2019 年我国柑橘面积达261.70 万hm2,产量达4584.54 万t,柑橘种植面积和产量均位居世界第一[1],但总产量的70%为中熟品种,集中在11—12月上市,季节性柑橘果品滞销问题十分突出。四川盆地及周边山区雨量丰富,终年少霜雪,很适宜发展晚熟柑橘,至2021 年晚熟柑橘面积已达15.33 万hm2,享有“晚熟柑橘看四川”的美誉[2]。
春见橘橙因高糖、优质、丰产而被广泛推广[3],在四川眉山、蒲江和南充等地区已有超过3.33万hm2的种植面积[4-5]。但其果实的成熟期为2—3月,果实常遭受冻害[6-7]。因而,生产上多采用人工套袋和树冠覆盖塑料膜等防寒措施保障春见橘橙的安全越冬[8]。因塑料薄膜难以自然降解而造成污染,近年可降解无污染的新型防寒布已在四川多地的晚熟柑橘园试用,并表现出较好的防寒保护效果,但其防寒作用的机制未见相关报道。笔者在本研究中以春见晚熟杂柑为材料,研究了新型防寒布对树冠环境、落果率、冻害程度、果实品质和开花抽梢的影响,以期为新型防寒布替代塑料膜在晚熟柑橘园安全越冬方面的推广应用提供理论依据。
试验地点在晚熟柑橘主产区四川省眉山市东坡区宁庙子果园。试验果园为弱酸性黄壤,管理良好,供试品种为8 年生春见橘橙[Citrus reticulate ×(C. reticulata× C. sinenesis)‘Harumi tangor’],砧木为红橘砧。
防寒材料为:(1)山东宇博塑业公司生产的塑料无滴薄膜;(2)东莞市威骏不织布有限公司生产的白色透气无污染可降解的“农夫一品”防寒布和反光布;(3)四川新惠瑞公司生产的白色果袋。
设3 个处理,即树冠覆盖防寒布-果实未套袋(FH)、树冠覆盖防寒布-果实套袋(FHT)和树冠覆盖防寒布-果实套袋-地面铺设反光布(FHTF),以树冠覆盖塑料膜+果实套袋为对照(CK),为了与环境温湿度进行比较,以露地(LD)为温湿度对照。每个处理选择生长势和载果量相对一致的20 株树。反光布沿行间铺设,黑色一面接地,白色一面朝上,用地钉固定,宽度为2.0 m;将宽度均为5.4 m的塑料薄膜和防寒布直接覆盖在树冠上,边上用绳子固定在树干上。
1.3.1 温湿度数据记录 试验于2020年11月30日至2021 年3 月28 日进行,采用温湿度记录仪(精创GSP-6,江苏省精创电气股份有限公司产)自动测量并记录温湿度,间隔时间为1 h。各处理和露地(LD)温湿度记录仪的探头安装在离地1.5 m的树冠中上部[9]。
1.3.2 落果统计及冻害调查 试验前先统计每株树果实总的数量,试验期间每月对地面落果进行统计并清理。在最后一次采样时各处理每株树随机采5个果实,调查树体与果实冻害情况。树体与果实冻害分级参考沈兆敏[10]和曾瑶等[7]的方法。冻害指数=∑(冻害级株数×冻害等级代表值)/(调查总株数×最高级冻害代表值)×100[11]。
1.3.3 果实品质测定 在试验刚开始和结束时,分别在树冠外围中上部东南西北4个方位各采1个果实,3 株树12 个果实混为一个样,每个处理3 次重复,贴上标签迅速带回试验室,参照王敏等[12]测定果实可食率、出汁率、果皮亮度、红绿色度、黄蓝色度、可溶性固形物(TSS)含量、可滴定酸含量(TA)、固酸比和维生素C含量等果实品质指标。
1.3.4 花芽分化以及春梢抽发情况调查 在果实最后一次采样后将覆盖措施全部拆下,进行花芽分化调查。分别统计将树体上部、中部和下部总花数和已开花数,计算开花率;统计上、中、下部的春梢数,各个部位随机抽取10枝春梢用直尺量出长度。
数据采用Microsoft Office Excel 2003 进行数据分析和作图,用SPSSIBM SPSS Statistics 23.0 进行方差分析、多重比较以及主成分分析。
据调查,在试验期间果园露地温度(表1):出现低于0 ℃共11 d,其中1月11日至15日连续5日出现低于0 ℃低温,单日低于0 ℃最长持续14 h。极端低温出现在1 月12 日与1 月18 日,分别达到-4.5 ℃和-3.2 ℃。
表1 不同防寒处理对果面温度的影响
Table 1 The fruit surface temperature of orchard under different treatment
注:表中均为不同处理树体果实套袋内温湿度。大写字母分别代表:CK. 塑料膜-套袋;FHT. 防寒布-套袋;FH. 防寒布;FHTF. 防寒布-套袋-反光布。下同。
Note: The table shows the temperature and humidity in fruit bagging with different treatments. Capital letters respectively represent:CK means plastic film+bagging;FHT means non-woven fabric film+bagging;FH means non-woven fabric film;FHTF means non-woven fabric film+bagging+reflective fabric.The same below.
指标Index极端低温The lowest temperatures/℃最高温度The highest temperature/℃平均日温差The average daily temperature difference/℃<-2℃最长持续时间The maximum of duration at temperatures below-2℃/h<-2℃累计时间The cumulative time of less than-2 ℃/d 11月平均温度The average temperature for November/℃12月平均温度Average temperature in December/℃1月平均温度Average temperature in January/℃2月平均温度Average temperature in February/℃CK-3.6 FHT-3.5 FH-3.8 FHTF-3.330.524.625.426.810.86.27.28.28.06.08.08.02.01.03.01.015.414.114.214.38.17.07.07.27.86.46.46.614.012.412.412.7
试验期间各处理极端低温均低于-3 ℃,其中以FH 处理极端低温最低,CK、FHT 和FHTF 的极端低温分别比FH 高0.2、0.3 和0.5 ℃。FH 和FHT 两个处理的各月平均温度基本一致,FHFT 处理各月平均温度相较更高,CK 处理最高。CK 和FH 处理低于-2 ℃累计天数分别为2 d 和3 d,最长持续时间均为8 h;FHTF和FHT处理低于-2 ℃累计天数和最长持续时间均为1 d 和6 h。在2 月份晴天CK 最高可达30.5 ℃,FHT 处理最高温也仅24.6 ℃,FH 和FHTF处理最高温也维持在(25~27)℃的范围内。
试验期间不同处理果实表面平均日湿度维持在88%左右,由低到高依次为:FHT<FH<FHTF<CK(表2)。不同处理之间日平均湿度、最高湿度差异不大,无明显变化规律;但同一处理的湿度日变幅偏大,最高可达61.40%(FHT),最低为48.35%(FHFT)。不同月份平均湿度略有差异,12 月各处理湿度达到最高,2月和3月持续降低。
表2 不同防寒处理对果面湿度的影响
Table 2 The fruit surface humidity of orchard under different treatment
指标Index平均日湿度The average daily humidity/%最高湿度The highest humidity/%最低湿度The least humidity/%最大日湿度差The maximum daily humidity difference/%11月平均湿度Average humidity in November/%12月平均湿度Average humidity in December/%1月平均湿度Average humidity in January/%2月平均湿度Average humidity in February/%CK 89.64 FHT 86.44 FH 88.05 FHTF 88.4599.7097.9097.9098.7743.8033.8039.5045.3250.6061.4054.2048.2590.4487.3988.8089.3294.7991.8293.2695.3488.2584.8586.6488.7184.6081.2283.0385.46
1月12日为最低温度,该日各处理温度的日变化趋势一致,但出现低温时间有所差异(图1)。各处理在1:00 到11:00 温度均高于对照,FHTF、FHT、CK和FH 处理当日极端低温分别为-3.3、-3.5、-3.6和-3.8 ℃。各处理间低温出现时间略有差异,由早到晚依次为CK、FHT、FH 和FHFT,时差约1 h(图1)。
图1 不同防寒处理对极端低温下温度日变化的影响
Fig.1 Effects of different treatments on diurnal variation of temperature at extreme low temperature
图1 显示,8:00 至16:00 为升温阶段,约在14:00达到最高温度,CK、FH、FHT、FHTF 最高温度分别为16.0、11.2、10.0 和12.4 ℃,以CK 最高,FHT 最低。日温度变化幅度以FHT 处理最低,而以CK 最高,CK、FHTF、FH 和FHT 当日最大温差依次可达20.6、15.7、15.0和13.5 ℃。
空气湿度从10:00开始下降,在13:00—16:00达到最低湿度,CK于13:00最先降到最低值44.8%,而FH、FHTF 和FHT 处理在15:00 达到最低值,分别为48.9%、50.9%和51.8%%。随后,各处理开始慢慢回升,均在22:00达到90.0%左右。湿度变化幅度由大到小依次为CK>FH>FHT=FHTF(图2)。
图2 不同防寒处理对极端低温下湿度日变化的影响
Fig.2 Effects of different treatments on diurnal variation of humidity at extreme low temperature
总体来讲,各防寒处理均能提高极端低温,且不同处理升温时间均有提前,能够缩短低温持续时间。但由于此次低温各处理的升温能力有限,果园实地极端低温均低于-2 ℃,低于0 ℃持续时间均超过9 h,已经到达柑橘果实冻害的条件[9]。而在低温期间各处理的湿度均维持在90%左右,这极可能导致春见发生冻害。
试验开始(11 月)与结束(3 月)相比,果实可食率和可滴定酸含量均有所下降,而TSS含量、果皮亮度、红绿色度和固酸比等指标则有所升高,其中TSS含量、TA含量、固酸比、红绿色差等指标不同时期差异较大。CK 的果皮亮度增幅最高,但FHT 处理的红绿色度增幅最高。表3 表明,试验末期各处理的出汁率比试验前期降低了10%左右,降幅最高达到13.27%(FH),降幅最低仅为6.25%(FHT)。
表3 不同防寒处理对果实外在品质的影响
Table 3 Effects of different treatment on fruit quality of appearance
注:同列数值后不同小写字母表示差异显著(p<0.05)。下同。
Note:Values followed by different small mean significant difference(p<0.05).The same below.
月份Month 11月November 3月March黄蓝色度b*72.26±0.47 a 72.66±0.52 a 72.93±0.14 a 72.07±0.62 a 72.36±0.25 a 72.56±0.08 a 72.76±0.17 a 71.92±0.58 a处理Treatment CK FH FHT FHTF CK FH FHT FHTF可食率Ebidlerate/%68.28±1.19 a 71.91±3.68 a 69.10±1.33 a 67.19±0.86 a 58.29±1.48 a 60.77±3.05 a 60.78±2.47 a 58.23±1.00 a出汁率Juicerate/%43.69±1.24 a 42.03±2.68 a 44.61±1.38 a 44.97±1.59 a 33.17±1.40 a 35.78±1.35 a 31.70±1.99 a 34.29±1.68 a果皮亮度L*72.73±0.56 a 74.10±0.45 a 73.90±0.09 a 73.68±0.38 a 75.16±0.09 a 75.38±0.20 a 75.10±0.18 a 75.15±0.10 a红绿色度a*19.73±0.95 a 17.36±0.90 ab 15.71±1.66 b 15.32±0.12 b 22.57±0.53 a 22.64±0.21 a 22.73±0.02 a 22.23±0.00 a
不同处理间内在品质差异较大,TSS 含量以FHT 最高,FHTF 最低;TA 含量以FHT 最高,FH 最低;但固酸比以FH 最高,FHT 最低;维生素C 含量以CK 最高,FH 最低(表4)。相对塑料膜处理,各防寒布处理的TSS 增幅更大,维生素含量变化则相反,塑料膜处理略有上升而防寒布处理均有所下降。
表4 不同防寒处理对果实内在品质的影响
Table 4 Effects of different treatment on fruit intrinsic quality
月份Month 11月November 3月March处理Treatment CK FH FHT FHTF CK FH FHT FHTF w(可溶性固形物)Soluble solid content/%10.40±0.10 a 10.17±0.09 ab 9.77±0.07 c 9.97±0.09 bc 10.73±0.12 a 10.67±0.07 a 10.90±0.10 a 10.33±0.09 b w(可滴定酸)Titratable acid/%1.13±0.03 a 0.97±0.02 b 1.07±0.02 a 1.07±0.02 a 0.62±0.02 b 0.57±0.00 c 0.70±0.02 a 0.63±0.02 b固酸比Solidity-acid ratio 9.25±0.33 b 10.45±0.20 a 9.13±0.11 b 9.35±0.23 b 17.38±0.60 b 18.79±0.08 a 15.58±0.44 c 16.46±0.42 bc ρ(维生素C)Vitamin C content/(mg·100 mL-1 36.52±0.33 a 36.06±0.16 a 35.87±0.09 a 35.78±1.16 a 38.54±0.00 a 31.94±0.48 c 34.12±0.92 bc 35.68±0.65 b)
用IBM SPSS Statistic 23.0,将9 个果实品质指标进行主成分分析,得到两个特征值大于1 的主成分,其中主成分1主要包括果皮亮度、出汁率、TA含量和固酸比4个指标,累计贡献率为46.17%;主成分2包括红绿色度、黄蓝色度、TSS含量、可食率和维生素C含量等5个指标,累计贡献率为43.18%;两个主成分累计贡献率达到89.35%,说明提取的两个主成分能充分代表全部果实品质。再按照主成分综合排名赋值计算,得到不同处理的主成分综合得分(表5),各处理和对照排名为FH>FHT>FHTF>CK,说明FH品质最佳,其次是FHT,以CK品质最差。
表5 3 月不同防寒处理主成分综合得分排名表
Table 5 Score and ranking under different treatment at the end of experiment
处理Treatment主成分1 PC1(F1)主成分2 PC2(F2)综合得分排名Comprehensive score ranking FH FHT FHTF CK 53.72417749.53256550.69772649.79193575.93691475.99573973.13479573.085231综合得分Composite score(F)64.45896062.32146361.54092361.0489221234
在进行防寒处理条件下,果园树体均未遭受冻害,FHTF 处理在缓解果实冻害和落果均有优势。对照与处理冬季落果率均较低,各防寒处理累计落果率在2%~4%之间,明显高于春见自然落果率(图3),说明各防寒处理对降低冬季落果有一定作用。但各处理间有所差异,其中累计落果率以FH 处理最高为3.22%;其次是CK 和FHT,分别为3.02%和2.92%;FHFT 处理最低为2.52%。经检验,除FH 处理与对照差异不显著外,其余各处理之间均呈显著差异(图3)。不同处理间果实冻害差异较大,其中以FH 处理冻害指数最高达50.00,其次是对照为38.33,FHT 和FHTF 处理分别为36.67 和31.67。经统计分析表明,除FH 与对照有显著差异外,其余处理与对照差异不显著(图4)。
图3 不同防寒处理对累计落果率的影响
Fig.3 Effects of different treatments on cumulative fruit drop rate
图4 不同防寒处理对果实冻害指数的影响
Fig.4 Effects of different treatments on fruit freezing injury index
从图5 可以看出,不同处理间春梢长度差异较大,其中以CK 春梢长度最长为4.08 cm,其次是FH处理为3.75 cm,最短的是FHTF处理为3.19 cm。方差分析表明,CK 与FHT 和FHTF 处理均有显著差异,与FH 处理差异不显著;FH 处理与FHT 处理差异不显著,但与FHTF处理差异显著。
图5 不同防寒处理对春梢生长的影响
Fig.5 Effects of different treatments on the growth of new shoot
由表6 可以看出,各处理不同部位开花率由高到低依次均为上部>中部>下部。不同处理中上部以FHT 处理上部开花率最高,其次为CK,而以FHTF最低。方差分析表明,除FHTF处理与其他处理间有显著差异外,其余处理间差异不显著。中部以FH 处理开花率最高,其次为CK,最低仍然为FHTF 处理。总体来讲,各处理除FHTF 花量偏少外,其余处理花总量差异不大。
表6 不同防寒处理对开花的影响
Table 6 Flowering situation under different treatment
指标Index开花率Flowering rate/%FHTF 31.66±0.55 b 4.00±4.00 cd 0.00±0 b花苞数Bud number部位Position上部Top中部Middle part下部Low part上部Top中部Middle part下部Low part CK 47.08±2.60 a 15.37±1.76 ab 1.25±1.25 ab 23.20±2.65 bc 19.60±2.32 ab 21.00±2.74 a FH 45.45±3.29 a 22.21±0.91 a 4.34±2.09 a 33.00±2.19 a 25.20±2.71 a 16.80±1.83 ab FHT 48.00±1.14 c 10.70±4.56 bc 1.18±1.18 ab 28.00±1.67 ab 13.00±1.41 cd 12.60±1.72 b 17.00±3.16 c 7.60±1.12 d 12.00±3.16 b
柑橘防寒措施包括生草栽培、防风林、果园灌溉、灌水、树冠覆盖、果实套袋等[13-21],以及温室和大棚等设施栽培[16,22]。不同防寒措施能够调控柑橘树体的微环境,最关键的是温湿度的调控。唐余学等[23]研究表明,当气象观测站气温在(-3.5~-1.6)℃时,冻害发生频率可高达70%,当低于-1.6 ℃且持续时间不超过7 h时,冻害发生概率较小,但超过11 h,发生概率超过70%。2020—2021 年冬季我国南方发生了严重的寒潮侵袭,笔者曾对四川眉山地区晚熟柑橘冻害情况进行了调查研究,结果也表明此次低温导致不同类型柑橘园特别是春见果园树体和果实均发生了不同程度的冻害损失[8,24]。
一般而言,当温度低于-2 ℃且持续时间超过4 h 时,果实就会发生冻害[9]。但在达到柑橘冻害气候条件时,防寒措施主要能通过提高极端温度或缩短低温持续时间以达到防冻效果[25-26]。在本研究中,各处理树冠温度比露地条件提高了(0.7~1)℃,缩短了低温的持续时间,因此树体均未发生冻害。但各处理果实遭受了不同程度的冻害,冻害指数均高于30%,这是由于各处理虽然提高了温度,但其最低温仍低于-3 ℃,且CK和FH两个处理的果实表面持续低温超过8 h,因而冻害指数仍偏高。而防寒布相较塑料膜材质而言更透气,温湿度差较小,也有较强的保温能力,因此在相同条件下,温湿度剧烈变化导致冻害加重。王武等[23]对W·默科特进行不同覆膜处理,发现地面覆盖反光布+树冠覆盖塑料膜能进一步降低落果率,本试验也有类似结果。
柑橘防寒措施还能通过影响土壤含水量和土温进而影响柑橘冻害程度。本试验中,FHFT 处理相较FHT处理的果实冻害指数更低,表明地面覆盖有利于果实防冻,原因可能是地面覆盖不仅能有效保持土温,还能维持土壤水分,这有利于越冬期间果实的贮藏[20,27]。
前人研究表明,通过树冠覆盖可有效降低冻害指数和落果率[27],本研究也有类似结果。防寒布调控温湿度的能力强于塑料膜,防冻效果以防寒布略强于塑料膜。
柑橘树冠覆盖能提高果实品质而套袋则会降低果实品质。树冠覆盖能够提高果实TSS 含量、固酸比和维生素C 含量,降低Ta 含量,风味由酸甜转变为浓甜,果实品质更佳[28-29]。高亚新等[30]研究发现,稀土转光膜能有效提高黄瓜的维生素C含量。在本研究中,即便塑料膜的透光性优于防寒布,但同一时期二者的果皮亮度、红绿色度和黄蓝色度值均无显著差异,这可能是由于果实套袋对果皮色泽的影响消除了树冠覆盖的影响。进行综合分析后发现,仅树冠覆盖防寒布处理的果实品质综合得分最高,其余处理的得分相近。可能原因是覆膜与套袋处理使果实温差更为剧烈,特别是果实成熟期,长期处于20 ℃以上也会加速果实糖和酸的分解、加快果肉粒化和失水[14],严重影响果实品质。由于套袋处理后末期果实亮度、红蓝色度、可食率等主要指标表现不如仅防寒布处理,因而果实套袋对果实品质有一定的降低作用[24]。
影响花芽分化的因素很多,如光照、水分、营养和激素[31-34]等,柑橘防寒措施还影响了花芽分化,进而影响了下一年的结果数量和质量。春见花芽分化一般在3 月底,但在本试验中不同处理的花芽分化情况略有差异。花芽分化期光照越强,花芽的质量越好、数量越多,温度越高,萌芽开花时间越早。本研究也表明树冠的花量上部>中部>下部,开花时期规律也是如此,其原因应该是树冠上部的温度比中下部高[35],另外上部的光照也比中下部强[36]。不同部位的开花情况差异显著,上部可达40%以上,而下部仅为1%左右,这可能是由于各处理均直接覆盖在树冠上,导致树冠上部的温度过高,致使大多数花苞提前开放。重庆和四川冬季为多雨寡照地区,通过覆盖薄膜和防寒布可使冬季有效地避雨和调控树体湿度,保持土壤的适度干旱而有利于花芽分化[37-38]。从本试验结果也可以看出,各避雨处理开花较露地提前且花量更大。但FHTF 处理花量偏少,这可能是由于铺反光布的时间为11 月份,四川秋冬阴雨多,反光布能抑制土壤水分蒸发,导致土壤湿度大,而适度的干旱有利于花芽分化,因而降低了FHTF的数量和质量。
树冠覆盖与套袋结合均能有效降低春见橘橙的冬季冻害和落果率。但在遭受低温时,以树冠覆盖与果实套袋相结合效果更好;当出现极端低温时,树冠覆盖与果实套袋以及地面覆盖相结合更能保障春见果实安全越冬。防寒布相比塑料膜处理在果实品质、花芽分化等方面均无显著差异但效果更佳,表明新型防寒布完全能够替代塑料膜保护春见树体和果实安全越冬。
[1] 沈兆敏. 我国柑橘生产销售现状及发展趋势[J]. 果农之友,2021(3):1-4.SHEN Zhaomin. Present situation and development trend of citrus production and sales in China[J].Fruit Growers′Friend,2021(3):1-4.
[2] 宋明昶.绵阳市晚熟柑橘产业主要问题与对策研究[D].绵阳:西南科技大学.2021.SONG Mingchang. A study on main problems and solution of citrus late-ripening in Mianyang City[D]. Mianyang:Southwest University of Science and Technology.2021.
[3] 陈竹生,江东,洪棋斌,欧文华,何华忠.春见桔橙主要性状和栽培技术[J].中国南方果树,2004,33(2):5.CHEN Zhusheng,JIANG Dong,HONG Qibin,OU Wenhua,HE Huazhong. The main characters and cultivation techniques of‘Harumi’tangor[J].Southern China Fruit,2004,33(2):5.
[4] 易建强.春见在青神县生产现状及发展前景[J].四川农业科技,2017(2):63-64.YI Jianqiang. The production present situation and development prospect of‘Harumi’tangor in Qingshen city[J]. Sichuan Agricultural Science and Technology,2017(2):63-64.
[5] 陈燕. 眉山市东坡区春见杂柑栽培技术[J]. 四川农业科技,2016(7):26-27.CHEN Yan.Cultivation technology of‘Harumi’tangor in Dongpo district of Meishan city[J]. Sichuan Agricultural Science and Technology,2016(7):26-27.
[6] HEARN C J,COOPER W C,REGISTER R O,YOUNG R. Influence of variety and rootstock upon freeze injury to citrus trees in the 1962 Florida freeze[C]. Meeting-florida State Horticultural Society,1963.
[7] 曾瑶,杨万云,陈德勇,龙勇,朱礼乾,袁梦,李永安,彭良志,淳长品.2020/2021 年冬季眉山晚熟柑桔冻害调查[J].中国南方果树,2021,50(5):50-53.ZENG Yao,YANG Wanyun,CHEN Deyong,LONG Yong,ZHU Liqian,YUAN Meng,LI Yong’an,PENG Liangzhi,CHUN Changpin. Frost damage survey of late-maturing citrus in Meishan in winter 2020/2021[J].Southern China Fruit,2021,50(5):50-53.
[8] 杨贵川,冉晶,黎德富,何震,陈品文,蒲成伟,周立,吴小平,袁佳阳,何思乐.低温冻害对南充市晚熟柑橘产业的影响及冻后补救措施[J].现代农业科技,2021(20):77-79.YANG Guichuan,RAN Jing,LI Defu,HE Zhen,CHEN Pinwen,PU Chengwei,ZHOU Li,WU Xiaoping,YUAN Jiayang,HE Sile. Effects of low temperature freezing damage on late-maturing citrus industry in Nanchong city and remedial measures after freezing[J]. Modern Agricultural Science and Technology,2021(20):77-79.
[9] 朱春钊.长寿区浅丘橘园冬季温度变化规律及晚熟柑橘果实防冻研究[D].重庆:西南大学,2015.ZHU Chunzhao. Studies on temperature changes of tree canopy in winter and fruit freeze protection of late-mature citrus in hilly orchaeds in Changshou district of Chongqing[D]. Chongqing:Southwest University,2015.
[10] 沈兆敏.中国柑桔技术大全[M].成都:四川科学技术出版社,1992.SHEN Zhaomin. Encyclopedia of chinese citrus technology[M].Chengdu:Sichuan Science and Technology Press,1992.
[11] 张仙春,王立宏,倪海枝.2016 年春黄岩区柑橘冻害调查[J].浙江柑橘,2016,33(2):17-18.ZHANG Xianchun,WANG Lihong,NI Haizhi. Investigation of citrus frost damage in Huangyan area in spring 2016[J]. Zhe jiang Ganju,2016,33(2):17-18.
[12] 王敏,邱洁雅,何义仲,李文广,凌丽俐,淳长品,付行政,曹立,彭良志.石灰水质量浓度和喷布覆盖率对柑橘日灼程度和品质的影响[J].果树学报,2020,37(10):1518-1527.WANG Min,QIU Jieya,HE Yizhong,LI Wenguang,LING Lili,CHUN Changpin,FU Xingzheng,CAO Li,PENG Liangzhi.Effects of lime concentration and spray coverage on the severity of citrus sunburn and fruit quality[J]. Journal of Fruit Science,2020,37(10):1518-1527.
[13] 王武,胡佳羽,周孝清,谢永红.W·默科特杂柑冬季不同覆膜处理的落果率与果实品质[J].中国南方果树,2013,42(4):62-64.WANG Wu,HU Jiayu,ZHOU Xiaoqing,XIE Yonghong. Fruit drop rate and fruit quality of different membrane treatments in W.Murcott[J].South China Fruits,2013,42(4):62-64.
[14] 李国怀,章文才,胡德文,刘继红.生草栽培对桔园环境和柑桔产量品质的影响[J].中国农业气象,1997(4):20-23.LI Guohuai,ZHANG Wencai,HU Dewen,LIU Jihong. Effects of raw grass cultivation on orangery environment and citrus yield quality[J]. Chinese Journal of Agrometeorology,1997(4):20-23.
[15] 姜桂梅,张知通.营造防护林是减轻柑橘冻害的有效措施[J].浙江柑橘,2000,17(1):12.JIANG Guimei,ZHANG Zhitong. Creating shelterbelts is an effective measure to reduce the frost damage of citrus[J].Zhejiang Ganju,2000,17(1):12.
[16] 孙建城,王登亮,刘春荣,吴雪珍,吴群,程慧林.柑橘留树保鲜技术研究进展[J].中国果树,2021(7):1-6.SUN Jiancheng,WANG Dengliang,LIU Chunrong,WU Xuezhen,WU Qun,CHENG Huilin.Research progress of citrus ontree storage[J].China Fruits,2021(7):1-6.
[17] 刘艳萍,罗文凡,卢立江.人工熏烟法对霜冻天气的防御作用分析[J].新疆农垦科技,2012,35(10):38-39.LIU Yanping,LUO Wenfan,LU Lijiang.Analysis on the defensive effect of artificial fumigation on frost weather[J]. Xinjiang Farm Research of Science and Technology,2012,35(10):38-39.
[18] EDLING R J,CONSTANTIN R J,BOURGEOIS W J.Louisiana citrus frost protection with enclosures and microsprinklers[J].Agricultural Science&Technology,1992,60(1):101-110.
[19] 陈竹生.川渝地区不知火桔橙生产中存在的问题及解决途径[J].中国南方果树,2007,36(4):6-7.CHEN Zhusheng. Problems and solutions in the citrus production in Sichuan and Chongqing[J]. South China Fruits,2007,36(4):6-7.
[20] MENG W J,TAN Z K,LIU C F.A preliminary analysis of the relationship between longan canopy temperature and air temperature during overwintering period[J]. Journal of Anhui Agricultural Sciences,2008,9(4):62-65.
[21] 刘春荣,方培林,杨海英,吴雪珍,黄国善,余良富.柑桔果实套袋栽培试验[J].中国南方果树,2000,29(5):10-11.LIU Chunrong,FANG Peilin,YANG Haiying,WU Xuezhen,HUANG Guoshan,YU Liangfu.Bagging cultivation experiment of citrus fruit[J].Southern China Fruit,2000,29(5):10-11.
[22] 石姣姣,陈元珺,史宏斌,袁明清,程刚.大棚冬季栽培对柑橘防冻效果及其果实品质的影响[J]. 湖北农业科学,2021,60(2):104-108.SHI Jiaojiao,CHEN Yuanjun,SHI Hongbin,YUAN Mingqing,CHENG Gang. Effects of winter cultivation in greenhouse on the anti-freezing effect and fruit quality of citrus[J]. Hubei Agricultural Sciences,2021,60(2):104-108.
[23] 唐余学,佘静平,石姣姣.重庆市晚熟柑橘冻害指标的初步研究[J].气象科技进展,2021,11(2):108-111.TANG Yuxue,SHE Jingping,SHI Jiaojiao.Preliminary study on frozen damage index of late maturing citrus in Chongqing[J].Advances in Meteorological Science and Technology,2021,11(2):108-111.
[24] ROBINSON F A.The effects of the december 1962 freeze on citrus honey production in Florida[J]. Florida Entomologist,1964,44(1):55-56.
[25] BAI Q F,WANG J H,HUO Z G,YI L,ZHANG W M.Analysis of meteorological monditions of freeze damage to citrus in southern Shanxi in the winter of 2010 and defensive countermeasures[J]. Agricultural Science & Technology,2013,14(3):444-449.
[26] ROUGHAN P G. Phosphatidylglycerol and chilling sensitivity in plants[J].Plant Physiology,1985,77(3):740-746.
[27] 王振兴,彭良志,曹立,张咸成.四川盆地柑桔简易设施栽培果实留树越冬效果调查[J].中国南方果树,2009,38(2):14-16.WANG Zhenxing,PENG Liangzhi,CAO Li,ZHANG Xiancheng. Investigation on the effect of winter in the fruit of the cultivation of the fruit of the simple facilities of Citrus[J].South China Fruits,2009,38(2):14-16
[28] 郭琳琳,刘庆,伊华林.2 种保鲜方法对脐橙果实风味和色泽变化的影响[J].果树学报,2007,24(6):792-795.GUO Linlin,LIU Qing,YI Hualin. Effect of two fresh-keeping methods on flavor and color quality in Navel orange fruit[J].Journal of Fruit Science,2007,24(6):792-795.
[29] 淳长品,彭良志,江才伦,曹立,雷霆.锦橙果实留树贮藏期间理化性状的变化[J].中国南方果树,2004,33(6):22-23.CHUN Changpin,PENG Liangzhi,JIANG Cailun,CAO Li,LEI Ting. Changes on physiology and biochemistry character of Jincheng sweet orange during on- tree storage[J]. South China Fruits,2004,33(6):22-23.
[30] 高亚新,李恭峰,马万成,张振兴,刘益克,李宁,李青云.新型稀土转光膜对日光温室环境及黄瓜品质和产量的影响[J].中国瓜菜,2022,35(6):50-55.GAO Yaxin,LI Gongfeng,MA Wancheng,ZHANG Zhenxing,LIU Yike,LI Ning,LI Qingyun.New rate earth light conversion film affects cucumber quality and yield in solar greenhouse[J].China Cucurbits and Vegetables,2022,35(6):50-55.
[31] 洪艳,陈之琳,戴思兰.切花菊‘丽金’响应光照诱导成花特性研究[J].北京林业大学学报,2015,37(3):133-138.HONG Yan,CHEN Zhilin,DAI Silan. Light induction on flowering characteristics of cut chrysanthemum‘Reagan’[J]. Journal of Beijing Forestry University,2015,37(3):133-138.
[32] 肖枫,赵杨,何花,王秀荣.皱叶膏桐和普通膏桐花芽分化过程中内源激素的变化[J].种子,2018,37(11):51-54.XIAO Feng,ZHAO Yang,HE Hua,WANG Xiurong. Changes of endogenous hormones during flower bud differentiation between Jatropha nigroviensrugosus cv Yang and Jatrapha carcas L.[J].Seed,2018,37(11):51-54.
[33] 何东,彭尽晖,邱波,彭亮,胡凌雪,胡瑶,赵盈盈.温度对观赏植物花芽分化影响的研究进展[J]. 中国园艺文摘,2013,29(3):40-42.HE Dong,PENG Jinhui,QIU Bo,PENG Liang,HU Lingxue,HU Yao,ZHAO Yingying. The advance in the study of the effect of temperature on the flower bud differentiation of ornamental plants[J].Chinese Horticulture Abstracts,2013,29(3):40-42.
[34] 万春雁,糜林,李金凤,霍恒志,陈丙义,陈雪平.苗期不同水分处理对草莓花芽分化及果实早熟化的影响[J].果树学报,2016,33(12):1523-1531.WAN Chunyan,MI Lin,LI Jinfeng,HUO Hengzhi,CHEN Bingyi,CHEN Xueping. Effect of different water treatments at seedling stage on flower bud differentiation and prematurity of strawberry[J]. Journal of Fruit Science,2016,33(12):1523-1531.
[35] 王振兴,彭良志,淳长品,曹立,凌丽俐,江才伦.树冠直接覆膜对清见橘橙树冠内环境因子的影响[J].果树学报,2011,28(2):199-203.WANG Zhenxing,PENG Liangzhi,CHUN Changpin,CAO Li,LING Lili,JIANG Cailun. Effects of film covering on environmental factors inside the canopies of Kiyomi tangor trees[J].Journal of Fruit Science,2011,28(2):199-203.
[36] 丁云龙,张斌斌,严娟,马瑞娟,姜卫兵.桃树体不同部位果实着色差异及其与环境因子的关系研究[J]. 西北植物学报,2019,39(4):660-668.DING Yunlong,ZHANG Binbin,YAN Juan,MA Ruijuan,JIANG Weibing. Study on difference of peach fruit coloring and relationship with environmental factors in different tree canopy position[J]. Acta Botanica Boreali- Occidentalia Sinica,2019,39(4):660-668.
[37] 黄贝,王鹏,温明霞,吴韶辉,徐建国.不同程度干旱对温州蜜柑树势和成花生理的影响[J].浙江大学学报(农业与生命科学版),2021,47(5):557-565.HUANG Bei,WANG Peng,WEN Mingxia,WU Shaohui,XU Jianguo. Effects of different degrees of drought stress on plants and flowering physiology in Satsuma mandarin (Citrus unshiu‘Yura’)[J]. Journal of Zhejiang University (Agriclture & Life Sciences),2021,47(5):557-565.
[38] 邹秀琴,严旭丽,季伟灵.高温干旱对山地猕猴桃生长发育的影响及其防御措施[J].现代园艺,2015(3):24-25.ZOU Xiuqin,YAN Xuli,JI Weiling. Effects of high temperature and drought on the growth and development of mountain kiwifruit and its defense measures[J]. Contemporary Horticulture,2015(3):24-25.
Effect of environment-friendly cold-proof fabric film covering on overwintering ability of Harumi tangor