植物果实和种子性状的多样性,由遗传因素和环境条件共同影响所致。通过对不同生境的植物果实和种子性状变化规律的研究,可以了解植物在不同生境下有性繁殖能力与适应性[1-2]。果实与种子性状影响植物的扩散、萌发、幼苗定居及种群分布,是植物有性生殖系统与生活史研究的重要组成部分,是植物生存和繁衍适应性的集中体现[3-4]。海拔的变化会改变植物生存的综合环境条件,进而影响植物的果实和种子性状。如不同生态区(海拔、经纬度)甜樱桃的外观品质和营养物质存在显著差异[5];黑果越橘大小随着海拔升高而变小[6];海拔对蘘荷的产量和品质均产生了显著影响[7];云南省帕拉英达杧果果实和种子的性状均受海拔显著影响[8];海拔显著影响不同种源高山栲的种子性状[9],这表明海拔与植物有性繁殖能力及其生殖系统发育特征密切相关,同时影响其垂直生境天然更新种源质量与能力。因此,研究果实和种子性状及其与海拔的关系,掌握植物对环境的适应性与自我维持机制具有重要意义。
新疆野杏(Prunus armeniaca Lam.)是国家二级重点保护的野果林珍稀树种之一,对维持野果林生态系统的稳定性有重要作用[10-11]。野杏种下类型丰富,树高5~10 m,4月上旬至中旬开花,7月中旬至8月下旬果实成熟,果实包含圆形、卵圆形、椭圆形等,种子扁圆形,味苦。野杏的适应性比栽培杏强,可以生存在石质化瘠薄的土壤中,对盐渍化土壤也有一定的忍耐能力,常被用作砧木作绿化树木,具有重要的生态效益和经济价值[12]。但是,近些年由于环境变化、病虫危害和人类活动等生物与非生物因素的多重干扰,野杏种群分布范围内年龄结构不合理,种群更新障碍显著、退化趋势严重,野杏种群的健康状况中等偏下,种质资源延续受到威胁,探索其良好的自维持机制,是保持这一珍贵资源延续的最佳策略[13-14]。实生繁殖是新疆野杏天然更新的方式,正常的果实与种子发育是其获得更新种源的重要基础,新疆伊犁河谷两岸海拔1000~1700 m山地垂直分布的野杏群体,果实和种子性状对环境的适应性还尚不明确。笔者在本研究中选择新疆伊犁新源县吐尔根杏花沟野杏海拔变化典型的分布区域,研究不同海拔梯度果实性状、种子性状差异及其相互关系,以期为新疆野杏生存与有性繁殖的生态适应性研究提供一些理论参考。
研究地点位于新疆新源县吐尔根乡杏花沟的野杏居群,地处(E83°26′18.88″~83°25′57.16″,N43°32′35.71″~43°33′12.48″),林下土壤为黑钙土,腐殖质层较厚。研究地所处区域生育期的平均气温18.75 ℃,平均光照度26875.04 lx,平均湿度48.78%,属于典型的温带大陆半干旱气候。
研究区的新疆野杏属纯野杏林,样地林下灌木种类和数量较少,主要有忍冬科(Caprifoliaceae)和蔷薇科(Rosaceae),草本层丰富,共观察到草本植物54种,分属18科,36属,种类最多的前5个科分别是禾本科(Gramineae)、唇形科(Labiatae)、十字花科(Cruciferae)、豆科(Leguminosae)和荨麻科(Urticaceae),在样地还发现了菊科(Compositae)的入侵种三裂叶豚草(Ambrosia trifida L.)等。
于2021 年4 月,经踏查,研究区的新疆野杏分布以在河谷北岸南山坡海拔960~1634 m 的阳坡、半阳坡和山脊两侧为主,阴坡的上坡位分布稍多,向下显著减少至零星分布,海拔1000~1500 m 是种群集中连片分布区,在1550 m 以上,群体数量逐渐较少,分布稀疏。为了探明海拔对野杏集中群体果实与种子影响,选择野杏集中分布区域,以能全面反映野杏群体分布特征与立地类型为原则,海拔每升高100 m 作为一个梯度[15],共划分5 个梯度选择样地,由低到高共设置10 个20 m×20 m 样地,用GPS 测定海拔、经纬度,用罗盘测定坡向、坡度等,对地形因子分类,划分出不同立地类型[16]。其中1号样地立地类型属于北山沟谷,2 号、8 号、9 号、10号样地属于北山阳坡陡坡;3 号、4 号、6 号样地属于北山阴坡陡坡;5 号、7 号样地属于北山阳坡缓坡;样地地形概况见表1。
表1 样地地形概况
Table 1 Topography of sample plots
海拔梯度Altitude gradientⅠ(1100~1200 m)样地编号Sample plots number地形因子Topographic factors样地海拔Sample plot altitude/m 1118.8经度Longitude 83°26′18.88″纬度Latitude 43°32′35.71″坡度Slope/(°)8.41183.683°26′21.44″28.283°26′13.43″43°32′35.08″43°32′26.24″31.11157.2Ⅱ83°26′10.23″1202.343°32′39.75″29.7(1200~1300 m)1231.583°26′19.07″43°32′44.70″22.41251.583°26′22.26″30.143°32′47.58″Ⅲ1340.683°26′04.52″43°32′56.73″23.9(1300~1400 m)1358.183°25′57.66″43°32′54.17″35.1Ⅳ1234567891470.283°26′01.10″43°33′07.83″34.7(1400~1500 m)Ⅴ(1500~1600 m)101566.683°25′57.16″43°33′12.48″坡位Slope position沟谷Valley上坡Ascent上坡Ascent上坡Ascent中坡Midslope中坡Midslope中坡Midslope上坡Ascent中坡Midslope中坡Midslope坡向Slope Aspect/(°)南180.0 S 180.0西275.3 W 275.3东北56.0 NE 56.0西南229.3 SW 229.3南186.7 S 186.7东101.3 E 101.3东南136.3 SE 136.3西263.3 W 263.3西南200.0 SW 200.0东南120.0 SE 120.027.5
在每个样地各放置1 个HOBO MX2202 照度仪(ONSET 公司)和EL-USB-2 温湿度仪(ASCAR 公司),照度仪固定于样地中心树干中上部朝南位置,温湿度仪放置于百叶箱中悬挂于树干中部,观测时间为每天10:00—18:00(白天),19:00—09:00(夜间),设置每间隔1 h 记录1 次光照度、温度、湿度数据,果实发育期平均气候因子见表2。
表2 样地生境因子概况
Table 2 Overview of habitat factors in sample plots
生境因子Habitat factors气候ClimateⅡⅢⅣⅤ海拔梯度Altitude gradientⅠ24768.00±1128.8 c 15703.51±913.2 d光照度Light intensity/lx温度Temperature/℃湿度Humidity/%昼夜温差Diurnal temperature range/℃w(总盐)Total salt content/(g·kg-1)w(有机质)Organicmattercontent/(g·kg-1)w(全氮)Total nitrogen content/(g·kg-1)w(全磷)Totalphosphoruscontent/(g·kg-1)w(全钾)Total potassium content/(g·kg-1)pH 30293.34±916.31 b 31157.46±1333.61b 42313.18±1515.47a 19.14±0.33 a 50.34±0.95 a 4.59±0.22 b 18.95±0.35 a 48.71±1.01 ab 3.71±0.21 c 19.07±0.35 a 46.49±1.00 b 3.63±0.23 c 18.02±0.52 ab 49.93±1.44 ab 3.41±0.20 c 17.68±0.50 b 49.27±1.42ab 5.36±0.24 a土壤Soil 1.05±0.02 a 0.80±0.04 b 0.95±0.07 ab 0.97±0.03 a 1.07±0.03 a 128.5±9.07 ab 104.68±13.96 bc 144.50±8.31 a 80.77±3.90 c 132.67±5.17 ab 5.24±0.26 b 4.85±0.52 bc 6.02±0.27 ab 3.68±0.05 c 6.49±0.27 a 0.30±0.05 a 0.22±0.03 a 0.30±0.02 a 0.28±0.03 a 0.31±0.01 a 27.53±1.03 a 28.63±0.39 a 27.54±0.27 a 27.07±1.00 a 27.36±0.74 a 6.43±0.14 a 5.73±0.02 b 6.04±0.09 b 6.64±0.09 a 6.01±0.09 b
自野杏生长期开始至休眠期,每月上旬在每个海拔的样地按照品字形采集3 份0~60 cm 深的土样,将各月所取土样混合后测定土壤理化指标含量。包括pH值及有机质、全氮、全磷、全钾、总盐等的含量。
为了避免野杏果实多样性造成的观测误差,于2021年7—8月的果实成熟期,以每个海拔梯度分布最多的新疆野杏种下类型大绵杏(P. armeniaca f.aggiutinata L.Wang et D.F.Cui forma nov.)为观测对象,该种下类型果实扁卵圆形,果面淡黄色,微带红霞,果肉橘黄色,味酸甜,离核;果核黄褐色,卵形,仁苦[17]。
在每个海拔选择胸径与生活力相近的5 株样树,在每株树树冠的东南西北4个方向各采摘5个果实,每株树摘20个果实,每个海拔梯度采摘100个果实,将采摘的果实进行果实性状、种子性状的观测。
参照杏种质资源描述规范[18]进行果实性状测定。1.6.1 果实大小测定 用游标卡尺分别测量果实的纵径、横径、侧径。用电子秤对每个样品的单果质量进行测定和记录。沿缝合线用刀切开,取果肉,用游标卡尺测定果肉的厚度。
1.6.2 果实色泽测定 新疆野杏果实果皮病斑面积较大,因此笔者在本文中选择研究果肉色泽。用NH300 电脑色差仪测定果肉色泽,操作方法为:将果实的果皮削去1~2 mm果皮,测定果肉色泽,每个果实测3 次。明亮程度(L)值越大,亮度越高;红色程度(a)代表红色或绿色,正值越大,红色越深;橙色程度(b)代表黄或蓝,正值越大,黄色越深,色度角H变化幅度在0~180°之间,H=90°为黄色,当色度角H越接近90°黄色越深;色泽比=a/b,果实成熟期为正数,值越小,黄色越深;色泽总量=La/b[19]。
1.6.3 果实内在品质测定 将果实削去1 cm2的果皮,用GY-3型果实硬度计(最小量程为0.5 kg·cm-2)对果实赤道线一周的三个点进行去皮果实硬度的测量。用ATAGO(爱拓)糖酸度计测定可溶性固形物含量(Brix)和总酸含量(Acid),3 次重复,取平均值。固酸比=Bri/Acid。
种子是指野杏果实去除果肉、保留内果皮的种子。用游标卡尺分别测定种子(核)的纵径、横径、侧径。用电子秤对每个样品的种子鲜质量进行测定和记录。将称量完鲜质量的种子装入纱网袋放入通风处自然干燥,待种子达到恒质量时称量种子干质量。产种率/%=种子质量/单果质量×100。
利用Excel 2019对数据进行初步处理。采用单因素方差分析(one-way ANOVA)对不同海拔梯度的果实性状、种子性状进行显著性分析;且当结果在α=0.05水平显著时,通过Duncan’s进行多重比较。采用Pearson 相关分析方法,分析海拔与果实性状、种子性状之间的相关性,显著性检验采用双尾检验,p<0.05为差异显著,p<0.01为差异极显著,采用多元回归分析和通径分析方法,分析海拔梯度对果实性状、种子性状的影响,上述分析在SPSS 19.0中进行。
2.1.1 果实性状随海拔变化特征 新疆野杏果实成熟期在7 月下旬,果实淡黄色,离核,味酸甜。平均单果质量13.01 g,平均纵径、横径、侧径、果肉厚分别为30.65、31.30、25.03、6.69 mm,平均可溶性固形物含量、总酸含量分别为19.06%、1.88%。
由表3 可知,不同海拔梯度新疆野杏的单果质量、果实纵径、横径、侧径、果形指数、果肉厚均是第Ⅰ级海拔的最大,除果形指数为第Ⅳ级最小,其他均是第Ⅴ级的最小,分别相差47.80%、25.03%、23.50%、20.82%、0.93%、18.86%;第Ⅰ级海拔果实的单果质量、果实横径与侧径、果肉厚与第Ⅳ级、第Ⅴ级海拔均存在显著差异,果实纵径与第Ⅱ级、第Ⅳ级、第Ⅴ级海拔均存在显著差异,而果形指数变化在1.02~1.07范围内,果形指数间差异不显著,第Ⅳ、Ⅴ级海拔果实大小显著小于第Ⅰ、Ⅱ、Ⅲ级。
表3 不同海拔梯度野杏果实性状
Table 3 The fruit traits of P.armeniaca at different altitudes
注:表中数据代表(平均值±标准误);同行不同小写字母表示差异显著(p<0.05)。下同。
Note: Data in the table represent (mean ± standard error); Different lowercase letters in the same column showed significant differences (p <0.05),The same below.
果实性状Fruit traits单果质量Fruit weight/g纵径Vertical diameter/mm横径Transverse diameter/mm侧径Side diameter/mm果形指数Fruit shape index果肉厚Pulp thickness/mm明亮程度Lightness红色程度Red level橙色程度Orange degree色度角Hue angle色泽总量Total color色泽比a/b-value硬度Firmness/(kg·cm-2)w(可溶性固形物)Soluble solids content/%w(总酸)Acid content/%固酸比Solid acid ratio海拔梯度Altitude gradientⅠ14.71±0.24 a 33.10±0.34 a 31.03±0.22 a 26.30±0.24 a 1.07±0.01 a 7.13±0.19 a 49.07±0.70 c 17.14±0.54 ab 31.17±0.63 b 61.89±0.81 b 27.63±1.10 a 0.56±0.02 a 0.70±0.03 c 16.10±0.38 cⅡⅢⅣⅤ14.58±0.32 a 31.49±0.24 b 30.76±0.25 a 26.18±0.25 a 1.02±0.01 a 6.97±0.14 a 50.05±0.96 bc 15.50±0.76 b 28.13±0.52 c 64.20±0.72 b 27.55±1.32 a 0.56±0.03 a 0.71±0.02 c 15.33±0.47 c 14.25±0.60 a 31.31±0.35 b 30.50±0.48 a 25.89±0.44 a 1.03±0.02 a 6.82±0.13 a 51.53±0.37 ab 16.07±0.64 ab 31.23±0.50 b 64.22±0.90 b 26.86±1.15 ab 0.52±0.02 a 0.85±0.10 bc 19.79±0.48 b 9.37±0.48 b 28.89±0.64 c 26.21±0.58 b 22.72±0.56 b 1.02±0.09 a 5.88±0.24 b 51.97±1.11 ab 17.41±0.44 a 32.18±0.38 b 64.51±0.71 b 27.55±0.61 a 0.55±0.02 a 0.98±0.06 b 20.49±1.29 b 7.68±0.61 c 24.81±0.60 d 23.74±0.74 c 20.82±0.74 c 1.06±0.04 a 5.78±0.28 b 53.40±0.43 a 16.10±0.39 ab 34.99±0.32 a 65.41±0.53 a 24.41±0.50 b 0.46±0.01 b 1.46±0.08 a 23.58±0.83 a 1.64±0.12 b 15.13±1.05 a 1.44±0.06 b 11.53±0.47 b 2.00±0.10 a 8.08±0.42 c 2.18±0.16 a 10.27±0.82 b 2.15±0.14 a 9.84±0.72 bc
不同海拔梯度新疆野杏果实明亮程度、橙色程度、色度角均是第Ⅴ级海拔的最大,除橙色程度为第Ⅱ级最小外,其他均为第Ⅰ级的最小,分别相差8.11%、19.61%、5.38%,明亮程度与第Ⅰ级、第Ⅱ级存在显著差异,橙色程度和色度角与其他海拔级均存在显著差异;不同海拔梯度的红色程度为第Ⅳ级海拔的最大,第Ⅱ级的最小,最大相差10.97%,二者存在显著差异;不同海拔梯度的色泽总量和色泽比均为第Ⅰ级海拔的最大,第Ⅴ级的最小,最大相差11.65%、17.86%,色泽比和色泽总量只与第Ⅴ级存在显著差异。第Ⅳ海拔果实色泽显著高于第Ⅰ、Ⅱ、Ⅲ、Ⅴ级。
不同海拔梯度新疆野杏的果实硬度、可溶性固形物含量、固酸比均为第Ⅴ级海拔最大,与其他海拔级均存在显著差异,除硬度为第Ⅰ级最小外,其他均为第Ⅱ级的最小,分别相差52.05%、34.99%、46.60%;不同海拔梯度新疆野杏的果实总酸含量为第Ⅲ级海拔最高,第Ⅰ级最低,相差33.94%,与第Ⅰ级、第Ⅴ级海拔存在显著差异。第Ⅳ、Ⅴ级果实的内在品质高于第Ⅰ、Ⅱ、Ⅲ级。
2.1.2 果实性状与海拔的相关性 由表4 可知,海拔梯度与单果质量、果实纵径、横径、侧径、果肉厚均呈极显著负相关;海拔梯度与果肉明亮程度、橙色程度、色度角均呈极显著正相关,与色泽比呈极显著负相关,与色泽总量呈显著负相关;海拔梯度与果实硬度、可溶性固形物含量、固酸比均呈极显著正相关,与果实纵径(-0.775)的相关系数绝对值最大,与果肉红色程度(0.004)的相关系数绝对值最小。
表4 海拔梯度与野杏果实性状的相关性分析
Table 4 Correlation analysis between different altitudes and fruit traits of P.armeniaca
注:**.在0.01 水平(双侧)上显著相关。*.在0.05 水平(双侧)上显著相关。下同。
Note:**.Significantly correlated at the level of 0.01(bilateral).*.Significant correlation at 0.05 level(bilateral).The same below.
指标Index海拔梯度Altitude gradient指标Index海拔梯度Altitude gradient单果质量Fruit weight-0.697**纵径Vertical diameter-0.775**横径Transverse diameter-0.728**侧径Side diameter-0.653**果形指数Fruit shape index-0.047果肉厚Pulp thickness-0.379**硬度Firmness 0.606**可溶性固形物含量Soluble solids content 0.680**总酸含量Acid content 0.185**固酸比Solid acid ratio 0.273**明亮程度Lightness 0.210**红色程度Red level 0.004橙色程度Orange degree 0.384**色度角Hue angle 0.276**色泽总量Total color-0.111*色泽比a/b-value-0.172**
2.1.3 果实性状随海拔变化的逐步回归分析及决定程度分析 为确定海拔梯度与果实性状的定量关系,以海拔梯度(Y)为因变量,果实性状(Xi)为自变量,采用逐步引入进行多元回归分析。F≤0.05 时,选择自变量;F≥0.01 时,剔除自变量。按照显著程度,逐步引入果实纵径(X1)、果形指数(X2)、可溶性固形物含量(X3)、固酸比(X4)、色度角(X5),得到以下回归方程:
Y=5.794-0.264X1+1.784X2+0.157X3-0.060X4+0.013X5,F=61.407,p=0.000<0.01,果实纵径、果形指数、可溶性固形物含量、固酸比、色度角偏回归系数的显著性均小于0.01,均达到极显著水平,其中多元相关系数R=0.875,总决定系数R2=0.766,表明果实的纵径、果形指数、可溶性固形物含量、固酸比、色度角5 个果实性状及其交互效应76.6%受海拔梯度影响。
2.1.4 果实性状随海拔变化的通径分析 海拔梯度(Y)对野杏果实性状(Xi)的直接作用和通过其他因子的间接作用如表5 所示,海拔梯度对果实纵径、果形指数、可溶性固形物含量、色度角的直接作用大于间接作用,对固酸比的间接作用大于直接作用;海拔梯度对果实纵径、固酸比均为直接负作用,对果形指数、可溶性固形物含量、色度角均为直接正作用;对果实纵径的直接作用最大,对色度角的直接作用最小,直接通径系数分别为-0.616 和0.141;对固酸比的间接作用最大,间接通径系数为0.416。
表5 野杏果实性状与海拔梯度的通径分析
Table 5 Path analysis of fruit traits and altitude of P.armeniaca
注:X1.果实纵径;X2.果形指数;X3.可溶性固形物含量;X4.固酸比;X5.色度角。
Note:X1.Vertical diameter of fruit;X2.Shape index of fruit;X3.Soluble solids content;X4.Solid acid ratio;X5.Hue angle.
果实性状Fruit traits间接通径系数Indirect passage coefficient X1 X2 X3 X4 X5 X1-0.034 X2-0.2490.094 X30.057-0.019-0.079 X4-0.0010.031-0.003-0.031 X5相关系数Correlation coefficient-0.775-0.047-0.645-0.5280.276直接通径系数Direct passage coefficient-0.6160.1620.465-0.1670.141合计Total-0.227-0.0220.0450.4160.036-0.1280.3300.2090.002-0.2030.0180.0350.220-0.0110.010
2.2.1 种子性状随海拔变化特征 总体上,新疆野杏种子黄褐色,卵形,有细沟纹,仁苦。平均种子鲜质量、干质量分别为1.93、1.41 g,平均纵径、横径、侧径分别为22.43、17.80、10.48 mm,平均产种率为15.16%。
由表6 可知,不同海拔梯度新疆野杏的种子鲜质量、种子干质量、种子纵径、横径、侧径均是第Ⅰ级海拔的最大,第Ⅴ级的均是最小,分别相差45.44%、40.12%、27.08%、13.49%、15.83%;第Ⅰ级海拔的种子,鲜质量与其他海拔级均存在显著差异,干质量、横径与第Ⅳ级、第Ⅴ级海拔均存在显著差异,纵径与第Ⅲ级、第Ⅳ级、第Ⅴ级海拔均存在显著差异,侧径与第Ⅱ级、第Ⅳ级、第Ⅴ级海拔均存在显著差异;不同海拔梯度新疆野杏的产种率是第Ⅳ级海拔最高,第Ⅱ级的最低,相差29.17%,与其他海拔级均存在显著差异。
表6 不同海拔梯度野杏种子性状
Table 6 The seed traits of P.armeniaca at different altitudes
种子性状Seed traits种子鲜质量Fresh weight of seed/g种子干质量Dry weight of seed/g纵径Vertical diameter/mm横径Transverse diameter/mm侧径Side diameter/mm产种率Seed yield rate/%海拔梯度Altitude gradientⅠ2.22±0.04 a 1.62±0.04 a 24.27±0.38 a 18.64±0.16 a 11.18±0.15 a 15.28±0.35 bⅡⅢⅣⅤ2.00±0.04 b 1.53±0.03 a 23.09±0.16 ab 18.06±0.20 ab 10.47±0.07 b 13.69±0.26 c 2.01±0.08 b 1.56±0.06 a 22.31±0.34 b 18.59±0.29 ab 10.68±0.22 ab 14.14±0.31 c 1.81±0.09 b 1.39±0.05 b 22.73±0.48 b 17.73±0.36 b 10.15±0.22 b 19.32±0.47 a 1.21±0.08 c 0.97±0.05 c 17.69±0.89 c 16.12±0.52 c 9.41±0.19 c 16.06±0.69 b
2.2.2 种子性状与海拔的相关性 由表7 可知,海拔梯度与种子鲜质量、种子干质量、种子纵径、横径、侧径均呈极显著负相关,与产种率呈极显著正相关,与种子鲜质量的相关系数(-0.659)绝对值最大,与产种率的相关系数(0.341)绝对值最小。
表7 海拔梯度与野杏种子性状的相关性分析
Table 7 Correlation analysis between different altitudes and seed traits of P.armeniaca
指标Index海拔梯度Altitude gradient种子鲜质量Fresh weight of seed-0.659**种子干质量Dry weight of seed-0.608**种子纵径Stone vertical diameter-0.645**种子横径Stone transverse diameter-0.433**种子侧径Stone side diameter-0.528**产种率Seed yield rate 0.341**
2.2.3 种子性状随海拔变化的逐步回归与决定程度分析 为确定海拔梯度与种子性状的定量关系,以海拔梯度(Y)为因变量,种子性状(Xj)为自变量,采用逐步引入进行多元回归分析。F≤0.05时,选择自变量;F≥0.01时,剔除自变量。按照显著程度,逐步引入种子鲜质量(X6)、种子干质量(X7)、种子纵径(X8)、产种率(X9),得到以下回归方程:
Y=7.083-0.610X6-0.983X7-0.202X8+0.178X9,F=40.522,p=0.000<0.01,种子鲜质量、种子干质量、种子纵径、产种率偏回归系数的显著性均小于0.01,均达到极显著水平,其中多元相关系数R=0.794,总决定系数R2=0.630,表明种子鲜质量、种子干质量、种子纵径、产种率4个种子性状及其交互效应63.0%受海拔梯度影响。
2.2.4 种子性状随海拔变化的通径分析 海拔梯度(Y)对野杏种子性状(Xj)的直接作用和通过其他因子的间接作用如表8所示,海拔梯度对产种率的直接作用大于间接作用,对种子鲜质量、种子干质量的间接作用大于直接作用;海拔梯度对种子鲜质量、种子干质量、种子纵径均为直接负作用,对产种率为直接正作用;对种子纵径的直接作用最大,对种子鲜质量的直接作用最小,直接通径系数分别为-0.406 和-0.192;对种子鲜质量的间接作用最大,间接通径系数为-0.468。
表8 野杏种子性状与海拔梯度的通径分析
Table 8 Path analysis of seed traits and altitude of P.armeniaca
注:X6.种子鲜质量;X7.种子干质量;X8.种子纵径;X9.产种率。
Note:X6.Fresh weight of seed;X7.Dry weight of seed;X8.Vertical diameter of seed;X9.Seed yield rate.
种子性状Seed traits X6 X7 X8 X9相关系数Correlation coefficient-0.659-0.608-0.6450.341直接通径系数Direct passage coefficient-0.192-0.216-0.4060.324间接通径系数Indirect passage coefficient合计Total-0.468-0.391-0.2390.017 X1 X2 X3 X4-0.145-0.128-0.1460.009-0.308-0.213-0.1130.033-0.015-0.0500.020-0.025
新疆野杏因具有喜光、耐旱、抗寒、耐瘠薄等良好的适应性,在新疆野果林有纵横广泛分布空间。在同一群落,纵向分布的野杏表现出了生态适应性的变化。
野杏群落的海拔变化可显著改变野杏果实大小,不同海拔存在显著差异。随着海拔升高,野杏果实的单果质量、果肉厚、纵径、横径、侧径逐渐减小,均与海拔呈显著负相关,进一步通径分析的结果也表明海拔对纵径的直接作用最大。这种因海拔变化引起的云南省葡萄[20]和浙江省东魁杨梅[21]果实变化规律一致,其果实大小随着海拔升高显著减小。细胞分裂数量与其膨大程度决定了果实大小,其与前一年果实营养储藏状况密切相关。而海拔升高导致的综合环境变化,不利于果树生长与养分积累贮藏,是改变果实大小的主要因素,呈现不同海拔的生长特征[22]。新疆野杏果实的色泽随海拔升高而色度逐渐增强,以及海拔对其决定程度分析,充分表明海拔变化是影响杏果实色泽发育的主导因素。海拔升高可提升富士苹果着色度也证实这一观点[23]。果实色泽深浅与色素含量有关。随着野杏生存海拔的升高而增强的光照,有利于碳水化合物积累和促进果实色素合成,提升果实色度[24];高海拔较强的短光波光质,尤其是紫外光利于诱导果树合成乙烯等生长抑制剂,促进果实着色。因海拔引起光照条件的变化是影响果实色泽差异的主要环境条件[25-26]。
新疆野杏果实的硬度、可溶性固形物含量、固酸比随着海拔升高逐渐增大的变化及其显著的正相关都表明,海拔显著影响果实的内在品质。蓝莓的相同品质指标[27]随海拔递变的规律,与本研究结果一致。环境因素可显著影响植物的果实品质变化。其中随海拔升高而温度的降低、昼夜温差与光照度增加,改变了果实细胞紧密度、果胶降解速度与糖分积累[28-29],从而提高肉质果实硬度、可溶性固形物含量与固酸比。
新疆野杏种子性状随海拔的变化表明,环境对植物具有生态作用,能够影响植物的生理生化和形态结构[30],新疆野杏群落海拔梯度升高与种子质量和体积均呈显著负相关。关于不同海拔栓皮栎[31]与多种野生植物[32]种子大小亦呈此变化规律。海拔差异造成植物的生长季长短与有效积温高低的差异,显著影响植物资源分布与有性繁殖体的大小[33]。但是,原生植物生存的高海拔低温、强辐射、大风等不利环境会影响植物的繁殖过程,植物在长期对环境适应的过程中,进化出更加适合高山生存的繁殖器官,如形成较小种子、提高产种率[34]既是表型适应性的表现,也是利于其进入深层土壤中抵御更新环境的表现[35]。
植物的果实和种子性状随环境变化是植物关键的繁殖策略,直接关系到幼苗的存活和建成及个体未来的适合度[36-37]。新疆野杏果实与种子性状受海拔决定程度的结果表明,果实5个性状的76.6%和种子4 个性状的63.0%受海拔的影响。这可能是影响野杏种群在1500 m 海拔以上分布稳定性与逐渐受限、新个体的产生与补充产生[38]的主要因素。
野杏果实与种子性状随海拔发生的变化表明,原生野生果树的纵向分布生境,与果实器官发育密切相关,这些立地条件将由海拔主导的气压、光照、温度、降水、地形、土壤等环境因子所决定。研究野杏种群分布生境对其生存的影响,是开展其天然更新生境条件保护重要基础研究工作,也是探索保障其自我繁衍更新机制的关键组成部分。
总体来说,海拔对新疆野杏果实和种子性状均有影响,研究区域内随着海拔升高,果实与种子逐渐减小,果肉色泽、果实品质与产种率逐渐升高,海拔与果实与种子性状关系密切,决定程度高,这些差异反映了环境变化引起的野杏繁殖投入的调整与生存适应性的体现。进一步开展垂直生境下野生果树种子命运的研究,将对探究野杏自我维持机制具有重要意义。
[1] 江锡兵,龚榜初,刘庆忠,陈新,吴开云,邓全恩,汤丹.中国板栗地方品种重要农艺性状的表型多样性[J].园艺学报,2014,41(4):641-652.JIANG Xibing,GONG Bangchu,LIU Qingzhong,CHEN Xin,WU Kaiyun,DENG Quanen,TANG Dan. Phenotypic diversity of important agronomic traits of local cultivars of Chinese chestnut[J].Acta Horticulturae Sinica,2014,41(4):641-652.
[2] 刁松锋,邵文豪,姜景民,董汝湘,孙洪刚.基于种实性状的无患子天然群体表型多样性研究[J]. 生态学报,2014,34(6):1451-1460.DIAO Songfeng,SHAO Wenhao,JIANG Jingmin,DONG Ruxiang,SUN Honggang. Phenotypic diversity in natural populations of Sapindus mukorossi based on fruit and seed traits[J].Acta Ecologic Sinica,2014,34(6):1451-1460.
[3] WANG B,PHILLIPS J S,TOMLINSON K W. Tradeoff between physical and chemical defense in plant seeds is mediated by seed mass[J].Oikos,2018,127(3):440-447.
[4] 毛建丰,李悦,刘玉军,刘灏,王晓茹.高山松种实性状与生殖适应性[J].植物生态学报,2007,31(2):291-299.MAO Jianfeng,LI Yue,LIU Yujun,LIU Hao,WANG Xiaoru.Cone and seed charact-eristics of Pinus densata and their adaptive fitness implications[J]. Journal of Plant Ecology,2007,31(2):291-299.
[5] 田彦龙,马永强,王磊,郭青云,陈红雨.西北不同生态区甜樱桃果实品质分析[J].果树学报,2021,38(4):509-519.TIAN Yanlong,MA Yongqiang,WANG Lei,GUO Qingyun,CHEN Hongyu.Quality analysis of sweet cherry fruits in different ecological areas in northwest China[J]. Journal of Fruit Science,2021,38(4):509-519.
[6] PATO J,OBESO J R.Fruit mass variability in Vaccinium myrtillus as a response to altitude simulated herbivory and nutrient availability[J].Basic and Applied Ecology,2012,13(4):338-346.
[7] 吴金平,矫振彪,周洁,符家平,肖颖,郭凤领.海拔对蘘荷生长及品质的影响[J].中国瓜菜,2021,34(9):88-91.WU Jinping,JIAO Zhenbiao,ZHOU Jie,FU Jiaping,XIAO Ying,GUO Fengling. Effects of different elevation on growth and quality of mioga ginger[J].China Cucurbits and Vegetables,2021,34(9):88-91.
[8] 张翠仙,陈于福,尼章光,王永芬,柏天琦,张惠云,章勇,解德宏.不同海拔对帕拉英达杧果光合特性及果实品质的影响[J].果树学报,2021,38(5):749-759.ZHANG Cuixian,CHEN Yufu,NI Zhangguang,WANG Yongfen,BAI Tianqi,ZHANG Huiyun,ZHANG Yong,XIE Dehong.Effects of different altitudes on leaf photosynthetic characteristics and fruit quality in Myahintha mango[J]. Journal of Fruit Science,2021,38(5):749-759.
[9] 田瑞杰,巩合德,雷晨雨,冯德枫,张春华,孙永玉.不同种源高山栲种子性状特征及其变异[J]. 中南林业科技大学学报,2021,41(9):88-95.TIAN Ruijie,GONG Hede,LEI Chenyu,FENG Defeng,ZHANG Chunhua,SUN Yongyu. Characteristic and variation in seed traits of Castanopsis delavayi from various provenances[J].Journal of Central South University of Forestry & Technology,2021,41(9):88-95.
[10] 王利兵.我国3 种杏的地理分布及其植物学性状[J].林业科学研究,2010,23(3):435-439.WANG Libing. Geographic distribution and botanical characters of 3 Armeniaca plant in China[J].Forest Research,2010,23(3):435-439.
[11] 国家林业和草原局,农业农村部.国家重点保护野生植物名录[EB].(2021-09-17)[2022-04-09].http://www.gov.cn/zhengce/zhengceku/2021-09/09/content_5636409.htm.National Forestry and Grassland Administration,Ministry of Agriculture and Rural Affairs. List of national key protected wild plants [EB]. (2021-09-17) [2022-04-09]. http://www.gov.cn/zhengce/zheng ce ku/2021-09/09/content_5636409.htm.
[12] 林培钧,崔乃然.天山野果林资源:伊犁野果林综合研究[M].北京:中国林业出版社,2000:141-163.LIN Peijun,CUI Nairan.Wild fruit forests resources in tianshan mountains: Comprehensive research on wild fruit forests in Ili,Xinjiang,China[M]. Beijing:China Forestry Publishing House,2000:141-163.
[13] 阎国荣.新疆天山野生果树研究及保护[J].中国野生植物资源,2001,20(4):13-14.YAN Guorong.Study on the wild fruit trees and its conservation of Tianshan Mountain in Xinjiang[J]. Chinese Wild Plant Resources,2001,20(4):13-14.
[14] 杨其享,刘立强,秦伟,刁永强,赵忠晶,乌仁其米格,张博.新疆野杏种群结构特征与健康评价[J]. 生态学杂志,2022,41(1):9-17.YANG Qixiang,LIU Liqiang,QIN Wei,DIAO Yongqiang,ZHAO Zhongjing,WU Renqimige,ZHANG Bo. Population structure characteristics and health evaluation of Armeniaca vulgaris Lam.[J].Chinese Journal of Ecology,2022,41(1):9-17.
[15] 李建豪,陶建斌,程波,吴琪凡,彭宏杰.秦岭山区植被春季物候的海拔敏感性[J].应用生态学报,2021,32(6):2089-2097.LI Jianhao,TAO Jianbin,CHENG Bo,WU Qifan,PENG Hongjie.Sensitivity of spring phenology to elevation in Qinling Mountains China[J]. Chinese Journal of Applied Ecology,2021,32(6):2089-2097.
[16] 沈国舫.森林培育学[M].北京:中国林业出版社,2005:27-40.SHEN Guofang. Forest cultivation[M]. Beijing :China Forestry Publishing House,2005:27-40.
[17] 王磊,崔大方,林培钧,许正,赵永生,张汉斐.新疆野生杏的种下类型[J]. 新疆师范大学学报(自然科学版),1997,16(3):31-36.WANG Lei,CUI Dafang,LIN Peijun,XU Zheng,ZHAO Yongsheng,ZHANG Hanfei. Types below species of Xinjiang wild apricots[J].Journal of Xinjiang Normal University(Natural Science Edition),1997,16(3):31-36.
[18] 刘宁,刘威生.杏种质资源描述规范和数据标准[M].北京:中国农业出版社,2006:43-65.LIU Ning,LIU Weisheng. Description and data Standard for apricot[M].Beijing:China Agricultural Publishing House,2006:43-65.
[19] 胡青霞,冯梦晨,陈延惠,郭强,简在海,史江莉,万然,郑先波.突尼斯软籽石榴果实生长发育及其品质形成规律研究[J].果树学报,2022,39(3):426-438.HU Qingxia,FENG Mengchen,CHEN Yanhui,GUO Qiang,JIAN Zaihai,SHI Jiangli,WAN Ran,ZHENG Xianbo. Growth and development of Tunisia soft seed pomegranate and its quality formation regulation[J].Journal of Fruit science,2022,39(3):426-438.
[20] 尹海宁,王兆祥,王琳,曹建宏,王家逵,惠竹梅.海拔和行向对酿酒葡萄果实生长发育及品质的影响[J].西北农林科技大学学报(自然科学版),2021,49(4):93-101.YIN Haining,WANG Zhaoxiang,WANG Lin,CAO Jianhong,WANG Jiakui,XI Zhumei. Effects of altitude and row orientation on growth and quality of wine grape berries[J]. Journal of Northwest A&F University(Natural Science Edition),2021,49(4):93-101.
[21] 王立宏,刘高平,王允镔,王毅,金志凤.不同海拔对东魁杨梅生长发育和产量影响调查[J].中国南方果树,2007,36(6):58-60.WANG Lihong,LIU Gaoping,WANG Yunbin,WANG Yi,JIN Zhifeng. Effects of different altitudes on growth and yield of Myrica rubra in Dongkui[J]. South China Fruits,2007,36(6):58-60.
[22] 王春飞,郁松林,肖年湘,王学义.果树果实生长发育细胞学研究进展[J].中国农学通报,2007,23(7):386-390.WANG Chunfei,YU Songlin,XIAO Nianxiang,WANG Xueyi.Progress in cytology research of fruit growth and development[J]. Chinese Agricultural Science Bulletin,2007,23(7):386-390.
[23] 罗文文,高琛稀,张东,韩明玉,赵彩平,刘航空.不同海拔环境因子对富士苹果叶片和果实品质的影响[J].应用生态学报,2014,25(8):2243-2250.LUO Wenwen,GAO Chenxi,ZHANG Dong,HAN Mingyu,ZHAO Caiping,LIU Hangkong.Effects of environmental factors at different altitudes on leaves and fruit quality of Fuji apple[J].Chinese Journal ofApplied Ecology,2014,25(8):2243-2250.
[24] 魏永赞,胡福初,郑雪文,石胜友,董晨,王弋,李伟才.光照对荔枝果实着色和花色素苷生物合成影响的分子机制研究[J].园艺学报,2017,44(7):1363-1370.WEI Yongzan,HU Fuchu,ZHENG Xuewen,SHI Shengyou,DONG Chen,WANG Yi,LI Weicai. The molecular mechanism of the impacts of illumination on litchi fruit coloration and anthocyanin biosynthesis[J]. Acta Horticulturae Sinica,2017,44(7):1363-1370.
[25] YUAN Z Y,DENG L L,YIN B F,YAO S X,ZENG K F. Effects of blue LED light irradiation on pigment metabolism of ethephon-degreened mandarin fruit[J]. Postharvest Biology and Technology,2017,134:45-54.
[26] VIMOLMANGKANG S,ZHENG D M,HAN Y P,KHAN M A,SORIA-GUERRA R E,KORBAN S S.Transcriptome analysis of the exocarp of apple fruit identifies light-induced genes involved in red color pigmentation[J].Gene,2014,534(1):78-87.
[27] 王頔,周荧,聂飞.贵州4 个蓝莓品种的海拔适应性研究[J].亚热带植物科学,2018,47(4):333-338.WANG Di,ZHOU Ying,NIE Fei. Altitude adaptability of four blueberry cultivars in Guizhou[J]. Subtropical Plant Science,2018,47(4):333-338.
[28] 宣继萍,王刚,贾展慧,郭忠仁.李属植物果实成熟软化研究进展[J].中国农学通报,2015,31(31):104-118.XUAN Jiping,WANG Gang,JIA Zhanhui,GUO Zhongren. Research advances of ripening and softening in Prunus fruit[J].Chinese Agricultural Science Bulletin,2015,31(31):104-118.
[29] FANIADIS D,DROGOUDI P D,VASILAKAKIS M. Effects of cultivar orchard elevation and storage on fruit quality characters of sweet cherry (Prunus avium L.)[J]. Scientia Horticulturae,2010,125(3):301-304.
[30] SOUZA M L,LOVATO M B,FAGUNDES M,VALLADARES F,LEMOS-FILHO J P. Soil fertility and rainfall during specific phenological phases affect seed trait variation in a widely distributed neotropical tree,Copaifera langsdorffii[J]. American Journal of Botany,2019,106(8):1096-1105.
[31] 周旋,何正飚,康宏樟,孙逍,刘春江.温带-亚热带栓皮栎种子形态的变异及其与环境因子的关系[J].植物生态学报,2013,37(6):481-491.ZHOU Xuan,HE Zhengbiao,KANG Hongzhang,SUN Xiao,LIU Chunjiang.Variations of seed morphology related to climate for Quercus variabilis across temperate- subtropical China[J].Chinese Journal of Plant Ecology,2013,37(6):481-491.
[32] 杜燕,何华杰,张志峰,杨娅娟,李涟漪,杨湘云.种子重量与海拔的相关性分析[J].植物分类与资源学报,2014,36(1):109-115.DU Yan,HE Huajie,ZHANG Zhifeng,YANG Yajuan,LI Lianyi,YANG Xiangyun. Correlation of seed mass with elevation[J].Plant Diversity and Resources,2014,36(1):109-115.
[33] 王志保,孙梅,刘振亚,张晓宁,王行,张贇,肖德荣.滇西北高原典型湿地湖滨带优势植物种子繁殖对增温的响应[J].应用生态学报,2018,29(3):696-704.WANG Zhibao,SUN Mei,LIU Zhenya,ZHANG Xiaoning,WANG Xing,ZHANG Yun,XIAO Derong.Response of seed reproduction of two dominant lakeside species to experimental warming in a typical plateau wetland in Northwestern Yunnan Plateau China[J]. Chinese Journal of Applied Ecology,2018,29(3):696-704.
[34] 孙小红,周瑾,胡春霞,吕洪飞,储开江,王国夫.不同海拔对香榧种子外观性状及营养品质的影响[J]. 果树学报,2019,36(4):476-485.SUN Xiaohong,ZHOU Jin,HU Chunxia,LÜ Hongfei,CHU Kaijiang,WANG Guofu. Effects of different altitudes on seed morphology and nutritional composition of Torreya grandis‘Merrilli’[J].Journal of Fruit Science,2019,36(4):476-485.
[35] 唐敏,陈国涛,郑绍伟,慕长龙,谢天资,钟毅,黎燕琼.岷江干旱河谷区白刺花种群种子雨及天然更新研究[J].四川林业科技,2020,41(6):29-34.TANG Min,CHEN Guotao,ZHENG Shaowei,MU Changlong,XIE Tianzi,ZHONG Yi,LI Yanqiong. Study on seed rain and natural regeneration of Sophora davidii (Franch.) population in arid valley of the Minjiang River[J].Journal of Sichuan Forestry Science and Technology,2020,41(6):29-34.
[36] DONOHUE K,DORN L,GRIFFITH C,KIM E,AGUILERA A,POLISETTY C R,SCHMITT J. The evolutionary ecology of seed germination of arabidopsis thaliana:Variable natural selection on germination timing[J]. Evolution,2005,59(4):758-770.
[37] LEISHMAN M R,WRIGHT I J,MOLES A T,WESTOBY M.The evolutionary ecology of seed size[M]//FENNER M Seeds:The ecology of regeneration in plant communities. 2nd. Oxon,UK:CABI International,2000:31-57.
[38] MILLS M H,SCHWARTZ M W. Rare plants at the extremes of distribution:Broadly and narrowly distributed rare species[J].Biodiversity&Conservation,2005,14(6):1401-1420.
Relationship between fruit and seed traits and altitude in wild Prunus armeniaca