可溶性固形物含量下降至10.6%。与空白组相比,经Ch涂膜处理的黄山楂果实的可溶性固形物含量为11.4%。随着乳液含量提高,CA@CNC-CEOCh-3 复合涂膜处理后黄山楂果实中的可溶性固形物含量最高,达到13.9%。这是由于随着交联度的提高,涂膜材料密度逐渐提高,更有效地封闭山楂表皮的气孔,抑制呼吸作用,减缓可溶性固形物的消耗。
可滴定酸(titratable acid,TA)和维生素C 是影响水果风味和营养价值的重要物质,其含量可以直接反映水果的贮藏品质。在贮藏过程中黄山楂果实会通过自身代谢消耗可滴定酸和维生素C,导致果实口感变差和营养价值降低。由图6-C 可知,黄山楂果实的可滴定酸含量随着贮藏时间的延长逐渐降低。在贮藏40 d 后,空白组可滴定酸含量降低至7.6%。经过Ch 涂膜处理后黄山楂果实的可滴定酸含量可达8.1%。CA@CNC-CEO-Ch 复合涂膜处理后黄山楂果实可滴定酸含量进一步得到改善。随着涂膜内乳液含量提高,经过CA@CNC-CEO-Ch-3涂膜处理后的黄山楂果实在贮藏40 d后可滴定酸含量可达9.4%。如图6-D 所示,与空白组相比,经过CA@CNC-CEO-Ch 复合涂膜处理的黄山楂果实维生素C 含量增加至71.2 mg·100 g-1,增幅可达40%。这是由于复合涂膜抗氧化和抗菌性能的提升抑制了贮藏过程中维生素C 和可滴定酸的消耗,有利于改善黄山楂风味和口感。
黄山楂在采后贮藏中由于呼吸作用、水分蒸发等代谢活动以及外部微生物侵染等容易变质,导致果实萎蔫、腐烂、口感下降、营养成分流失,降低了黄山楂的食用和经济价值[27]。近些年壳聚糖基复合涂膜在果蔬采后保鲜领域的应用受到广泛关注。例如,利用壳聚糖及其衍生物构筑涂膜材料,通过喷涂、浸泡等处理方法,可用于葡萄、香蕉、柑橘、番茄等多种作物的采后贮藏,效果显著[9,28-29]。研究还发现,在壳聚糖涂膜中添加多酚、乳液等活性物质,可以改善涂膜的抗菌、抗氧化性能,进一步提高涂膜的保鲜效果[30-31]。在本研究中,利用天然多酚CA修饰CNC 得到CA@CNC,将其用于稳定肉桂精油得到皮克林乳液。利用制备的皮克林乳液与壳聚糖构筑保鲜涂膜。结果表明随着乳液添加量提高,涂膜气体阻隔性能、力学性能、抗菌能力等逐渐提高,对黄山楂保鲜效果增强。但研究表明皮克林乳液添加量过高会使涂膜强度、韧性和气体阻隔性能下降[32]。这表明皮克林乳液对涂膜性能的影响机制是复杂的,与乳液内部油相构成、表层组分和成膜基质等多种因素有关。因此在构筑皮克林乳液-壳聚糖复合涂膜时,还应将各组分浓度梯度更加细分,详细研究各组分间相互作用机制,充分探究涂膜材料结构与性能间的构效关系,实现对涂膜性能的精确调控。
涂膜材料的力学性能、抗菌性能、抗氧化性能与其保鲜效果有重要关系[33]。随着乳液添加量增加,涂膜内交联密度升高,力学性能增强。组成涂膜的壳聚糖、肉桂精油均具有良好的抗菌活性,可以防止外部微生物侵染。CA 含有的邻苯二酚基团可以提高涂膜的抗氧化性能。CA@CNC 引入后对精油的分散性和界面相容性具有明显改善。这些因素协同增效,改善涂膜的保鲜性能。同时,组成涂膜的原材料均为来源于动植物的天然组分,具有可再生、易获得、无毒副作用等特点,因此制备的涂膜也具有安全环保的优势。笔者在本研究中提出的高性能涂膜材料的制备方法具有一定的普适性。后续研究还会对该体系进一步优化,通过尝试利用其他种类的多酚、生物质纳米材料和植物精油构筑新型皮克林乳液,拓展该体系的应用,主要包括:(1)通过改变多酚类型,旨在筛选出性能更加优异的天然多酚化合物,进一步提高乳液稳定性和涂膜抗氧化性能;(2)对壳聚糖进行改性制备得到壳聚糖衍生物,提高涂膜基材性能;(3)选取不同种类的精油用于果蔬保鲜,考察保鲜效果。此外,有研究表明由于精油流失速率过快导致果蔬贮藏期缩短[34]。尽管本研究中皮克林乳液的成功制备可以增强精油与涂膜基质间的相互作用,提高精油的抗流失性,但涂膜流失速率与保鲜性能间的关系仍有待详细测试和研究。
壳聚糖、多酚和植物精油在食品保鲜领域应用广泛,但之前的研究主要侧重于选择其中的一种或者两种构建保鲜材料。对于植物精油的利用也以直接添加的方式为主。尽管本研究通过多酚修饰精油提高其保鲜性能,并与壳聚糖进行协同构建复合涂膜材料,但各组分间协同作用机制仍有待研究。同时,为了拓展该涂膜果蔬产品保鲜中的实际应用,后续在对涂膜保鲜性能的研究中,还需要着重考虑不同果蔬性质、果蔬成熟度、贮藏环境等对涂膜保鲜效果的影响,并针对这些差异化因素,结合涂膜形成机制,调整涂膜组成和结构,实现涂膜在多种品类果蔬产品的普适性应用,提高其实际应用价值。
综上所述,CA@CNC-CEO-Ch涂膜可以显著提高金如意黄山楂采后贮藏品质。其中以壳聚糖浓度2%,精油体积分数5%制备的涂膜性能最优异,可以有效抑制黄山楂萎蔫和腐烂,降低果实中营养成分消耗,延缓黄山楂采后衰老。
[1] 于舒雁,田硕.山楂中黄酮的提取工艺及其调节糖脂代谢的活性研究[J].中国调味品,2022,47(2):182-185.YU Shuyan,TIAN Shuo. Study on the extraction technology of flavonoids from hawthorn and their activity of regulating glycolipid metabolism[J].China Condiment,2022,47(2):182-185.
[2] 张浣悠,邓秩童,黄嘉泳,刘袆帆,马路凯.山楂黄酮的保健功效及提取工艺研究进展[J]. 食品研究与开发,2021,42(12):212-217.ZHANG Huanyou,DENG Zhitong,HUANG Jiayong,LIU Yifan,MA Lukai.Research progress on health benefits and extraction techniques of flavonoids from hawthorn[J]. Food Research and Development,2021,42(12):212-217.
[3] TENG X X,ZHANG M,MUJUMDAR A S,WANG H Q. Inhibition of nitrite in prepared dish of Brassica chinensis L. during storage via non-extractable phenols in Crataegus pinnatifida Bge.var.major N.E.Br.pomace:A comparison of different extraction methods[J/OL]. Food Chemistry,2022,393:133344.DOI:10.1016/j.foodchem.2022.133344.
[4] 权赫秀,朱穆峰,姚凤云,李露,谷丽菲,邵峰,韩英.山楂有机酸对大鼠心肌缺血再灌注损伤的保护作用[J].时珍国医国药,2021,32(3):513-516.QUAN Hexiu,ZHU Mufeng,YAO Fengyun,LI Lu,GU Lifei,SHAO Feng,HAN Ying. Protective effect of hawthorn organic acid on myocardial ischemia/reperfusion injury in rats[J]. Lishizhen Medicine and Materia Research,2021,32(3):513-516.
[5] 谢敏,张宏力.山楂果汁的加工工艺研究[J].安徽农业科学,2012,40(18):9878-9879.XIE Min,ZHANG Hongli. Study on the processing technology of hawthorn juice[J]. Journal of Anhui Agricultural Science,2012,40(18):9878-9879.
[6] 赵帅,郝二伟,杜正彩,谢金玲,韦玮,秦健峰,侯小涛,邓家刚.广山楂的化学成分、药理作用与质量控制研究进展[J].中成药,2020,42(1):169-175.ZHAO Shuai,HAO Erwei,DU Zhengcai,XIE Jinling,WEI Wei,QIN Jianfeng,HOU Xiaotao,DENG Jiagang. Research progress on chemical constituents,pharmacological effects and quality control of Crataegus cantonensis[J]. Chinese Traditional Patent Medicine,2020,42(1):169-175.
[7] 王亮,赵迎丽,冯志宏,王春生.薄膜包装结合乙烯吸收剂对山楂果实生理和果肉褐变的影响[J].食品科学,2014,35(22):325-329.WANG Liang,ZHAO Yingli,FENG Zhihong,WANG Chunsheng. Effect of film packaging combined with ethylene absorbent on postharvest physiology and browning of hawthorns[J].Food Science,2014,35(22):325-329.
[8] MO F,LIN B F,LAI F G,XU C H,ZOU H Z.A green modified microsphere of chitosan encapsulating dimethyl fumarate and cross-linked by vanillin and its application for litchi preservation[J]. Industrial & Engineering Chemistry Research,2016,55(16):4490-4498.
[9] 杜鸿宇,陈湘宁,冯晓光.壳聚糖复合涂膜保鲜剂对采后青圆椒保鲜效果的研究[J].保鲜与加工,2022,22(6):21-27.DU Hongyu,CHEN Xiangning,FENG Xiaoguang. Study on preservation effect of chitosan composite coatingpreservative on postharvest bell peppers[J]. Storage and Process,2022,22(6):21-27.
[10] 邹运乾,林子桢,许让伟,程运江.替代柑橘聚乙烯薄膜单果套袋的涂膜剂研发及保鲜效果评价[J].中国农业科学,2022,55(12):2398-2412.ZOU Yunqian,LIN Zizhen,XU Rangwei,CHENG Yunjiang.Development and evaluation of a coating substitute for individual polyethylene film packaging of citrus fruit[J]. Scientia Agricultura Sinica,2022,55(12):2398-2412.
[11] WEI Z,YANG J H,LIU Z Q,XU F,ZHOU J X,ZRÍNYI M,OSADA Y,CHEN Y M. Novel biocompatible polysaccharidebased self-healing hydrogel[J].Advanced Functional Materials,2015,25:1352-1359.
[12] WANG H X,QIAN J,DING F Y. Emerging chitosan-based films for food packaging applications[J]. Journal of Agricultural and Food Chemistry,2018,66(2):395-413.
[13] 王锋,赵旗峰,张晓萍,杨青珍.壳聚糖-纳米ZnO-褪黑素复合涂膜对黄瓜冷害的影响及其机制研究[J].食品与发酵工业,2022,48(9):201-207.WANG Feng,ZHAO Qifeng,ZHANG Xiaoping,YANG Qingzhen.Effect of chitosan-nano-ZnO-melatonin composite coating on cucumber chilling injury and mechanism[J]. Food and Fermentation Industries,2022,48(9):201-207.
[14] LIU Q,LI Y,XING S,WANG L,YANG X D,HAO F,LIU M X.Genipin-crosslinked amphiphilic chitosan films for the preservation of strawberry[J]. International Journal of Biological Macromolecules,2022,213(31):804-813.
[15] SHANKAR S,KHODAEI D,LACROIX M. Effect of chitosan/essential oils/silver nanoparticles composite films packaging and gamma irradiation on shelf life of strawberries[J/OL].Food Hydrocolloids,2021,117:106750. DOI:10.1016/j.foodhyd.2021.106750.
[16] XU H,FANG Z H,TIAN W Q,WANG Y F,YE Q F,ZHANG L N,CAI J. Green fabrication of amphiphilic quaternized β-chitin derivatives with excellent biocompatibility and antibacterial activities for wound healing[J/OL]. Advanced Materials,2018,30(29):1801100.DOI:10.1002/adma.201801100.
[17] LIU J,SONG F X,CHEN R Y,DENG G T,CHAO Y X,YANG Z H,WU H,BAI M,ZHANG P,HU Y.Effect of cellulose nanocrystal-stabilized cinnamon essential oil pickering emulsions on structure and properties of chitosan composite films[J/OL]. Carbohydrate Polymers,2022,275:118704. DOI:10.1016/j.carbpol.2021.118704.
[18] SUN X X,WU Q L,PICHA D H,FERGUSON M H,NDUKWE I E,AZADI P.Comparative performance of bio-based coatings formulated with cellulose,chitin,and chitosan nanomaterials suitable for fruit preservation[J/OL].Carbohydrate Polymers,2021,259:117764.DOI:10.1016/j.carbpol.2021.118704.
[19] ZHAO S S,JIA R Y,YANG J,DAI L,JI N,LIU X,SUN Q J.Development of chitosan/tannic acid/corn starch multifunctional bilayer smart films as pH-responsive actuators and for fruit preservation[J].International Journal of Biological Macromolecules,2022,205(30):419-429.
[20] 张宇,陈泽世,王浩,陈上岑.壳聚糖-氢化咖啡酸接枝共聚物的制备及其应用[J].食品科技,2021,46(8):233-237.ZHANG Yu,CHEN Zeshi,WANG Hao,CHEN Shangcen.Preparation and application of chitosan-hydrocaffeic acid grafting copolymer[J].Food Science and Technology,2021,46(8):233-237.
[21] MA Q Y,DU L,YANG Y,WANG L J. Rheology of film-forming solutions and physical properties of tara gum film reinforced with polyvinyl alcohol(PVA)[J].Food Hydrocolloids,2017,63:677-684.
[22] SONG X R,CHAI Z H,ZHU Y,LI C L,LIANG X Q.Preparation and characterization of magnetic chitosan-modified diatomite for the removal of gallic acid and caffeic acid from sugar solution[J].Carbohydrate Polymers,2019,219:316-327.
[23] 赵冬梅,初小宇,魏丽娜,贾连莹,郑秀君.纳米纤维素在食品包装材料中的应用研究进展[J].高分子通报,2021,34(11):11-20.ZHAO Dongmei,CHU Xiaoyu,WEI Lina,JIA Lianying,ZHENG Xiujun.Application and research progress of nano cellulose in food packaging materials[J]. Polymer Bulletin,2021,34(11):11-20.
[24] HUANG B Q,ZHANG Z G,DING N S,ZHUANG Y H,ZHANG G G,FEI P.Preparation of acylated chitosan with caffeic acid in non-enzymatic and enzymatic systems:Characterization and application in pork preservation[J]. International Journal of Biological Macromolecules,2022,194:246-253.
[25] 王艳,汤卫东,张亮.壳聚糖+植酸复合涂膜对鲜切哈密瓜保鲜效果的影响[J].食品科技,2022,47(4):48-53.WANG Yan,TANG Weidong,ZHANG Liang. Preservation effect of natural film with chitosan combining phytic acids on fresh- cutting cantaloupe[J]. Food Science and Technology,2022,47(4):48-53.
[26] 刘晓珊,来昊,严兆兰,张岩,冯艳丽,余翔.基于壳聚糖的复配天然保鲜剂对鲜切莲藕的冷藏保鲜效果[J].湖北师范大学学报(自然科学版),2022,42(2):27-34.LIU Xiaoshan,LAI Hao,YAN Zhaolan,ZHANG Yan,FENG Yanli,YU Xiang. Effect of chitosan-based compound natural preservative on preserving quality of fresh-cut lotus root slices during refrigeration[J]. Journal of Hubei Normal University(Natural Science),2022,42(2):27-34.
[27] 李朝阳,聂宗省,孙腾飞,吕慧,冉昆.金如意黄山楂新品种选育及优质高效栽培技术[J].果树资源学报,2021,2(2):83-85.LI Chaoyang,NIE Zongsheng,SUN Tengfei,LÜ Hui,RANG Kun. Breeding of‘Jinruyi’yellow hawthorn variety and highquality and efficient cultivation technology[J]. Journal of Fruit Resources,2021,2(2):83-85.
[28] 何丽芳,阳美,刘最,王芳宇,宾冬梅,陈晓华.芒果皮提取液与羧甲基壳聚糖复合涂膜对葡萄保鲜效果的影响[J].食品科技,2018,43(10):50-54.HE Lifang,YANG Mei,LIU Zui,WANG Fangyu,BIN Dongmei,CHEN Xiaohua. Effect of mango peel extract combined with carboxymethyl chitosan composite coating on grape preservation[J].Food Science and Technology,2018,43(10):50-54.
[29] DUARTE L G R,PICONE C S F.Antimicrobial activity of lactoferrin-chitosan-gellan nanoparticles and their influence on strawberry preservation[J/OL]. Food Research International,2022,159:111586.DOI:10.1016/j.foodres.2022.111586.
[30] WANG H S,GUO L,LIU L,HAN B Q,NIU X D.Composite chitosan films prepared using nisin and Perilla frutescense essential oil and their use to extend strawberry shelf life[J/OL].Food Bioscience,2021,41:101037.DOI:10.1016/j.fbio.2021.101037.
[31] 龚守富,曹蒙,梁静,靳羽慧,李建芳,周枫.葫芦巴精油联合壳聚糖复合膜对鸡蛋保藏效果的影响[J]. 中国食品添加剂,2022,33(6):102-108.GONG Shoufu,CAO Meng,LIANG Jing,JIN Yuhui,LI Janfang,ZHOU Feng. Effect of fenugreek essential oil combined with chitosan composite film on egg preservation[J]. Chinese Food Additives,2022,33(6):102-108.
[32] GANESON K,RAZIFAH M R,MUBARAK A,KAM A,VIGNESWARI S,RAMAKRISHNA S. Improved functionality of cinnamon oil emulsion-based gelatin films as potential edible packaging film for wax apple[J/OL].Food Bioscience,2022,47:101638.DOI:10.1016/j.fbio.2022.101638.
[33] ZHANG W L,RHIM J W. Functional edible films/coatings integrated with lactoperoxidase and lysozyme and their application in food preservation[J/OL]. Food Control,2022,133:108670.DOI:10.1016/j.foodcont.2021.108670.
[34] SURENDHIRAN D,ROY V C,PARK J S,CHUN B S.Fabrication of chitosan-based food packaging film impregnated with turmeric essential oil (TEO)-loaded magnetic-silica nanocomposites for surimi preservation[J]. International Journal of Biological Macromolecules,2022,203:650-660.
Preparation of cellulose nanocrystal cinnamon essential oil chitosan composite coating and its effect on fruit preservation of Crataegus pinnatifida Bge.var.major N.E.Br.