葡萄抗寒机制研究进展

张利鹏1,刘怀锋1*,辛海平2*

1石河子大学农学院,新疆 石河子 832000;2中国科学院武汉植物园,武汉 430074)

摘 要:葡萄在中国果树产业中占有重要地位。晚霜冻害和冬季低温冻害是制约葡萄产业持续性发展的主要因子,研究葡萄低温应答机制对培育抗寒的葡萄新品种、保证中国葡萄产业可持续发展具有重要意义。综述了国内外葡萄抗寒研究进展,从葡萄种质资源抗寒性评价、葡萄不同组织在低温下的结构变化、生理生化指标的改变、抗寒相关基因的鉴定和功能研究进展等方面介绍了所取得的成果,并对今后葡萄的抗寒育种、低温和抗抽干的发生以及不同组织器官的抗寒机制研究进行了展望。

关键词:葡萄;抗寒;低温应答;基因功能

葡萄(Vitis vinifera spp.)是葡萄科葡萄属落叶藤本植物,具有悠久的栽培历史。葡萄可鲜食或制干,也可加工为果汁或葡萄酒,营养价值丰富且经济效益高,因此在许多国家都有栽种。中国葡萄产业在过去几十年中发展迅速。根据世界粮农组织(http://faostat.fao.org)统计,在2020年,中国的葡萄种植面积已达到76.7 万hm2,产量达到了1480 万t,居全球首位。葡萄产业已经成为中国果树产业的重要组成部分之一。

中国葡萄产业在迅速发展的同时也面临着诸多挑战,低温便是其中之一。极端低温天气的发生导致很多葡萄园发生冻害。冻害主要发生在葡萄的越冬休眠组织和生长季节叶片及新梢。中国北方地区属于大陆性气候,夏季光照充足,昼夜温差大,有利于糖分和其他风味物质的积累,生产的葡萄品质较好。但是,这些地区冬季气候寒冷干旱,而中国主栽的葡萄品种为欧亚种和欧美杂交种,对极端低温的耐受性较差,在越冬过程中常发生冻害,出现枝蔓冻伤甚至树体死亡现象,其安全生产无法得到保证。因此,冬季需要将葡萄枝条下架后埋土,避免低温对葡萄植株带来的伤害和抽条现象的发生。然而,埋土防寒不仅加速了树体的老化和死亡,而且使劳动力成本不断升高,成为推高葡萄尤其是葡萄酒生产成本的主要原因,另外,进入来年春季,若发生“倒春寒”侵袭,葡萄容易出现冻芽、冻花和冻果,造成树势受损,产量下降。早春、深秋和冬季冻害的时常发生,很大程度上制约了葡萄产业的发展。中国研究人员很早就注意到葡萄的冻害问题,并开展了一些针对性的研究。但是,对葡萄尤其是抗寒性极强的山葡萄的抗寒机制知之甚少,导致育种效率低下,育成的品种也不能满足产业的需求。因此,研究葡萄尤其是高抗寒的山葡萄的抗性机制成为抗性育种的迫切需求。

近年来,随着研究手段的进步及其在果树研究中的广泛应用,葡萄抗寒机制方面研究取得了一定的进展。笔者在本文中从种质资源抗寒性评价与抗寒新品种选育、葡萄抗寒力遗传特性、葡萄组织结构与抗寒性的关系、低温下生理生化指标的改变、抗寒评价方法、抗寒相关基因的鉴定和功能研究进展等方面进行总结,并对今后葡萄抗寒性研究提供了展望,为进一步深入研究葡萄的抗寒机制提供参考。

1 种质资源抗寒性评价与抗寒新品种选育

葡萄抗寒研究和抗性育种的基础是开展田间葡萄“冬季低温冻害和晚霜冻害”的抗寒性评价。贺普超等[1]在1984—1989 年间收集保存了来自全国野生葡萄种质资源17 个种(含变种)39 个株系,并对其抗寒性进行了系统研究。结果表明,中国野生葡萄资源中,山葡萄、燕山葡萄和蘡薁葡萄等具有极强的抗寒性,其中山葡萄(V.amurensis)的枝条和芽眼可抗-40~-50 ℃低温,根系可抗-15~-16 ℃低温[2];此外,在美国被广泛用作抗寒亲本的美洲葡萄(V. labrusca L.)和河岸葡萄(V. riparia Michx.),其枝条也可抗-30 ℃冬季低温[3]。生产中葡萄晚霜冻害的发生主要是“倒春寒”气候的到来所致,张剑侠[4]通过田间自然鉴定野生葡萄和栽培品种(系)等81 份种质资源在晚霜发生3 d 后的冻害表现,得出了葡萄抗晚霜冻害与冬季低温的抗寒性表现不一致的结论,与此同时也发现了中国和美国野生葡萄在应对“倒春寒”现象产生的冷害时表现出了较强的抗性。这为以山葡萄为主要材料开展葡萄抗寒新品种选育和抗性机制研究提供了理论依据。

中国多家科研单位利用山葡萄的抗寒特质,选育了一些能够在中国正常越冬的抗寒品种。中国农业科学院特产研究所于1973 年建立了抗寒山葡萄的种植实验基地,并从野生资源中选出左山一、左山二和一些优良的雌能花类型[5]。此后又陆续育成了双优、双丰、双红等两性花山葡萄优良品种及品系[6-8]。之后又以左优红与84-26-53 为亲本,杂交选育出抗寒、抗病、产量和品质高的新品种北冰红[9]。中国科学院植物研究所以山葡萄为父本、玫瑰香为母本培育出了北醇、北玫和北红酿酒抗寒葡萄品种,不仅不需要埋土越冬,而且抗寒、抗病虫害能力也很强[10-11]。中国农业科学院郑州果树研究所等以河580 为母本、山葡萄为父本杂交选育出的葡萄抗寒砧木新品种郑寒1 号,并采用恢复生长法及相对电导率测定郑寒1 号低温冷冻后的枝条半致死温度为-30.78 ℃,抗寒性优于贝达[12]。然而,这些品种还远不能满足产业的需求,产业上对抗寒优质的酿酒葡萄新品种仍有迫切的需求。

2 葡萄抗寒力遗传特性

植物的抗寒性是复杂的数量性状,受多个基因互作调控,并受环境因素影响。为探究葡萄植株杂交后代在种间遗传的规律,王军[2]对山葡萄等采用4种杂交方法,获得82 个杂交后代组合,约8000 株杂种苗;通过对其进行抗寒力评估,发现AA(山)×F1(AA山×BB欧)的抗寒性强,BB(欧)×F1(AA山×BB欧)抗寒力弱。以山欧F1代与主栽品种为亲本,回交可以得到抗寒性强、经济性能高的品种,但反交得到的结果差,其原因可能是胞质遗传将山葡萄品质差抗寒优的基因连锁破坏,因此可以利用胞质遗传培育品质高抗寒优的F2代杂种。在此理论指导下,以栽培品种为父本,山欧F2代优系为母本,选育了F3代抗寒优、经济性好的植株品系[13]。白庆武等[14]利用山葡萄和优良品种杂交,F1代抗寒性优品质差,但作为中间材料进一步与山葡萄杂交,F2代保持抗寒性且品质升高;山葡萄杂交F2代与优良品种杂交可提高果实品质,但抗寒性降低,若经过多代综合杂交则可选育出抗寒性强和品质高的品种。上述研究表明逐代杂交和综合杂交是培育优良品种的有效途径。

3 葡萄组织结构和抗寒性的关系

植物的组织结构是其抵抗外界胁迫条件的基础,是为适应环境而在进化过程中长期形成的。比较不同抗性材料之间的结构差异,为材料抗性鉴定和抗性成因提供重要线索。

葡萄响应零下低温冻害的组织结构主要以休眠器官(根系、枝条和芽眼)为主;枝条是越冬的主要器官,王丽雪等[15]利用电子显微镜观察葡萄枝条内部结构,发现抗寒的葡萄品种(如山葡萄等)枝条木栓层厚,细胞层数多,木栓化程度高;同时对不同葡萄品种的枝条结构进行电镜观察,发现抗寒力强的山葡萄细胞小而排列整齐,细胞壁较厚,抗寒力差的玫瑰香各组织的细胞大而松散,细胞壁薄。根系是葡萄越冬的主要器官之一,葡萄植株根系的抗寒性比枝条弱,生产实践中葡萄根系往往先发生冻害,因此提高根系的抗寒性对提高植株的抗寒力尤为重要。对山葡萄及贝达、白香、龙眼等葡萄主栽品种的根系进行抗寒力鉴定,发现不同品种的皮层和木质部所占比例不同,栽培品种皮层占有面积大;抗寒力强的品种(如山葡萄、黑山102等)根系的木质化程度高,组织紧密,细胞小,髓射线发达且有规律分布,而抗寒力差的品种(如玫瑰香、龙眼)则相反,木质化程度低,组织疏松,细胞大[16]。在低温处理6种葡萄根系的抗寒力鉴定研究中,发现抗寒品种(贝达、龙紫宝、北玫)导管长度长,直径大,两端斜度小,单尾或无尾的导管所占比例显著高于非抗寒品种,导管密度、分布范围比非抗寒品种小[17]。这与郭修武等[18]的结论一致,即抗寒品种比非抗寒品种射线细胞大,组织紧密,皮层在根系结构中所占比例大,导管大且密度高。Gao等[19]以12个抗寒性梯度不同的品种根系剖面结构为材料,研究发现抗寒性优的品种根外皮层厚,韧皮部薄,木质部比例高。这些研究表明,根系结构作为葡萄抗寒鉴定的形态指标包括射线细胞大小、组织紧密度、皮层和木质部所占比率以及根系导管的形态特征。

关于“倒春寒”现象造成的冷害问题,研究葡萄低温效应的组织结构多以叶片为主。在这些研究中,冷胁迫通常被应用于低的、不结冰的温度,如4 ℃。研究发现,葡萄叶片的结构和植株的抗寒性之间存在联系。尹立荣等[20]以山葡萄、山葡萄与欧亚种的杂交种为试材,发现抗寒力强的品种海绵组织厚,叶片也厚。研究者以贝达砧木的4~5 年生的美洲种、欧亚种和欧美杂交种的叶片解剖结构为材料,发现葡萄叶片的细胞结构紧密度(cell tense ration,CTR)值越大,栅栏组织越整齐,排列越紧密,品种的抗寒性越强[21]。这与贺普超等[1,22]的研究结论一致,即抗寒性强的品种(如山葡萄、贝达等)叶片栅栏组织厚且排列紧密,海绵组织薄且排列松弛。Sawicki 等[23]通过检测冷胁迫下欧亚种葡萄花序的光合作用和糖含量波动,证明了花序能够通过调节碳水化合物代谢机制来应对低温胁迫。

4 低温胁迫下葡萄生理变化与抗寒性的关系

4.1 低温对细胞电解质渗透率及胞间物质的影响

低温胁迫下植物细胞的质膜透性会发生改变,电解质发生不同程度的外渗。一般来讲,抗寒性强的葡萄品种低温下细胞渗透性弱,发生渗透性变化的细胞可逆转恢复正常;相反,抗寒性弱的品种细胞发生严重冷害不易恢复正常,极易导致植株死亡。采用电导仪测定露地越冬的山葡萄、山玫瑰、黑山、抗寒杂交种实生苗等,结果表明枝条成熟度对电导率值大小有重要影响,电导率值随温度的升高而增加,且电导率增值与测液电导率值呈正相关[24]。晁无疾等[25]以山葡萄和玫瑰香等10个品种的1年生枝条为材料,研究发现抗寒性与枝条电阻间有密切联系,抗寒性强的品种(如山葡萄)电阻值高。郑晓翠等[26]以14 个葡萄砧木品种的1 年生枝条为材料,研究发现低温处理下电解质渗出率增加且呈S形曲线增长,并根据不同品种的低温半致死温度得出抗寒性最强的品种为贝达、华葡1号,抗寒力最弱的品种为110R。杨豫等[27]以8个酿酒葡萄品种的根系为材料,研究发现8种葡萄根系经不同低温处理后,电解质渗出率随处理温度的降低而升高。相似的研究得出的结论一致[28],即葡萄品种的相对电导率随低温处理温度的降低呈递增的趋势,电解质渗出率呈S形曲线分布。这些研究表明,低温处理下的相对电导率可表示葡萄细胞电解质的外渗程度,可作为葡萄抗寒性强弱鉴定的指标。

4.2 低温逆境对细胞膜保护酶系统的影响

葡萄植株在低温逆境下,植物体内多种保护性酶通过调控作用保护植株,减轻低温对植株的伤害,这些酶与抗寒性有关。保护酶系统包括过氧化物酶(peroxidase,POD)、超氧化物歧化酶(superoxidase,SOD)、过氧化氢酶(catalase,CAT)和抗坏血酸过氧化物酶(ascorbic acidperoxidase,APX)等。对14 个不同抗寒力的葡萄品种抗寒力进行比较,发现葡萄枝芽的SOD活性与抗寒力有密切关系,入冬时随着温度的降低,SOD 同工酶谱带数增加,酶活性增强[29]。王淑杰等[30]以4个4年生栽培品种的1年生枝条叶片为试验材料,发现抗寒力强的品种如BA1(贝达×山葡萄)的氧化酶活性高,抗寒力差的品种如玫瑰香酶活性低,且随着温度的下降而降低,抗寒性强的品种变化慢,抗寒性弱的品种变化快。对2 种山葡萄和杨树的抗寒性比较研究中发现,植物体通过SOD、POD 和CAT 这3 种氧化酶的协同作用,使自由基保持在较低水平,防止自由基伤害,使植株正常生长[31]。卢精林等[32]针对低温胁迫对葡萄枝条抗寒性的影响进行研究,利用贝达等4 种葡萄长势中庸的1 年生枝条为试材,发现葡萄的SOD 活性与抗寒力呈正相关,SOD 活性越高抗寒力越强,反之则越弱。随着温度的降低,POD 起到酶促降解的作用,进而消除低温胁迫下植物产生的对细胞膜有害的物质,POD 活性越高抗寒力越强,反之则越弱。这与李国等[33]的研究结果一致,即抗寒力强的品种氧化酶活性高,抗寒力差的品种氧化酶活性低;且随着温度持续下降,抗寒力强的品种酶活性变化慢,反之则变化快[34]。李桂荣等[35]以山葡萄等6 个品种为试验材料,发现随温度胁迫的降低,不同葡萄枝条的SOD 和POD 酶活性出现出先上升后下降的变化,CAT 活性表现出先上升后下降再上升的趋势,6 个品种的枝条抗寒力表现为山葡萄>贝达>北醇>无核白>奥迪亚>京可晶。这些研究表明,葡萄植株抗寒性强则酶活性强,抗寒性差则酶活性弱;酶活性随着温度的下降而降低,且抗寒力强变化慢,抗寒力弱变化快。

4.3 低温逆境对植物细胞膜脂过氧化的影响

低温胁迫条件下,植物体内细胞保护酶的活性降低,清除活性氧的能力受到抑制,导致体内活性氧代谢(reactive oxygen specie,ROS)大量积累,加速了细胞膜脂过氧化,膜结构遭到破坏,严重时可导致植株死亡。丙二醛(malonic dialdehyde,MDA)作为高活性膜脂过氧化产物,不仅能交联糖类、蛋白质及脂类,还能够抑制保护性酶的活性和抗氧化物的含量,因此MDA含量可作为评价膜系统受损的指标,具体表现为MDA含量高,细胞膜受损伤严重,植物体的耐低温胁迫能力差。对7个鲜食葡萄品种的抗寒性进行研究,结果表明在-20 ℃之前,降低处理温度,MDA 含量变化少,随着处理温度的降低,MDA含量增高且不同品种增高量不同[36]。对6个葡萄品种的1 年生枝条抗寒性研究,发现随着低温胁迫的增加,MDA 含量增长,且抗寒力强的品种相比其他品种MDA 含量处在较低水平;相反抗寒力弱的品种MDA 含量显著高于其他品种[37]。利用葡萄抗寒性综合评价方法进行分析,发现葡萄植株的抗寒性与枝条中的MDA 含量呈负相关[38]。不同葡萄品种受到低温伤害时,MDA含量增长不同且达到极限温度后MDA含量下降,说明极限低温导致细胞死亡,生理功能紊乱,代谢产物减少[32]。对6 个葡萄品种的1 年生枝条进行低温处理,发现降低胁迫温度,6种葡萄枝条的MDA 含量升高,在-30 ℃时达到最高,MDA含量高低顺序表现为山葡萄>贝达>北醇>无核白>奥迪亚>京可晶,这与6 个品种的抗寒性强弱基本一致[35]

这些研究表明,丙二醛作为膜脂过氧化的产物,含量代表细胞膜损伤程度的生理指标和脂质过氧化指标,反映细胞膜脂过氧化程度和葡萄植株对逆境条件的反应,因此MDA 含量可作为抗寒性鉴定的生理指标。

4.4 抗寒调节物质对抗寒性的影响

植物细胞中的一些物质,如可溶性蛋白、可溶性糖以及游离脯氨酸等,具备调节细胞内含物浓度的能力,由此避免植物在冻害下结冰造成不可逆伤害,提高植株的抗寒性。

在低温逆境下,植株体内的蛋白质种类和含量均会发生变化,可溶性蛋白作为亲水胶体,含量增加,作用是保护质膜,增强原生质胶体的吸水和持水能力,增大束缚水与自由水含量比值,进而提高抗寒性。对山葡萄、北醇和玫瑰香开展抗寒力比较分析,结果表明进入冬季时,抗寒力强的山葡萄比抗寒力差的玫瑰香可溶性蛋白形成早;在越冬期间可溶性蛋白含量比抗寒力差的玫瑰香增加多[15]。对葡萄枝条可溶性全蛋白和抗寒力关系研究发现,可溶性蛋白含量随着温度的降低逐渐升高且与品种本身的抗寒力强弱无关,但抗寒力强的BA1(贝达×山葡萄)含量高且增加幅度大,抗寒力差的玫瑰香含量低且增加幅度小[39]。对山葡萄等6 种葡萄的1 年生枝条的研究发现,可溶性蛋白含量与植株的抗寒力呈正相关,抗寒性强(如山葡萄)的可溶性蛋白含量高于其他品种,但蛋白质的变化都表现为温度降低,含量增加[35]。采用比较蛋白质组学对田间低温锻炼下山葡萄和欧亚种京早晶葡萄休眠芽的研究表明,2 个品种共有235个差异蛋白(DAPs),分属于蛋白伴侣和代谢途径,这为进一步研究抗寒性提供了新的线索[40]。

植物体在低温胁迫下,可溶性糖含量增多;可溶性糖可分为蔗糖、果糖和葡萄糖等,这些糖在葡萄植株的抗寒机制中不仅增加细胞渗透浓度,降低水势,起到植株保水和降低冰点的作用,还对线粒体、原生质体和膜上敏感偶联因子具有保护作用,继而使植株的抗寒性增强。葡萄枝条中可溶性糖含量的增多可避免植株低温冻结损伤[41]。抗寒性不同的葡萄品种,可溶性糖含量增长不同,表现为抗寒性强的BA1 增加幅度大,抗寒性弱的玫瑰香增加幅度小[39]。以8 个酿酒葡萄品种1 年生枝条为试材进行抗寒性比较,发现各品种可溶性糖含量均增加,但增加幅度变化不同,抗寒力强的品种如威代尔和黑比诺可溶性糖含量增长幅度大,而抗寒力弱的品种如梅鹿辄和品丽珠增长幅度小[42]。Chai等[43]通过冷驯化山葡萄和玫瑰香葡萄组培苗研究,发现山葡萄中的半乳糖醇、棉子糖、果糖、甘露糖、甘氨酸和抗坏血酸在低温诱导下持续积累,而玫瑰香葡萄则没有诱导,这可能是山葡萄耐寒性强的原因。

低温胁迫下,植物体内的游离脯氨酸积累,能增强植株内的细胞保水能力,稳定蛋白质结构,调控细胞膜结构的稳定,并作碳水化合物来源的保护剂。对葡萄枝叶脯氨酸含量与抗寒性关系探究中发现,在秋季低温到来时叶片结构的脯氨酸含量升高,枝条结构的脯氨酸含量随冬季温度的降低而升高;不同游离脯氨酸含量变化与不同类型的抗寒力强弱关系小,而与不同类型抗寒锻炼密切相关[44]。何伟等[45]以贝达、左山一、双红和北冰红为试验材料,研究葡萄品种及砧木的抗寒性,发现4 个品种枝条的游离脯氨酸含量随温度的降低逐渐升高,游离脯氨酸含量高低排列顺序为左山一>双红>贝达>北冰红,这与4 个品种的抗寒性一致。李鹏程等[46]对山葡萄2年生扦插苗开展抗寒力鉴定,发现温度降低,游离脯氨酸含量出现先升高后下降的变化规律。对13个酿酒品种砧木抗寒性探究发现,降低处理温度游离脯氨酸含量均升高,不同品种的增长速度和幅度变化存在显著差异,且增长幅度变化与其抗寒力大小一致,表现为抗寒力强的品种(如山葡萄、贝达等)含量高且增长幅度大,反之,抗寒力差的品种(抗砧3 号、5C 等)含量较其他品种低且增长幅度小,13 个酿酒葡萄品种抗寒性高低排列顺序为山葡萄>贝达>5BB>520A>110R>3309C>101-14>SO4>1103P>420A>140R>5C>抗砧3 号[47]。Król等[48]通过对不同耐寒性欧亚种葡萄叶片在持续低温胁迫过程中次生代谢物的分析,发现长期低温暴露导致所有鉴定的酚酸含量显著降低,两者代谢功能存在差异,抗寒性强的品种酚类化合物含量高,自由基清除能力强,还原能力强。

这些研究表明,可溶性蛋白、可溶性糖和游离脯氨酸含量与葡萄植株的抗寒性密切相关,可作为葡萄植株抗寒力鉴定的生理指标。

5 葡萄抗寒评价方法

抗寒评价方法是研究植物抗寒机制和培育抗寒新品种的基础实验手段,葡萄的低温抗性表现主要为应对晚霜冻害和冬季低温造成的冷害问题。随着葡萄在生理水平低温应答规律的逐步解析,以及不同抗性材料在低温下的变化差异比较,研究人员开发并比较了多种葡萄抗寒性评价方法,其中以晚霜后和冬季持续低温冻害的评价方法为主。关于晚霜冻害涉及的器官主要为叶片和新梢,抗寒评价方法主要包括蒽酮法测定可溶性糖含量[49]、考马斯亮蓝法测定可溶性蛋白含量[50]、茚三酮比色法测定脯氨酸含量[51]和基于Fv/Fm的模型评价干旱-寒冷法[52]等。上述生理指标的测定可用于葡萄抗寒力的鉴定。葡萄应对冬季持续低温的组织器官主要是枝条、芽眼和根系,涉及这些器官的葡萄抗寒力鉴定方法包括田间冻害调查鉴定[53]、生长法[44]、电导法[28]、组织褐变法[22]、差热分析法[54]、TTC还原法[55]、动态热时间模型(DTTM)预测休眠葡萄芽的抗寒性法[56]以及过冷能力分析法[27]等。这些方法完善了不同品种抗寒力鉴定的全面性,提高了综合分析能力,促进了葡萄抗寒机制和育种的研究。

6 葡萄抗寒分子机制

除了生理变化外,植物受到冷胁迫以后,许多基因在转录水平、蛋白水平及翻译后修饰等方面也会发生一系列变化。近年来,从分子层面探究葡萄植株抗寒调控机制的报道越来越多,主要归为2 个方面:(1)解析“倒春寒”气候对主栽葡萄危害的基础研究;(2)以山葡萄等野生种质资源为实验材料,挖掘抗寒的关键基因。另外,根据作用方式的不同,目前挖掘到的基因可被分为2 大类:(1)调控基因:例如C-repeat binding factorCBF)等转录因子、miRNA、circRNA 等,主要通过控制其下游基因的表达参与葡萄低温应答;(2)功能基因如抗氧化酶基因等,直接参与某些生理生化过程,增强葡萄的抗寒性[57-60]

生产中带来经济效益的主栽葡萄品种以欧亚种和欧美杂交种为主,若从基础研究层面解决主栽葡萄的晚霜冻害问题,需要探究这些品种中受冷诱导的基因通路和富集调控网络分析等问题。关于冷胁迫关键基因CBF 及其信号通路相关基因在葡萄中已有部分报道。Xiao 等[57]从河岸葡萄、欧亚种葡萄中分离了CBF/DREB1-like基因CBF1~4CBF4基因在低温胁迫中表达水平增高,并且能够维持在一定的水平,据此分析葡萄的抗寒性可能与此基因相关。随后证实常温下CBF4 基因表达量低,低温胁迫下表达量高,与CBF123相比,CBF4在成熟和幼嫩的组织中均有表达,可能在植株的越冬过程中起到更重要的调控作用[58]HOS1 作为调控CBF 信号通路的上游转录因子,Li 等[59]从玫瑰香中克隆了HOS1 基因,异源表达后,拟南芥的耐寒、耐旱和耐盐性降低,并且抑制了胁迫相关基因AtRD29AAt-COR47的表达。VvICE1aVvICE1b的表达提高了转基因拟南芥的耐寒性,并引起了胁迫相关基因AtRD29AAtCOR47的上调表达。

除了经典的CBF通路相关基因,与冷胁迫相关的其他基因也相继在葡萄中克隆和发现。Wang等[60]从欧亚种葡萄基因组中鉴定出59个VvWRKYs,并通过数据库信息确认了15个VvWRKYs可能与冷胁迫有关。Hou 等[61]研究发现VvBAP1 在抗寒品种F-242和左优红中的表达水平明显高于在冷敏感品种赤霞珠和霞多丽中的表达水平,其编码的蛋白通过调节和控制葡萄体内的糖含量,激活抗氧化酶活性来增强葡萄体内的抗氧化能力,提高葡萄抗寒能力。从葡萄生殖器官中鉴定出6个BAM基因,其中VvBAM1VvBAM3 的转录本丰度随温度的降低而显著增加,VvBAM1 在转基因番茄中通过调节淀粉水解和促进活性氧清除来提高耐冷能力[62]

除了基因的同源比对和克隆外,基于高通量测序等生物信息学手段,栽培葡萄中越来越多低温应答相关的基因被相继报道出来。Sun 等[63]从4 ℃处理的玫瑰香葡萄叶片中鉴定出44 个响应低温胁迫的miRNA,其靶基因包括AP2MYBSBPbHLHbZIPGRAS等转录因子;Cheng等[64]从葡萄果实中鉴定到6个在冷热胁迫中表达量显著上调或下调的VvGRFs 基因;Londo 等[65]从5 个欧亚种葡萄叶片中分析得到的响应低温和冷冻胁迫的差异表达基因参与的调控途径不同,但都包含参与乙烯信号通路、ABA 信号通路、淀粉/蔗糖/半乳糖代谢通路的基因及AP2/ERF、WRKY、NAC 家族转录因子;Gao 等[66]鉴定到低温胁迫下葡萄叶片中差异表达的475个环状RNA,初步证明了Vv-circATS1 参与响应冷胁迫。另外,在遗传基因挖掘方面,通过对双优与红地球休眠芽不同时期的转录组分析和种间杂交遗传群体的抗寒性数量性状位点(quantitative trait locus,QTL)定位发现了抗寒相关的新结构基因和转录因子,包括CORs(VaCOR413IM)、GSTs(VaGST- APICVaGST- PARBVaGSTF9 VaGSTF13)、ARFs(VaIAA27VaSAUR71)、ERFs(VaAIL1)、MYBs(VaMYBR2VaMYBLLVaMYB3R- 1)和bHLHs(VaICE1VabHLH30[67];以赤霞珠×左优红的181个杂交后代及亲本为样本,进行限制性位点相关DNA 测序(RAD),构建了包含16076 个、11643 个和25917 个单核苷酸多态性(single nucleotide polymorphism,SNP)标记的高密度遗传连锁图谱,鉴定出6个QTL,定位在连锁群LG2、LG3和LG15上,成为调控葡萄抗寒性的候选基因[68]。接着,Patel 等[69]通过组装的河岸葡萄Manitoba 37 基因组与黑比诺基因组进行对比,确定了2 个品种间表型变异的遗传关系,能为葡萄育种的分子标记开发和遗传研究提供参考序列和基因模型。

山葡萄作为葡萄抗寒育种的主要亲本,意在缓解冬季极端低温对葡萄产业发展的影响,因此其抗性机制的挖掘得到了广泛的关注。在经典抗寒信号通路方面,虽从山葡萄中克隆到VaCBF1VaCBF4,并证明其在低温逆境下表达量增加[70-72],但到目前为止还没有研究显示CBF 基因的表达或序列变异与山葡萄高抗寒性有关。

在抗性基因功能解析方面,bHLHBasic helixloop-helix)、ERFEthylene response factor)、WRKYDELLA name derived from the most prominent amino acid residues in the protein)、GRASGAIgibberellin acid insensitiveRGArepressor of GAI and SCRscarecrow)等家族中陆续有成员被克隆和研究。Xu 等[73]从山葡萄中克隆到的bHLH 家族转录因子VabHLH1 在激活CBF 的冷信号通路,尤其是调节CBF3RD29A 表达方面,与在冷敏感的赤霞珠葡萄中的作用相比存在差别。Sun 等[74]发现乙烯参与葡萄叶片低温应答,外源添加1-氨基环丙烷羧酸(ACC)可以显著提高山葡萄和玫瑰香叶片的抗寒性,而添加乙烯合成抑制剂氨基乙烯基甘氨酸(AVG)却增加了山葡萄和玫瑰香对低温的敏感性,表明乙烯正调控葡萄对低温胁迫的耐受性。同时相关研究发现,数个ERF 成员参与低温应答,VaERF057 低温下表达上调,而AVG 能够完全抑制低温对VaERF057 的诱导作用,说明在低温条件下VaERF057 的上调表达可能依赖于内源乙烯的生物合成[75]VaERF080VaERF087 被发现通过提高抗氧化酶活性和调控冷诱导相关基因的表达来提高转基因拟南芥的耐寒性[76]VaERF092 通过与VaWRKY33 的启动子上的GCC-box 结合,增强植株对冷胁迫的耐受性[77]。GRAS 转录因子家族中的VaPAT1 通过与INDETERMINATE-DOMAIN3 蛋白互作来激活LIPOXYGENASE 3 基因的表达,以促进茉莉酸的生物合成,从而提高葡萄的耐冷性[78-79]。受低温诱导的VaWRKY12,其编码的蛋白在常温下定位于细胞核和细胞质,低温处理后定位于细胞核,过表达后能够增强拟南芥和葡萄愈伤组织的耐寒性[80]。VaSAP15 与VaPDI1 相互作用,在无核白中过表达增强了葡萄的耐寒性[81]。从山葡萄中分离到VaMYB44 基因,其编码蛋白能够与VaMYC2、VaTIFY5A 互作,降低转基因拟南芥和葡萄的抗寒性[82]。对山葡萄中响应冷胁迫的TFs 中鉴定发现,CBF4RAV1ERF104 等调控基因参与冷应激反应过表达VaRAV1,葡萄愈伤组织抗寒性提高[83]。Aleynova 等[84]通过对CML21 基因的4 种可变剪接(CML21v1、CML21v2、CML21v3 和CML21v4)表达量鉴定和拟南芥异位表达,发现葡萄CML21 基因在植物对冷胁迫的响应中起正向调控作用,这种mRNA 变体的扩展可能有助于提高葡萄冷应激反应的多样性。在结构基因方面,Dong 等[85-87]从山葡萄中分离出了1 个Cold regulated gene(COR),命名为VaCOR。低温条件下VaCOR 在山葡萄中的表达量明显高于欧亚种葡萄,并且COR413 基因家族的成员在山葡萄与欧亚种葡萄低温下的表达模式存在差异,其中VaCOR413-IM1 在山葡萄中表达量高[88]。 此外,还有VaAQUILOVaDof17dVaCPK20 通过调控棉子糖来参与山葡萄低温应答[77,89-90]

在抗寒基因挖掘方面,对低温下的山葡萄叶片转录组研究发现了数个参与代谢、转运、信号转导和转录调控的差异基因[91-92]。米宝琴等[93]利用抑制性消减杂交技术(suppression subtractive hybridization,SSH),筛选出了与山葡萄抗寒性相关的AFPs、Haps、防御素样蛋白、细胞色素P450 加单氧酶等多个相关的ESTs,以及14个未知蛋白序列。对山葡萄高质量染色体水平的基因组组装发现了32885个编码蛋白的基因,解析了山葡萄抗寒性强的原因可能是基因扩增的变化;结合转录组数据发现了17个参与冷信号的基因,他们响应低温和冷冻条件的机制不同;此外,通过全基因组关联研究发现了一种磷酸甘油酸激酶基因有助于提高芽在冬季的抗冻性[94]

综上所述,在葡萄抗寒基因的挖掘和功能解析方面取得了较大的突破。一些基于模式植物中低温应答关键基因的同源克隆和功能验证,还有一部分基因家族或成员是首次在葡萄中被发现与低温相关。虽然目前仅发现一些基因在山葡萄展示出比欧亚种葡萄更快或者更大量的表达模式,而没有在遗传水平证实其与山葡萄高抗寒的关系。在这些工作的基础上,将进一步突破山葡萄高抗成因并用作品种抗性改良。

7 展望

葡萄抗寒机制相关的研究工作虽然取得了一定的进展,但是也存在一些问题,笔者拟就这些问题及可能的解决方法,对进一步的研究进行展望。

(1)相关的分子生物学研究主要集中在抗性基因的挖掘和功能验证上。但是缺乏抗性相关QTL的鉴定及基于QTL 的抗性基因挖掘。应开展以山葡萄为亲本的遗传群体构建、遗传图谱绘制及抗寒性评估,鉴定山葡萄抗寒相关QTL,挖掘关联的抗性基因,并开发分子标记用于辅助育种。

(2)目前的研究主要关注葡萄对极端低温的应答,较少关注枝条抗抽干现象,而在田间这2种危害往往协同发生。应注重低温和抽干的发生规律及其关系,并将抽干上升到一个单独因子的层面来开展研究。

(3)研究中多以叶片为材料,较少研究枝条、芽和根系等器官,而这些器官又是冬季田间实际遭受胁迫的组织,可能具备与叶子不同的物质积累和胁迫应答机制。应加强这些针对不同器官的胁迫应答研究,对揭示山葡萄抗性机制更具有现实意义。

参考文献:

[1] 贺普超,牛立新.我国葡萄属野生种抗寒性的研究[J].园艺学报,1989,16(2):81-88.HE Puchao,NIU Lixin. Study on cold resistance of wild grape species in China[J].Acta Horticulturae Sinica,1989,16(2):81-88.

[2] 王军. 我国山葡萄产业的发展及对策[J]. 特种经济动植物,2000,3(4):2-3.WANG Jun.Development and countermeasures of Vitis amurensis industry in China[J]. Special Economic Animal and Plant,2000,3(4):2-3.

[3] FENNELL A. Freezing tolerance and injury in grapevines[J].Journal of Crop Improvement,2004,10(1/2):201-235.

[4] 张剑侠.葡萄种质资源对晚霜冻害的抗性表现[J].果树学报,2019,36(2):137-142.ZHANG Jianxia. The resistance of grape germplasm resources to late frost damage[J]. Journal of Fruit Science,2019,36(2):137-142.

[5] 屈慧鸽,邓军哲.两个抗寒酿酒山葡萄品种‘左山一’和‘左山二’[J].葡萄栽培与酿酒,1994(1):20-21.QU Huige,DENG Junzhe. Two varieties of mountain grape of cold-resistant winemaking‘Zuo Shan I’and‘Zuo Shan II’[J].Sino-Overseas Grapevine&Wine,1994(1):20-21.

[6] 皇甫淳,修荆昌,张辉,国显贵,李承弘,郭振贵,钱卫友.‘双优’两性花山葡萄研究初报[J].葡萄栽培与酿酒,1989(2):9-12.HUANGFU Chun,XIU Jingchang,ZHANG Hui,GUO Xiangui,LI Chenghong,GUO Zhengui,QIAN Weiyou. Preliminary report of studies on Vitis amurensis‘Shuangyou’with bisexual flowers[J].Sino-Overseas Grapevine&Wine,1989(2):9-12.

[7] 王军,宗润刚,尹立荣,孙克娟,林兴桂. 两性花山葡萄新品种:双丰[J].园艺学报,1996,23(2):207.WANG Jun,ZONG Rungang,YIN Lirong,SUN Kejuan,LIN Xinggui. Shuang Feng,a new hermaphrodite cultivar of Vitis amurensis Rupr.[J].Acta Horticulturae Sinica,1996,23(2):207.

[8] 宋润刚,路文鹏,王军,沈玉杰,史贵文,李伟.山葡萄新品种:双红[J].中国果树,1998(4):5-7.SONG Rungang,LU Wenpeng,WANG Jun,SHEN Yujie,SHI Guiwen,LI Wei.Amur grape varieties:Shuang Hong [J]. China Fruits,1998(4):5-7.

[9] 宋润刚,路文鹏,沈育杰,金仁浩,李晓红,郭振贵,刘景宽,林兴桂. 酿酒葡萄新品种‘北冰红’[J]. 园艺学报,2008,35(7):1085.SONG Rungang,LU Wenpeng,SHEN Yujie,JIN Renhao,LI Xiaohong,GUO Zhengui,LIU Jingkuan,LIN Xinggui. A new ice-red brewing grape cultivar‘Beibinghong’[J].Acta Horticulturae Sinica,2008,35(7):1085.

[10] 范培格,黎盛臣,王利军,杨美容,吴本宏,段伟,李连生,钟静懿,张映祝,文丽珠,张凤琴,罗方梅,李绍华.葡萄酿酒新品种北红和北玫的选育[J].中国果树,2010(4):5-8.FAN Peige,LI Shengchen,WANG Lijun,YANG Meirong,WU Benhong,DUAN Wei,LI Liansheng,ZHONG Jingyi,ZHANG Yingzhu,WEN Lizhu,ZHANG Fengqin,LUO Fangmei,LI Shaohua. Breeding of new grape wine varieties Beihong and Beimei[J].China Fruits,2010(4):5-8.

[11] 黎盛臣,文丽珠,张凤琴,罗方梅,杨美容,张映祝,黄德藩.抗寒抗病葡萄新品种:北醇[J].植物学通报,1983,18(2):30-32.LI Shengchen,WEN Lizhu,ZHANG Fengqin,LUO Fangmei,YANG Meirong,ZHANG Yingzhu,HUANG Defan.A new variety of cold-resistant and disease-resistant grapes:Beichun[J].Chinese Bulletin of Botany,1983,18(2):30-32.

[12] 魏志峰,高登涛,刘丽,郭景南,樊秀彩,孙海生,姜建福,李秋利,艾建东,房荣年,柳玉霞,王纪梅.葡萄砧木新品种‘郑寒1号’的选育[J].果树学报,2019,36(9):1248-1251.WEI Zhifeng,GAO Dengtao,LIU Li,GUO Jingnan,FAN Xiucai,SUN Haisheng,JIANG Jianfu,LI Qiuli,AI Jiandong,FANG Rongnian,LIU Yuxia,WANG Jimei. Breeding of a new grape rootstock cultivar‘Zhenghan No. 1’[J]. Journal of Fruit Science,2019,36(9):1248-1251.

[13] 陈辉,郭春华,白庆武,李波.葡萄抗寒育种规律的研究[J].齐齐哈尔大学学报(自然科学版),2004,20(1):102-104.CHEN Hui,GUO Chunhua,BAI Qingwu,LI Bo. The study on the principle of breeding the cold-resistant breeds and parentschosen of grape[J]. Journal of Qiqihar University (Natural Science Edition),2004,20(1):102-104.

[14] 白庆武,李波,张东向,陈辉,陈国权.山葡萄与优良品种杂交培育抗寒品种[J].植物研究,1997,17(2):180-183.BAI Qingwu,LI Bo,ZHANG Dongxiang,CHEN Hui,CHEN Guoquan. Breeding cold-resistant breeds of grape with cross of between Vitis amurensis Rupr. and better breeds[J]. Bulletin of Botanical Research,1997,17(2):180-183.

[15] 王丽雪,张福仁,李荣富,梁艳荣,刘艳.葡萄枝条中淀粉粒形态结构与抗寒力的关系[J].园艺学报,2000,27(2):85-89.WANG Lixue,ZHANG Furen,LI Rongfu,LIANG Yanrong,LIU Yan. The morphologic characteristics of starch grain in grape shoots and its relationship to cold resistance[J].Acta Horticulturae Sinica,2000,27(2):85-89.

[16] 王丽雪,赵金枝,余茂莉,张作民,李凯军.葡萄根系抗寒力的研究[J].葡萄科技,1983(3):3-10.WANG Lixue,ZHAO Jinzhi,YU Maoli,ZHANG Zuomin,LI Kaijun. Study on cold resistance of grape root system[J]. Grape Science and Technology,1983(3):3-10.

[17] 王浩,张京政,谢兆森,齐永顺.不同抗寒性葡萄根系导管分子形态观察[J].中国农学通报,2013,29(28):110-114.WANG Hao,ZHANG Jingzheng,XIE Zhaosen,QI Yongshun.Morphological observation on root vessel elements of different cold resistance grape cultivars[J]. Chinese Agricultural Science Bulletin,2013,29(28):110-114.

[18] 郭修武,傅望衡,王光洁.葡萄根系抗寒性的研究[J].园艺学报,1989,16(1):17-22.GUO Xiuwu,FU Wangheng,WANG Guangjie. Studies on cold hardiness of grape roots[J].Acta Horticulturae Sinica,1989,16(1):17-22.

[19] GAO Z,LI J,ZHU H P,SUN L L,DU Y P,ZHAI H.Using differential thermal analysis to analyze cold hardiness in the roots of grape varieties[J].Scientia Horticulturae,2014,174:155-163.

[20] 尹立荣,孙克娟,宋润刚,林兴桂.葡萄叶片的组织结构与抗寒力的关系[J].特产研究,1990,12(3):7-8.YIN Lirong,SUN Kejuan,SONG Rungang,LIN Xinggui.Relationship between tissue structure and cold resistance of grape leaves[J]. Special Wild Economic Animal and Plant Research,1990,12(3):7-8.

[21] 高庆玉,崔方.黑龙江省5 个主栽葡萄品种抗寒性鉴定[J].中国果树,2009(2):21-23.GAO Qingyu,CUI Fang.Identification of cold resistance of five main grape varieties in Heilongjiang province[J]. China Fruits,2009(2):21-23.

[22] 贺普超,晁无疾.我国葡萄属野生种质资源的抗寒性分析[J].园艺学报,1982,9(3):17-21.HE Puchao,CHAO Wuji. Analysis on cold resistance of wild germplasm resources of Chinese grape[J].Acta Horticulturae Sinica,1982,9(3):17-21.

[23] SAWICKI M,JEANSON E,CELIZ V,CLÉMENT C,JACQUARD C,VAILLANT G N. Adaptation of grapevine flowers to cold involves different mechanisms depending on stress intensity[J/OL]. PLoS One,2012,7(10):e46976. DOI:10.1371/journal.pone.0046976.

[24] 修德仁,吴德玲,许桂兰.电导仪测定葡萄抗寒性的方法初探[J].葡萄科技,1983(2):7-11.XIU Deren,WU Deling,XU Guilan.A preliminary study on the method of measuring the cold resistance of grapes with conductivity meter[J].Sino-Overseas Grapevine&Wine,1983(2):7-11.

[25] 晁无疾,张远纪.电阻法速测葡萄抗寒性研究[J].葡萄栽培与酿酒,1987(3):1-4.CHAO Wuji,ZHANG Yuanji. Research on the resistance method to quickly measure the cold resistance of grapes[J]. Sino-Overseas Grapevine&Wine,1987(3):1-4.

[26] 郑晓翠,王海波,王孝娣,王宝亮,魏长存,刘万春,何锦兴,刘凤之.14 个葡萄砧木品种抗寒性评价[J].中国果树,2014(1):36-39.ZHENG Xiaocui,WANG Haibo,WANG Xiaodi,WANG Baoliang,WEI Changcun,LIU Wanchun,HE Jinxing,LIU Fengzhi.Evaluation of cold resistance of 14 grape rootstock varieties[J].China Fruits,2014(1):36-39.

[27] 杨豫,张晓煜,陈仁伟,刘兆宇,李芳红,冯蕊,王静,李红英.不同品种酿酒葡萄根系抗寒性鉴定[J].中国生态农业学报,2020,28(4):558-565.YANG Yu,ZHANG Xiaoyu,CHEN Renwei,LIU Zhaoyu,LI Fanghong,FENG Rui,WANG Jing,LI Hongying. Comparing the cold resistance of roots of different wine grape varieties[J].Chinese Journal of Eco-Agriculture,2020,28(4):558-565.

[28] 李丙智,文建雷,张建平,高生银.电导法测定葡萄根系抗寒性方法的探讨[J].西北林学院学报,1993,8(3):105-108.LI Bingzhi,WEN Jianlei,ZHANG Jianping,GAO Shengyin.Determination of cold resistance of grape roots by electro-conductive method[J]. Journal of Northwest Forestry University,1993,8(3):105-108.

[29] 刘棣宁,莫力根,孙庆林.SOD 与葡萄抗寒力的关系[J].内蒙古农牧学院学报,1990,11(2):139-145.LIU Dining,MO Ligen,SUN Qinglin.The relation between SOD and cold resistance of grape[J]. Journal of Inner Mongolia Institute of Agriculture and Animal Husbandry,1990,11(2):139-145.

[30] 王淑杰,王连君,王家民,李亚东.抗寒性不同的葡萄品种叶片中氧化酶活性及变化规律[J].中外葡萄与葡萄酒,2000(3):29-30.WANG Shujie,WANG Lianjun,WANG Jiamin,LI Yadong.Activity of oxidase in the leaves of grape varieties with different cold-resistance and regularity of the activity change[J]. Sino-Overseas Grapevine&Wine,2000(3):29-30.

[31] 易照勤,祝文博,王占斌.2 种山葡萄与杨树品种抗寒性生理变化比较[J].延边大学农学学报,2013,35(3):243-248.YI Zhaoqin,ZHU Wenbo,WANG Zhanbin. Study on low temperature resistance of physiological changes of two kinds of Vitis amurensis and poplar[J].Agricultural Science Journal of Yanbian University,2013,35(3):243-248.

[32] 卢精林,李丹,祁晓婷,孙晓燕.低温胁迫对葡萄枝条抗寒性的影响[J].东北农业大学学报,2015,46(4):36-43.LU Jinglin,LI Dan,QI Xiaoting,SUN Xiaoyan. Effect of low temperature stress on cold resistance of grapes branch[J]. Journal of Northeast Agricultural University,2015,46(4):36-43.

[33] 李国,牛锦凤.鲜食葡萄枝条中氧化酶活性变化规律及抗寒性比较[J].北方园艺,2006(3):21-22.LI Guo,NIU Jinfeng. Changes of oxidase activity in the branches of table grapes and comparison of cold resistance[J]. Northern Horticulture,2006(3):21-22.

[34] 钟海霞,潘明启,张付春,张雯,谢辉,韩守安,伍新宇.低温胁迫对葡萄砧木枝条抗寒性的影响[J].河北果树,2015(5):6-7.ZHONG Haixia,PAN Mingqi,ZHANG Fuchun,ZHANG Wen,XIE Hui,HAN Shouan,WU Xinyu. The effect of low temperature stress on the cold resistance of grape rootstock branches[J].Hebei Fruits,2015(5):6-7.

[35] 李桂荣,连艳会,程珊珊,全冉,扈惠灵.低温胁迫对山葡萄等6 个葡萄品种抗寒性的影响[J]. 江苏农业科学,2019,47(8):130-134.LI Guirong,LIAN Yanhui,CHENG Shanshan,QUAN Ran,HU Huiling. Effect of low temperature stress on cold resistance of several kinds of seedless grape cultivars[J]. Jiangsu Agricultural Sciences,2019,47(8):130-134.

[36] 牛锦凤,平吉成,王振平,王文举,李国.几个鲜食葡萄品种抗寒性的比较研究[J].北方园艺,2005(6):63-65.NIU Jinfeng,PING Jicheng,WANG Zhenping,WANG Wenju,LI Guo. Comparative study on cold resistance of several table grape varieties[J].Northern Horticulture,2005(6):63-65.

[37] 鲁金星,姜寒玉,李唯.低温胁迫对砧木及酿酒葡萄枝条抗寒性的影响[J].果树学报,2012,29(6):1040-1046.LU Jinxing,JIANG Hanyu,LI Wei. Effects of low temperature stress on the cold resistance of rootstock and branch of wine grapes[J].Journal of Fruit Science,2012,29(6):1040-1046.

[38] 苏李维,李胜,马绍英,戴彩虹,时振振,唐斌,赵生琴,蒲彦涛.葡萄抗寒性综合评价方法的建立[J].草业学报,2015,24(3):70-79.SU Liwei,LI Sheng,MA Shaoying,DAI Caihong,SHI Zhenzhen,TANG Bin,ZHAO Shengqin,PU Yantao. A comprehensive assessment method for cold resistance of grape vines[J].Acta Prataculturae Sinica,2015,24(3):70-79.

[39] 王淑杰,王家民,李亚东,王春梅.可溶性全蛋白、可溶性糖含量与葡萄抗寒性关系的研究[J].北方园艺,1996(2):13-14.WANG Shujie,WANG Jiamin,LI Yadong,WANG Chunmei.Study on the relationship between soluble sugar content and cold resistance of grape[J].Northern Horticulture,1996(2):13-14.

[40] MASOCHA V F,LI Q Y,ZHU Z F,CHAI F M,SUN X M,WANG Z M,YANG L,WANG Q F,XIN H P.Proteomic variation in Vitis amurensis and V. vinifera buds during cold acclimation[J].Scientia Horticulturae,2020,263:109143.

[41] STEPONKUS P. Role of the plasma membrane in freezing injury and cold acclimation[J]. Annual Review of Plant Biology,1984,35:543-584.

[42] 张兆铭,史星雲,牟德生,郭艳兰,李强.八个酿酒葡萄品种抗寒性比较[J].北方园艺,2015(7):33-35.ZHANG Zhaoming,SHI Xingyun,MOU Desheng,GUO Yanlan,LI Qiang. Comparison and analysis on the cold resistance of 8 wine grape cultivars[J].Northern Horticulture,2015(7):33-35.

[43] CHAI F,LIU W,XIANG Y,MENG X B,SUN X M,CHENG C,LIU G T,DUAN L X,XIN H P,LI S H. Comparative metabolic profiling of Vitis amurensis and Vitis vinifera during cold acclimation[J].Horticulture Research,2019,6(1):8.

[44] 牛立新,贺普超.生长法作为葡萄抗寒性鉴定的研究[J].果树科学,1991,8(1):40-42.NIU Lixin,HE Puchao.Growth method as a study on the identification of grape cold resistance[J]. Journal of Fruit Science,1991,8(1):40-42.

[45] 何伟,艾军,范书田,杨义明,王振兴,赵滢,乔永在,张亚凤,李晓燕. 葡萄品种及砧木抗寒性评价方法研究[J]. 果树学报,2015,32(6):1135-1142.HE Wei,AI Jun,FAN Shutian,YANG Yiming,WANG Zhen xing,ZHAO Ying,QIAO Yongzai,ZHANG Yafeng,LI Xiaoyan.Study on evaluation method for cold resistance of grape cultivars and rootstock[J]. Journal of Fruit Science,2015,32(6):1135-1142.

[46] 李鹏程,郭绍杰,李铭,苏学德,王晶晶.自然越冬过程中山葡萄抗寒生理指标的变化[J].贵州农业科学,2013,41(1):69-71.LI Pengcheng,GUO Shaojie,LI Ming,SU Xuede,WANG Jingjing. Change of cold-resistant physiological indicators of Vitis amurensis during natural overwintering[J]. Guizhou Agricultural Sciences,2013,41(1):69-71.

[47] 牟德生,张兆铭,史星雲,郭燕兰,李强.葡萄砧木抗寒生理指标测定及其评价应用[J].北方园艺,2015(3):6-8.MOU Desheng,ZHANG Zhaoming,SHI Xingyun,GUO Yanlan,LI Qiang.The physiological indicators of the cold resistance and the evaluation on grape rootstocks[J]. Northern Horticulture,2015(3):6-8.

[48] KRÓL A,AMAROWICZ R,WEIDNER S. The effects of cold stress on the phenolic compounds and antioxidant capacity of grapevine(Vitis vinifera L.)leaves[J].Journal of Plant Physiology,2015,189:97-104.

[49] BATES L S,WALDREN R P,TEARE I D. Rapid determination of free proline for water-stress studies[J]. Plant and Soil,1973,39(1):205-207.

[50] 王文平,郭祀远,李琳,王明力,梁桂娟.苯酚-硫酸法测定野木瓜中多糖含量的研究[J].食品科学,2007,28(4):276-279.WANG Wenping,GUO Siyuan,LI Lin,WANG Mingli,LIANG Guijuan.Assay study on content of polysaccharides in stanuntonia chinensis by phenol-sulfuric acid method[J]. Food Science,2007,28(4):276-279.

[51] BRADFORD M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry,1976,72(1/2):248-254.

[52] SU L Y,DAI Z W,LI S H,XIN H P.A novel system for evaluating drought-cold tolerance of grapevines using chlorophyll fluorescence[J].BMC Plant Biology,2015,15(1):1-12.

[53] 晁无疾,白安兴,刘斌.陕西葡萄冻害调查研究[J].葡萄栽培与酿酒,1992(4):6-10.CHAO Wuji,BAI Anxing,LIU Bin.Investigation of grape freezing damage in Shaanxi[J]. Sino-Overseas Grapevine & Wine,1992(4):6-10.

[54] 柴风梅,祝为,项悦,辛海平,李绍华.利用低温放热(LTE)测定葡萄冬芽耐寒性方法的优化及应用[J]. 园艺学报,2015,42(1):140-148.CHAI Fengmei,ZHU Wei,XIANG Yue,XIN Haiping,LI Shaohua.Optimized method for detecting the cold hardiness of grape dormant bud by low temperature exotherms (LTE) analysis and its utilization[J]. Acta Horticulturae Sinica,2015,42(1):140-148.

[55] 张明鹏,RAJASHEKAR C B.利用悬浮培养进行葡萄细胞抗寒性筛选的研究[J].园艺学报,1992,19(2):135-139.ZHANG Mingpeng,RAJASHEKAR C B. Studies on screening for cold-resistant mutant cell lines of grape through suspension culture[J].Acta Horticulturae Sinica,1992,19(2):135-139.

[56] RUBIO S,PÉREZ F J.Testing the Ferguson model for the coldhardiness of dormant grapevine buds in a temperate and subtropical valley of Chile[J].International Journal of Biometeorology,2020,64(8):1401-1408.

[57] XIAO H G,SIDDIQUA M,BRAYBROOK S,NASSUTH A.Three grape CBF/DREB1 genes respond to low temperature,drought and abscisic acid[J].Plant,Cell and Environment,2006,29(7):1410-1421.

[58] XIAO H G,TATTERSALL E A R,SIDDIQUA M K,CRAMER G R,NASSUTH A. CBF4 is a unique member of the CBF transcription factor family of Vitis vinifera and Vitis riparia[J].Plant,Cell&Environment,2008,31(1):1-10.

[59] LI J T,WANG N,WANG L N,XIN H P,LI S H. Molecular cloning and characterization of the HOS1 gene from‘Muscat hamburg’grapevine[J]. Journal of the American Society for Horticultural Science,2014,139(1):54-62.

[60] WANG L N,ZHU W,FANG L C,SUN X M,SU L Y,LIANG Z C,WANG N A,LONDO JASON P,LI S H,XIN H P. Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera[J]. BMC Plant Biology,2014,14(1):1-14.

[61] HOU L X,ZHANG G K,ZHAO F G,ZHU D,FAN X X,ZHANG Z,LIU X. VvBAP1 is involved in cold tolerance in Vitis vinifera L.[J].Frontiers in Plant Science,2018,9:726.

[62] LIANG G P,HE H H,NAI G J,FENG L D,LI Y M,ZHOU Q,MA Z H,YUE Y,CHEN B H,MAO J.Genome-wide identification of BAM genes in grapevine (Vitis vinifera L.) and ectopic expression of VvBAM1 modulating soluble sugar levels to improve low-temperature tolerance in tomato[J].BMC Plant Biology,2021,21(1):1-15.

[63] SUN X M,FAN G T,SU L Y,WANG W J,LIANG Z C,LI S H,XIN H P. Identification of cold-inducible microRNAs in grapevine[J].Frontiers in Plant Science,2015,6:595.

[64] CHENG C,WANG Y,CHAI F M,XIN H P,LI S H. Genomewide identification and characterization of the 14-3-3 family in Vitis vinifera L. during berry development and cold- and heatstress response[J].BMC Genomics,2018,19(1):1-14.

[65] LONDO J P,KOVALESKI A P,LILLIS J A. Divergence in the transcriptional landscape between low temperature and freeze shock in cultivated grapevine(Vitis vinifera)[J].Horticulture Research,2018,5:10.

[66] GAO Z,LI J,LUO M,LI H,CHEN Q J,WANG L,SONG S R,ZHAO L P,XU W P,ZHANG C X,WANG S P,MA C.Characterization and cloning of grape circular RNAs identified the cold resistance-related Vv-circATS1[J]. Plant Physiology,2019,180(2):966-985.

[67] MA X,ZHAO F Y,SU K,GUO Y S. Discovery of cold-resistance genes in Vitis amurensis using bud-based quantitative trait locus mapping and RNA-seq[J]. BMC Genomics,2022,23(1):1-14.

[68] SU K,XING H,GUO Y S,ZHAO F Y,LIU Z D,LI K,LI Y Y,GUO X W. High-density genetic linkage map construction and cane cold hardiness QTL mapping for Vitis based on restriction site-associated DNA sequencing[J]. BMC Genomics,2020,21(1):1-14.

[69] PATEL S,ROBBEN M,FENNELL A,LONDO J P,ALAHAKOON D,VILLEGAS-DIAZ R,SWAMINATHAN P. Draft genome of the Native American cold hardy grapevine Vitis riparia Michx.‘Manitoba 37’[J].Horticulture Research,2020,7:92.

[70] 王法微,刘洋,吴学彦,李晓薇,李海燕.山葡萄VaCBF1 转录因子基因的克隆与表达分析[J].西北农林科技大学学报(自然科学版),2013,41(12):86-92.WANG Fawei,LIU Yang,WU Xueyan,LI Xiaowei,LI Haiyan.Cloning and expression analysis of the transcription factor CBF gene from Vitis amurensis (VaCBF1)[J]. Journal of Northwest A&F University(Natural Science Edition),2013,41(12):86-92.

[71] DONG C,ZHANG Z,QIN Y,REN J P,HUANG J F,WANG B L,LU H L,CAI B H,TAO J M. VaCBF1 from Vitis amurensis associated with cold acclimation and cold tolerance[J]. Acta Physiologiae Plantarum,2013,35(10):2975-2984.

[72] LI J T,WANG N,XIN H P,LI S H.Overexpression of VaCBF4,a transcription factor from Vitis amurensis,improves cold tolerance accompanying increased resistance to drought and salinity in Arabidopsis[J]. Plant Molecular Biology Reporter,2013,31(6):1518-1528.

[73] XU W R,ZHANG N B,JIAO Y T,LI R M,XIAO D M,WANG Z P. The grapevine basic helix-loop-helix (bHLH) transcription factor positively modulates CBF-pathway and confers tolerance to cold-stress in Arabidopsis[J]. Molecular Biology Reports,2014,41(8):5329-5342.

[74] SUN X M,ZHANG L L,WONG D C J,WANG Y,ZHU Z F,XU G Z,WANG Q F,LI S H,LIANG Z C,XIN H P.The ethylene response factor VaERF092 from Amur grape regulates the transcription factor VaWRKY33,improving cold tolerance[J].The Plant Journal,2019,99(5):988-1002.

[75] SUN X M,ZHAO T T,GAN S H,REN X D,FANG L C,KARANJA K S,WANG Y,CHEN L,LI S H,XIN H P. Ethylene positively regulates cold tolerance in grapevine by modulating the expression of ethylene response factor 057[J]. Scientific Reports,2016,6(1):1-14.

[76] SUN X M,ZHU Z F,ZHANG L L,FANG L C,ZHANG J S,WANG Q F,LI S H,LIANG Z C,XIN H P. Overexpression of ethylene response factors VaERF080 and VaERF087 from Vitis amurensis enhances cold tolerance in Arabidopsis[J]. Scientia Horticulturae,2019,243:320-326.

[77] SUN X M,MATUS J T,CHERN D W J,WANG Z M,CHAI F M,ZHANG L L,FANG T,ZHAO L,WANG Y,HAN Y P,WANG Q F,LI S H,LIANG Z C,XIN H P. The GARP/MYBrelated grape transcription factor AQUILO improves cold tolerance and promotes the accumulation of raffinose family oligosaccharides[J]. Journal of Experimental Botany,2018,69(7):1749-1764.

[78] YUAN Y Y,FANG L C,KARUNGO S K,ZHANG L L,GAO Y Y,LI S H,XIN H P. Overexpression of VaPAT1,A GRAS transcription factor from Vitis amurensis,confers abiotic stress tolerance in Arabidopsis[J].Plant Cell Reports,2016,35(3):655-666.

[79] WANG Z M,WONG D C J,WANG Y,XU G Z,REN C,LIU Y F,KUANG Y F,FAN P G,LI S H,XIN H P,LIANG Z C.GRAS-domain transcription factor PAT1 regulates jasmonic acid biosynthesis in grape cold stress response[J]. Plant Physiology,2021,186(3):1660-1678.

[80] ZHANG L L,ZHAO T,SUN X M,WANG Y,DU C,ZHU Z F,KIRAGU G D,WANG Q F,LI S H,XIN H P. Overexpression of VaWRKY12,a transcription factor from Vitis amurensis with increased nuclear localization under low temperature,enhances cold tolerance of plants[J]. Plant Molecular Biology,2019,100:95-110.

[81] SHU X,DING L,GU B,ZHANG H G,GUAN P G,ZHANG J X.A stress associated protein from Chinese wild Vitis amurensis,VaSAP15,enhances the cold tolerance of transgenic grapes[J].Scientia Horticulturae,2021,285:110147.

[82] ZHANG H J,HU Y F,GU B,GUI X Y,ZHANG J X. Va-MYB44 transcription factor from Chinese wild Vitis amurensis negatively regulates cold tolerance in transgenic Arabidopsis thaliana and V. vinifera[J]. Plant Cell Reports,2022,41(8):1673-1691.

[83] REN C,LI H Y,WANG Z M,DAI Z W,LECOURIEUX F,KUANG Y F,XIN H P,LI S H,LIANG Z C. Characterization of chromatin accessibility and gene expression upon cold stress reveals that the RAV1 transcription factor functions in cold response in Vitis amurensis[J].Plant and Cell Physiology,2021,62(10):1615-1629.

[84] ALEYNOVA O A,KISELEV K V,OGNEVA Z V,DUBROVINA A S. The grapevine calmodulin-like protein gene CML21 is regulated by alternative splicing and involved in abiotic stress response[J]. International Journal of Molecular Sciences,2020,21(21):7939.

[85] DONG C,ZHANG Z,REN J P,QIN Y,HUANG J F,WANG Y,CAI B H,WANG B L,TAO J M. Stress-responsive gene ICE1 from Vitis amurensis increases cold tolerance in tobacco[J].Plant Physiology and Biochemistry,2013,71:212-217.

[86] DONG C,ZHANG M,YU Z Y,REN J P,QIN Y,WANG B L,XIAO L Z,ZHANG Z,TAO J M.Isolation and expression analysis of CBF4 from Vitis amurensis associated with stress[J].Agricultural Sciences,2013,4(5):224-229.

[87] DONG C,TAO J M,ZHANG M,QIN Y,YU Z Y,WANG B L,CAI B H,ZHANG Z. Isolation and expression characterization of CBF2 in Vitis amurensis with stress[J].Agricultural Sciences,2013,4(9):466-472.

[88] 丁小玲,张宁波,焦淑珍,申威,史文婷,徐伟荣. 山葡萄COR413 家族基因克隆及其参与低温胁迫的表达分析[J].农业生物技术学报,2017,25(3):366-377.DING Xiaoling,ZHANG Ningbo,JIAO Shuzhen,SHEN Wei,SHI Wenting,XU Weirong. Cloning and expression analysis of COR413 family genes from Vitis amurensis in response to cold stress[J]. Journal of Agricultural Biotechnology,2017,25(3):366-377.

[89] WANG Z M,WANG Y,TONG Q,XU G Z,XU M L,LI H Y,FAN P G,LI S H,LIANG Z C.Transcriptomic analysis of grapevine Dof transcription factor gene family in response to cold stress and functional analyses of the VaDof17d gene[J]. Planta,2021,253(2):1-14.

[90] DUBROVINA A S,KISELEV K V,KHRISTENKO V S,ALEYNOVA O A. VaCPK20,a calcium-dependent protein kinase gene of wild grapevine Vitis amurensis Rupr.,mediates cold and drought stress tolerance[J]. Journal of Plant Physiology,2015,185:1-12.

[91] XIN H P,ZHU W,WANG L N,XIANG Y,FANG L C,LI J T,SUN X M,WANG N,LONDO J P,LI S H. Genome wide transcriptional profile analysis of Vitis amurensis and Vitis vinifera in response to cold stress[J/OL]. PLoS One,2013,8(3):e58740.DOI:10.1371/journal.pone.0058740

[92] XU M L,TONG Q,WANG Y,WANG Z M,XU G Z,ELIAS G K,LI S H,LIANG Z C. Transcriptomic analysis of the grapevine LEA gene family in response to osmotic and cold stress reveals a key role for VamDHN3[J]. Plant and Cell Physiology,2020,61(4):775-786.

[93] 米宝琴,毛娟,申鹏,陈佰鸿,郝燕,杨瑞.山葡萄‘通化-3’抗寒相关基因SSH 文库的构建及分析[J].果树学报,2015,32(4):546-554.MI Baoqin,MAO Juan,SHEN Peng,CHEN Baihong,HAO Yan,YANG Rui. Construction and analyses of SSH libraries of cold resistance related genes in Vitis amrensis accession‘Tonghua-3’[J].Journal of Fruit Science,2015,32(4):546-554.

[94] WANG Y,XIN H P,FAN P G,ZHANG J S,LIU Y B,DONG Y,WANG Z M,YANG Y Z,ZHANG Q,MING R,ZHONG G Y,LI S H,LIANG Z C. The genome of Shanputao (Vitis amurensis) provides a new insight into cold tolerance of grapevine[J].The Plant Journal,2021,105(6):1495-1506.

Research progress in cold tolerance mechanism of grape

ZHANG Lipeng1,LIU Huaifeng1*,XIN Haiping2*

(1School of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China;2Wuhan Botanical Garden, Chinese Academy of Sciences,Wuhan 430074,Hubei,China)

Abstract: Grapevines (Vitis spp.) are deciduous vine of the genus Vitis in the Vitaceae family, with a long history of cultivation.Grapes can be eaten fresh or dried,or processed into juice or wine.They are nutritious and profitable and grown in many countries.Grapes play an important role in the fruit industry in China.In the high-quality grape producing areas in north China,late frost and winter low temperature cause freezing damage, which is the main limiting factor that restricts the sustainable development of grape industry.At present, burying grapevine in soil for cold protection and application of warming greenhouses greatly increase the cost of grape production. It is of great significance to study mechanisms of grape responses to low temperature and to breed new grape varieties with cold resistance.This paper reviews the advances of research related to grape cold resistance. First of all, the evaluation of cold resistance of grape germplasm resources is important for the breeding of new cold resistance varieties for regions with“freezing injury caused by low temperature in winter and freezing injury caused by late frost”. It was found that wild grapes in China and the United States showed strong resistance to cold injury caused by low temperatures in winter and spring. Understandings of resistance mechanism of new grape varieties derived from mountain grapes(V.amurensis)as the main material provides a theoretical basis for cold resistance breeding. In production, plant tissue structure is the basis of its resistance to external stress conditions, which is formed in the process of evolution in order to adapt to the environment. Dormant organs (roots, bud eyes and branches) are the main structures of grapes exposed to sub-zero freezing stress. Branches and roots serve as the main organs of overwintering. Grape roots are more prone to freezing injury than branches. Therefore, it is particularly important to improve the cold resistance of roots to improve the cold resistance of the whole plants.As for the problem of late frost damage caused by the“return cold”in spring, the major damaged structure of grape is leaf. Studies have found a link between the structure of grape leaves and the cold resistance of the plant.Physiological changes involved cold resistance of grapes include four aspects: (1) cell electrolyte leakage and intercellular substances; (2) antioxidation enzymes including peroxidase (POD), superoxidase (SOD),catalase (CAT) and ascorbic acid peroxidase (APX); (3) lipid peroxidation (MDA) of cell membrane;(4) cold resistance regulatory substances (soluble protein, soluble sugar and free proline). Research on molecular mechanism of grape cold resistance involves (1) basic research on the damage caused by spring“return cold”in main grape production regions; (2) exploration of the key genes for resistance breeding by using wild germplasm resources.According to gene actions, genes can be divided into (1)regulatory genes, such as C-repeat binding factor (CBF) and other transcription factors, which mainly participate in grape cold response by controlling gene expression,and(2)functional genes such as antioxidant enzyme genes, which directly participate in some physiological and biochemical processes and enhance the cold resistance of grapes. Researchers have made a great breakthrough in the excavation and functional analysis of grape cold resistance genes. Some are based on homologous cloning and functional validation of key genes that respond to low temperature in model plants,and some gene families or members have been found to be associated with low temperature in grapes for the first time. So far, the researchers have not confirmed a genetic link with high cold resistance in mountain grapes, although they have only found that some genes show a faster or more abundant expression pattern in mountain grapes than in European subspecies. On the basis of this work, there will be breakthrough in understanding the high resistance of mountain grapes and use it to improve variety resistance. Finally,in view of the research work related to grape cold resistance mechanism and some existing problems,the authors proposed these problems and possible solutions, and prospected for further research. (1)Construction of genetic population, mapping of genetic map and evaluation of cold resistance, identification of QTL related to cold resistance of mountain grape,mining associated resistance genes,and development of molecular markers for assisted breeding.(2)Pay attention to the occurrence law and relationship between low temperature and drainage, and carry out research on drainage as a single character.(3)Strengthening the research on stress response of different organs is of practical significance to reveal the resistance mechanism of grapevine.

Key words:Grapes;Cold tolerance;Low temperature response;Gene function

中图分类号:S663.1

文献标志码:A

文章编号:1009-9980(2023)02-0350-13

DOI:10.13925/j.cnki.gsxb.20220317

收稿日期:2022-06-14

接受日期:2022-08-11

基金项目:国家重点研发计划(2018YFD1000302)

作者简介:张利鹏,在读博士研究生,研究方向为果树抗逆育种。Tel:19914347819,E-mail:1272979304@qq.com

*通信作者Author for correspondence.Tel:13579764625,E-mail:lhf_agr@shzu.edu.cn;Tel:027-87700880,E-mail:xinhaiping@wbgcas.cn