杏果核与种仁数量性状的遗传多样性分析

章秋平,张玉萍,马小雪,刘威生,刘 宁,徐 铭,刘 硕,张玉君

(辽宁省果树科学研究所,辽宁 熊岳 115009)

摘 要:【目的】探究杏果核与种仁数量性状的遗传变异,筛选特异种质,为仁用杏遗传改良提供理论依据。【方法】以195份杏种质资源为材料,连续2 a(年)调查了果核与种仁17个数量性状的变化。【结果】17个表型性状的变异系数范围为9.61%~36.88%,杏群体内存在丰富的变异,其中果核破裂力的变异系数最大,核木质素含量的变异系数最小。通过相关性分析,发现出仁率性状与仁侧径、单仁质量之间存在着极显著的正相关性,而与核厚度、破裂力和硬度之间存在着极显著的负相关性。通过主成分分析,将17个性状划分为4个综合因子,两年的累计贡献率均达到81%以上,第1主成分包括果核或种仁的纵径、横径以及质量等性状,代表了核/仁大小性状;第2主成分代表了果核形状;第3和4主成分分别代表了果核硬度与木质素含量。基于树形聚类图,当遗传距离为15时,将本研究的杏种质资源划分为5个类群:第Ⅰ和Ⅱ类群分别由绿萼山杏和露仁普通杏组成;大多数大扁杏种质聚类在Ⅲ类群;第Ⅳ类群由薄核且出仁率高的普通杏组成;当遗传距离为10时,第Ⅴ类群被进一步划分为6个亚群,这些亚群中均由山杏种质和普通杏种质混合组成。【结论】杏果核与种仁的数量性状存在着丰富的遗传变异;增加种仁侧径有利于提高仁用杏的出仁率;筛选出6份优异种质和21份特异种质材料,可以作为仁用杏遗传改良的亲本材料。

关键词:杏;种质资源;果核;种仁;数量性状;遗传多样性

杏可以划分为肉用杏和仁用杏。仁用杏以收获杏核、加工杏仁为目的,大部分种植在干旱、寒冷、土壤贫瘠的“三北”(东北、华北和西北广阔的荒漠化边缘)地区[1],是我国北方生态脆弱地区重点发展的经济林树种之一。据中国园艺学会李杏分会统计,我国仁用杏种植面积约95.7万hm²,主要包括山杏(Armeniaca sibirica L.)和大扁杏(Armeniaca cathayana D.L.Fu et al.)。但是,我国仁用杏生产存在良种化程度低、品种混杂和遗传基础狭窄等多种问题。究其原因主要是种质资源评价与利用不足。

我国仁用杏种质资源类型非常丰富,根据植物学特征可将仁用杏划分为山杏、大扁杏和普通杏(Armeniaca vulgaris L.)3个类群[2],其中仁用普通杏数量很少。大多数山杏人工林以种子实生为主,导致种仁大小不均、产量低等问题,严重影响了农民的经济收入。虽然近年来已经筛选出一些新品种[3-4],但是这些品种多由野生山杏复壮纯化而成,仍存在种仁较小、经济效益低等问题。基于陕北黄土高原区域的山杏不同性状间的相关性分析,认为叶面积、叶柄长、单果质量可以作为高产山杏选种的主要指标[5];在比较不同山杏无性系的经济性状差异之后,刘明国等[6]则认为单果质量、单核质量、单仁质量等9个数量性状能够很好地区分66份山杏无性系。董胜君等[7]比较不同来源地山杏株系的数量性状差异,认为山杏果实、核与种仁的变异非常丰富,并将125份山杏种质划分为6个类群。王丹等[8]比较了不同杏种仁的粗脂肪和苦杏仁苷差异;张倩茹等[9]在检测不同杏种质的种仁脂肪酸组成之后筛选出4份含油率高的材料;尹明宇等[10]对内蒙古地区10个不同来源的山杏果核大小、种仁大小以及种仁的脂肪酸、蛋白质等的含量进行了评价,筛选出5个不同特征的育种利用群。根据果核和种仁的性状变异,在70份新疆南部普通杏种质中筛选出2份可以改良仁用杏的优良亲本材料[11]。大扁杏是我国特有的杏种质资源类群[12],属于栽培程度较高、经济效益高的类型。然而,该类群主要栽培品种由一窝蜂和龙王帽地方品种实生选育而成[13-15],遗传多样性极差[16]。基于多种分子标记讨论以上3 类仁用杏的起源之后,认为具有大果核普通杏可能对大扁杏优良特性的形成具有重要贡献[17]

系统评价杏果核、种仁性状的遗传多样性,筛选特异种质,能够加快仁用杏遗传改良进程。长久以来,仁用杏评价工作一直局限于不同山杏类群的筛选或少量大扁杏性状评价,缺乏不同类群杏果核、种仁表型数量性状的整体评价。笔者对国家果树种质资源熊岳李杏圃保存的195份杏种质资源进行了系统鉴定评价,筛选出特异或优良的杏种质材料,为仁用杏育种和遗传改良提供可靠依据。

1 材料和方法

1.1 材料

195 份杏品种均来自国家果树种质熊岳李杏圃,其中大扁杏22 份(样品编号为1-22)、山杏9 份(为23-31)、普通杏160 份(为32-191)、辽杏[Armeniaca mandshurica(Maxim.)Skv.]2份(分别为192和193),紫杏[Armeniaca dasycarpa(Ehrh.)Borkh,编号为194]和梅(Armeniaca mume Sieb.,编号为195)各1份(表1)。所有品种树龄20 a,均以山杏实生苗为砧木。果园株行距为5 m×5 m,栽培条件及管理水平较为一致。每品种随机选取2~4 株树,并采集树冠外围果实进行调查。

表1 195 份杏种质资源的基本信息
Table 1 Basic information of 195 accessions in apricot

编号No.名称Name来源Origin编号No.名称Name来源Origin编号No.名称Name来源Origin 12345678979C136613180A036713280B056813380D0569134白玉扁Baiyubian超仁Chaoren串铃扁Chuanlingbian丰仁Fengren国仁Guoren迟梆子Chibangzi黄尖嘴Huangjianzui九道眉Jiudaomei克拉拉Kelala龙王帽Longwangmao三杆旗Sanganqi围选1号Weixuan No.1新4号Xin No.4一窝蜂Yiwofeng优一Youyi油仁Youren长城1号Changcheng No.1木瓜杏Muguaxing B110-2河北涿鹿Zhuolu,Hebei河北涿鹿Zhuolu,Hebei河北涿鹿Zhuolu,Hebei河北涿鹿Zhuolu,Hebei北京海淀Haidian,Beijing河北涿鹿Zhuolu,Hebei河北涿州Zhuolu,Hebei河北涿州Zhuozhou,Hebei河北涿州Zhuozhou,Hebei陕西华县Huaxian,Shaanxi北京延庆Yanqing,Beijing河北张家口Zhangjiakou,Hebei,陕西华县Huaxian,Shaanxi河北涿鹿Zhuolu,Hebei河北蔚县Yuxian,Hebei河北围场Weichang,Hebei河北蔚县Yuxian,Hebei河北涿鹿Zhuolu,Hebei河北蔚县Yuxian,Hebei河北蔚县Yuxian,Hebei河北张家口Zhangjiakou,Hebei河北涿鹿Zhuolu,Hebei辽宁朝阳Chaoyang,Liaoning辽宁朝阳Chaoyang,Liaoning河北承德Chengde,Hebei河北承德Chengde,Hebei辽宁朝阳Chaoyang,Liaoning辽宁松源Songyuan,Liaoning 7013571136 7213773138 741391075 1401176141 127714213 781431479 1441580145 168114617 821471883 1481984149 2085串枝白Chuanzhibai馍馍杏Momoxing串枝红Chuanzhihong子荷Zihe水白Shuibai黄甜核Huangtianhe棒锤杏Bangchuixing水白Shuibai野生甜仁WildTianren龙垦5号Longken No.5龙垦8号Longken No.8东宁2号Dongning No.2白杏Baixing杏梅Xingmei银白Yinbai早大黄Zaodahuang中白Zhongbai房陵大杏Fanglingdaxing大白桃Dabaitao Harcot 1502186 Harlayne 1512287152 238815324 B201-28915425 C103-29015526 C112-69115627 C202-29215728垂枝杏Chuizhixing 93白杏Baixing苦仁红袍Bitter Hongpao甜仁红袍Sweet Hongpao沙金红Shajinhong嘎杏Gaxing晚杏Wanxing核包杏Hebaoxing河北景县Jingxian,Hebei河北景县Jingxian,Hebei河北巨鹿Julu,Hebei河北石家庄Shijiazhuang,Hebei河北蔚县Yuxian,Hebei河北蔚县Yuxian,Hebei河北邢台Xingtai,Hebei河南郑州Zhengzhou,Henan河南灵宝Lingbao,Henan黑龙江宝清Baoqing,Heilongjiang黑龙江宝清Baoqing,Heilongjiang黑龙江东宁Dongning,Heilongjiang黑龙江友谊Youyi,Heilongjiang黑龙江友谊Youyi,Heilongjiang黑龙江友谊Youyi,Heilongjiang黑龙江友谊Youyi,Heilongjiang黑龙江友谊Youyi,Heilongjiang湖南房县Fangxian,Hunan吉林延边Yanbian,Jilin加拿大Canada加拿大Canada辽宁北镇Beizhen,Liaoning辽宁北镇Beizhen,Liaoning辽宁北镇Beizhen,Liaoning辽宁东港Donggang,Liaoning辽宁东港Donggang,Liaoning辽宁东港Donggang,Liaoning辽宁法库Faku,Liaoning 158苹果杏Pinggongxing马村杏Macunxing扁杏Bianxing白水Baishui沙金红Shajinhong曹杏Caoxing梅杏Meixing胭脂红Yanzhihong张公园Zhanggongyuan白沙Baisha菜籽黄Caizihuang金丝甜仁Jinsitianren苦仁红脸Bitter Honglian马串铃Machuanling甜仁红脸Sweet Honglian头窝接Touwojie大接杏Dajiexing草坯杏Caopixing二转子Erzhuanzi银香白Yinxiangbai黑叶Heiyexing陕梅Shaanmei牛角黄Niujiaohuang古渡杏Guduxing姑咱杏Guzaxing王世中Wangshizhong香白Xiangbai Hacihaliloglu山东烟台Yantai,Shandong山西Shanxi山西大同Datong,Shanxi山西太谷Taigu,Shanxi山西太谷Taigu,Shanxi陕西草滩Caotan,Shaanxi陕西草滩Caotan,Shaanxi陕西草滩Caotan,Shaanxi陕西草滩Caotan,Shaanxi陕西大荔Dali,Shaanxi陕西大荔Dali,Shaanxi陕西大荔Dali,Shaanxi陕西大荔Dali,Shaanxi陕西大荔Dali,Shaanxi陕西大荔Dali,Shaanxi陕西大荔Dali,Shaanxi陕西华县Huaxian,Shaanxi陕西礼泉Liqua,Shaanxi陕西礼泉Liqua,Shaanxi陕西临潼Lintong,Shaanxi陕西眉县Meixian,Shaanxi陕西眉县Meixian,Shaanxi陕西长安Chang’an,Shaanxi四川巴塘Batang,Sichuan四川康定Sichuan,Kangding四川泸定Luding,Sichuan天津蓟县Jixian,Tianjin土耳其Turkey

表1 (续) Table 1(Continued)

编号No.名称Name来源Origin编号No.名称Name来源Origin编号No.名称Name来源Origin 2994159 Kabaasi 3095160 Soganci 3196161 Tyrinthos 329716233 981633499 16435100165 3610116637 10216738103 16839104169 4010517041 10617142107 17243108173 44109银白Yinbai关爷脸Guanyelian光板杏Guangbanxing大红杏Dahongxing秋白Qiubai野银白Yeyinbai伯杏Boxing红杏Hongxing李子杏Lizixing水李子Shuilizi露仁Luren小拳杏Xiaoquanxing早熟杏Zaoshuxing桃核杏Taohexing荷包榛Hebaozhen Katy 17445大山杏Dashanxing辽梅Liaomei绿萼Lü’e巴斗Badou白玉巴达Baiyubada山黄Shanhuang蜜陀罗Mituoluo苹果白Pingguobai水晶Shuijing麦黄Maihuang苦核白Kuhebai五台扁Wutaibian苦核白Kuhebai沙金红Shajinhong白杏Baixing白杏Baixing Bergeron 110 Sundrop 17546111 Sungold 17647112177 48辽宁熊岳Xiongyue,Liaoning辽宁北票Beipiao,Liaoning河北尚义Shangyi,Hebei安徽砀山Dangshan,Anhui北京海淀Haidian,Beijing北京昌平Changping,Beijing北京房山Fangshan,Beijing北京海淀Haidian,Beijing北京海淀Haidian,Beijing北京海淀Haidian,Beijing北京平谷Pinggu,Beijing北京延庆Yanqing,Beijing北京延庆Yanqing,Beijing北京延庆Yanqing,Beijing朝鲜平壤Pyongrang,North Korea朝鲜惠阳Huiyang,North Korea法国France甘肃兰州Lanzhou,Gansu甘肃兰州Lanzhou,Gansu甘肃兰州Lanzhou,Gansu 113金杏Jinxing双仁Shuangren辽宁法库Faku,Liaoning辽宁盖州Gaizhou,Liaoning辽宁甘井子Ganjingzi,Liaoning辽宁锦西Jinxi,Liaoning辽宁建平Jianping,Liaoning辽宁锦西Jinxi,Liaoning辽宁辽阳Liaoyang,Liaoning辽宁辽阳Liaoyang,Liaoning辽宁辽阳Liaoyang,Liaoning辽宁辽阳Liaoyang,Liaoning辽宁凌源Lingyuan,Liaoning辽宁旅顺Lvshun,Liaoning辽宁沈阳Shenyang,Liaoning辽宁西丰Xifeng,Liaoning辽宁熊岳Xiongyue,Liaoning美国USA美国USA美国USA内蒙古Inner Mongo内蒙古Inner Mongo 178安加娜Anjiana梨杏Lixing卡巴克西米西Kabakximisi克孜朗Kezilang苦曼提Kumanti毛拉肖Maolaxiao阿扬洪来克Ayanghonglaike库车1号Kuche No.1库尔代克Kuerdaisheke佳娜丽Jianali克孜阿恰Keziaqia克孜克西米西Kezikeximixi乔儿胖Qiaoerpang白赛买提Baisaimaiti大胡安娜Dahuana胡安娜Huana莫克优系Mokeyouxi土耳其Turkey土耳其Turkey希腊Greece新疆和田Hetian,Xinjiang新疆和田Hetian,Xinjiang新疆喀什Kashgar,Xinjiang新疆柯坪Keping,Xinjiang新疆柯坪Keping,Xinjiang新疆柯坪Keping,Xinjiang新疆库车Kuche,Xinjiang新疆库车Kuche,Xinjiang新疆库车Kuche,Xinjiang新疆轮台Luntai,Xinjiang新疆轮台Luntai,Xinjiang新疆轮台Luntai,Xinjiang新疆莎车Shache,Xinjiang新疆叶城Yecheng,Xinjiang新疆叶城Yecheng,Xinjiang新疆叶城Yecheng,Xinjiang新疆叶城Xinjiang,Yecheng 4911417950 11518051116 18152117182 5311818354 11918455120 185晚熟红杏Late Hongxing牙格勒克Yageleke北山Beishan卡拉玉吕克Kalayulüke野杏Yexing赛买提Saimaiti Monaco 56121186 Pisana 57大偏头Dapiantou大接杏Dajiexing甜仁黄口外Tianren Huangkouwai大红中沙Dahongzhongsha大杏Daxing桐梓杏Tongzixing沙杏1号Shaxing No.1白果杏Baiguoxing大白杏Dabaixing大核白Dahebai吨葫芦Dunhulu红花接Honghuajie贵州贵阳Guiyang,Guizhou贵州凯里Kaili,Guizhou贵州桐梓Tongzi,Guizhou贵州遵义Zunyi,Guizhou河北昌黎Changli,Hebei河北昌黎Changli,Hebei河北昌黎Changli,Hebei河北昌黎Changli,Hebei河北昌黎Changli,Hebei 122牛心杏Niuxinxing新水杏Xinshuixing山彩Shancai斯里普斯Silipusi信山丸Xinshanwan大明杏Damingxing关爷脸Guanyelian早橙Zaocheng长个红Changgehong宁夏Ningxia宁夏Ningxia日本Japan日本Japan日本Japan山东荷泽Heze,Shandong山东崂山Laoshan,Shandong山东崂山Laoshan,Shandong山东崂山Laoshan,Shandong 187晚甜杏Wantianxing新疆叶城Yecheng,Xinjiang新疆叶城Yecheng,Xinjiang新疆伊犁Yili,Xinjiang新疆伊犁Yili,Xinjiang新疆伊犁Yili,Xinjiang新疆英吉沙Yingjisha,Xinjiang意大利Italy意大利Italy云南Yunnan

表1 (续) Table 1(Continued)

编号No.名称Name来源Origin编号No.名称Name来源Origin编号No.名称Name来源Origin 5812318859 12418960125 19061126191 6212719263 12819364129 19465金黄杏Jinhuangxing倭瓜杏Woguaxing硬条Yingtiao广宗杏Guangzongxing肉杏Rouxing官厅二黄Guanting’erhuang香白Xingbai石片黄Shipianhuang河北昌黎Changli,Hebei河北昌黎Changli,Hebei河北昌黎Changli,Hebei河北广宗Guangzong,Hebei河北广宗Guangzong,Hebei河北怀来Huailai,Hebei河北怀来Huailai,Hebei河北怀来Huailai,Hebei 130白杏Baixing红玉Hongyu海棠红Haitanghong平黄Pinghuang杨继元Yangjiyuan早麦黄Zaomaihuang白仁Bairen观音脸Guanyinlian山东曲阜Qufu,Shandong山东泰安Tai’an,Shandong山东泰安Tai’an,Shandong山东泰安Tai’an,Shandong山东泰安Tai’an,Shandong山东泰安Tai’an,Shandong山东烟台Yantai,Shandong山东烟台Yantai,Shandong 195源东杏Yuandongxing仙居杏Xianjuxing大佛杏Dafuxing张村早杏Zhangcunzaoxing朝鲜杏Chaoxianxing辽杏09-5 Liaoxing 09-5紫杏Zixing送春Songchun浙江金华Jinhua,Zhejiang浙江仙居Xianju,Zhejiang浙江新昌Xinchang,Zhejiang浙江张村Zhangcun,Zhejiang朝鲜North Korea吉林长春Changchun,Jilin新疆库车Kuche,Xinjiang育成品种Improved varieties

1.2 性状调查

试验于2019 年和2020 年夏季果实成熟时期进行,从树冠外围随机选取100 个有代表性的果实。样品采集与调查方法参见刘宁等[18]的《杏种质资源描述规范和数据标准》。从果实中取出果核,洗净、晾干,以备调查。共调查或测定7 个果核、种仁性状,具体方法如下:

果核大小性状调查按照章秋平等[2]描述的方法进行,每个样品随机取30 粒杏核,用游标卡尺测量果核纵径(SL)、核横径(SW)和核侧径(ST),并计算样品的核纵/横比(SL/SW)、核纵/侧比(SL/ST)。将杏核敲开后,用游标卡尺测量果核中部最薄处的厚度,即为壳厚度(SST)。利用TMS-PRO物性分析仪(美国Food Technology Corporation 公司生产)中的TPA 模块和2500 N 探头(直径35 mm)测定果核破裂力(SBF)与硬度(SH),具体方法与参数设置与吕春晶等[19]的方法描述相同。

将所有果核样品粉碎,过60 目(0.25 mm)的网筛。按Klason法[20]测定果核中酸不溶性木质素含量(SLC),每个品种重复测定3次。

利用游标卡尺测量种仁的纵径(KL)、横径(KW)和侧径(KT),并计算仁纵/横径比(KL/KW)、仁纵/侧径比(KL/KT),每品种测量30个。利用电子天平称量核干质量(SDW)与单仁质量(KDW),均为100粒的平均值。计算100 粒果核的杏仁出仁率(KR)。

1.3 数据分析

利用Excel 2010 软件对数据进行整理,计算各样品的平均值。然后,利用Origin 9.0软件对所有性状的数据进行基本描述统计、相关性分析、主因子分析以及聚类分析。

2 结果与分析

2.1 果核主要性状的描述性统计

对195 份杏种质资源的果核/仁的主要性状进行描述性统计,如图1 和表2 所示。通过图1 的箱式图可以看出,杏果核、种仁各性状的数据分布范围较大,这表明本文中的杏种质资源具有广泛的遗传变异。

图1 195 份杏种质资源果核性状分布的箱式图
Fig.1 Box plot of frequency distribution of fruit stone related traits in 195 accessions of apricot

表2 195 份杏种质资源果核、种仁相关性状变异系数分析
Table 2 Analysis of variation coefficient of fruit stone related traits in 195 accessions of apricot

性状Traits核纵径Stone length(SL)/mm核横径Stone width(SW)/mm核侧径Stone thickness(ST)/mm核纵/横径Stone length/width(SL/SW)核纵/侧径Stone length/thickness(SL/ST)核干质量Stone dry weight(SDW)/g壳厚度Stone shell thickness(SST)/mm核破裂力Stone breading force(SBF)/N核硬度Stone hardness(SH/N)木质素含量Stone lignin content(SLC)/%出仁率Kernel weight ratio(KR)/%仁纵径Kernel length(KL)/mm仁横径Kernel width(KW)/mm仁侧径Kernel thickness(KT)/mm仁纵/横径Kernel length/width(KL/KW)仁纵/侧径Kernel length/thickness(KL/KT)单仁质量Kernel dry weight(KDW)/g年份Years 2019202020192020 2019202020192020 2019202020192020 2019202020192020 2019202020192020 2019202020192020 2019202020192020 2019202020192020 20192020平均值Mean 27.4727.8622.4422.4812.5312.581.231.242.212.232.492.531.881.92196.75218.23902.32868.6130.6928.2027.8826.4818.4217.9313.5713.006.355.961.371.392.953.070.680.66标准差SD 3.813.842.612.541.401.320.140.150.340.330.620.610.380.4072.5670.30224.39196.032.954.706.156.112.292.161.581.510.860.840.160.160.530.580.180.18最小值Min.18.4218.5814.5815.189.689.890.920.901.511.520.720.910.890.8084.87102.37305.31331.5121.6816.5412.837.1112.5712.688.587.573.813.720.930.961.551.600.170.09最大值Max.39.0939.5228.8128.4417.1016.411.671.703.273.194.624.612.822.95495.56481.181573.371363.1437.0338.0551.2052.4024.1624.1518.5817.1310.368.541.881.844.394.961.191.16变异系数CV/%13.8613.7911.6311.2911.1510.4611.7612.0015.4214.9024.7824.0920.0420.7736.8832.2124.8722.579.6116.6822.0723.0612.4612.0711.6611.5913.5114.0811.9011.8018.0218.9626.1026.68峰度Kurtosis-0.01-0.27-0.06-0.14-0.17-0.37-0.160.11-0.38-0.240.510.53-0.120.141.982.000.42-0.020.29-0.562.892.240.090.140.820.992.420.080.030.02-0.420.591.380.84偏度Skewness-0.010.05-0.22-0.180.160.130.290.250.280.270.110.320.180.191.311.220.220.02-0.67-0.21-0.190.590.050.17-0.05-0.230.480.010.390.330.020.53-0.120.07 S-W检验S-W test Sig.0.380.910.420.470.090.260.520.380.090.540.740.120.180.140.000.000.220.840.000.050.670.070.390.600.390.690.300.940.270.380.500.300.070.21

从表2 可以看出,17 个性状变异系数介于9.61%~36.88%之间,呈现出较大的变异幅度。在连续2 a 的调查数据中,核破裂力性状的变异系数最大,为36.88%,变异幅度为84.87~495.56 N。其后依次为仁干质量、核干质量、核硬度、出仁率和核壳厚度等性状。通过Shapiro-Wilk 检验,除核破裂力和木质素含量外,其余性状数据均符合正态分布。杏果核硬度的分布范围为305.31~1573.37 N,平均值为902.32 N;出仁率的分布范围为12.83%~51.20%,平均值为27.88%,这表明在破核取仁和提高种仁产量等方面具有较大的遗传改良潜力。核侧径的变异系数最小,2 a 平均变异系数仅为10.8%,变异幅度为1.32~9.89 mm。而其余果核大小性状和种仁大小的性状指标为中等变异。一般认为,变异系数大于10%表示样本间差异较大[21-22]。在本研究中表型性状数据的变异系数均大于10%,表明这195 份杏种质资源间存在很大的差异,具有丰富的遗传多样性。

2.2 性状间相关性分析

对2019 年和2020 年间不同性状的调查数据进行配对相关性分析,发现17个性状在不同年份间存在着极显著的相关性,这表明195 份杏品种在连续2 a 的性状调查中表现稳定。故,仅以2019 年数据分析进行论述。通过不同性状间的相关性分析,由图2可以看出,195份果核、种仁的17个性状间存在不同程度的相关性。总体看来,果核大小、质量与种仁大小、质量之间存在极显著的相关性,特别是果核纵径与仁纵径的相关系数高达0.899,这表明种仁大小与果核大小存在着密切联系。果核破裂力与壳厚度、核横径、核侧径以及纵/横径比、纵/侧比等性状呈极显著的正相关,这说明果核破裂力可能与果核形状存在一定的联系。果核硬度与核侧径、壳厚度、木质素含量之间呈极显著的正相关。出仁率与单仁质量、仁侧径呈极显著的正相关,而与壳厚度、核破裂力、硬度等其余大部分性状呈负相关,这表明种仁侧径增加能够提高杏核出仁率。

图2 195 份杏种质资源果核性状的相关性热图
Fig.2 A heat map of fruit stone traits in 195 accessions of apricot

红色表示在0.01 水平下相关性显著,橙色表示在0.05 水平下相关性显著。性状缩写见表2。
Red squares indicate a significant correlation at the 0.01 level,orange squares indicate a significant correlation at the 0.05 level.Abbreviations of characters are shown in Table 2.

对17个表型性状进行R型聚类分析,采用欧氏距离和Ward 法聚类分析,由聚类结果(图3)可知,在欧氏距离为15 处,可以将表型性状划分为4 类。第Ⅰ类群包含核纵径、仁纵径、核纵/横径、核纵/侧径、仁纵/横径和仁纵/侧径,均为决定果核、种仁形状的性状。第Ⅱ类群包含核横径、核侧径、核干质量、壳厚度、核破裂力、核硬度、仁横径和单仁质量等性状。第Ⅲ类群仅包含木质素含量一个性状。第Ⅳ类群包含出仁率和仁侧径2个性状。R型聚类也在一定程度上反映出17个性状间的相关性。

图3 基于欧氏距离17 个果核表型性状的R 型聚类分析
Fig.3 Cluster tree diagram of 17 phenotypic traits of fruit stone in apricot based on Eudiean distance

2.3 主成分分析

由于17个性状间相关关系比较复杂,故基于连续2 a的表型性状数据进行主成分分析,提取主因子成分进行深入分析。如表3 所示,2 a 数据前4 个主成分的累积贡献率分别为81.53%和81.25%,包含了杏种质资源果核/仁描述的绝大部分信息。在2019年调查数据中,第1 主成分特征值为5.503,贡献率为32.37%,果核和种仁的纵横侧等8 个性状的特征值(绝对值)较大,可以看出这些性状主要描述核/仁大小、质量的性状。第2 个主成分特征值为4.493,贡献率为26.43%,有6个性状的特征值绝对值较大,包括核侧径、核/仁的三径比值以及核破裂力,这表明在质构仪正面加压时果核的破裂与果核形状有直接关系。第3个主成分的特征值为2.528,贡献率为14.87%,由核硬度、仁侧径和出仁率3 个性状组成。第4个主成分的特征值为1.336,贡献率为7.86%,果核木质素含量有较高的荷载量。2020 年数据与2019年数据具有类似规律。

表3 杏果核相关性状的主成分分析
Table 3 Principal component analysis of fruit stone related traits of apricot

注:性状的缩写见表2。
Note:Abbreviations of characters are shown in table 2.

性状Trait核纵径SL核横径SW核侧径ST核纵/横径SL/SW核纵/侧径SL/ST核干质量SDW壳厚度SST核破裂力SBF核硬度SH木质素含量SLC出仁率KR仁纵径KL仁横径KW仁侧径KT仁纵/横径KL/KW仁纵/侧径KL/KT单仁质量KDW特征值Eigenvalue贡献率Contribution ratio/%累计贡献率Cumulative contribution ratio/%2019年 In 2019主成分1 PC 10.8570.8120.5340.2060.3990.9330.5920.4720.333-0.125-0.3360.8340.6930.0080.1790.5380.6645.50332.368主成分2 PC 20.397-0.408-0.7100.8750.854-0.188-0.401-0.478-0.473-0.2140.1960.450-0.252-0.4620.7460.6350.0184.49326.432主成分3 PC 30.0220.056-0.106-0.0500.0840.078-0.393-0.261-0.510-0.3050.7970.1430.5120.587-0.378-0.3360.6352.52814.868主成分4 PC 40.166-0.1290.2070.3480.0050.059-0.2040.0590.4130.3420.1170.081-0.3270.5950.415-0.3650.0561.3367.8572020年 In 2020主成分1 PC 10.8330.8430.5960.1530.3610.9440.6340.5750.393-0.208-0.4400.8090.702-0.0200.1010.5100.6835.81534.205主成分2 PC 20.466-0.360-0.6090.8900.856-0.142-0.343-0.313-0.376-0.076-0.0160.450-0.325-0.4810.8160.642-0.0974.25325.019主成分3 PC 30.0710.005-0.2000.0580.1920.087-0.499-0.210-0.513-0.2130.7450.2690.5050.613-0.242-0.3020.6382.51114.769主成分4 PC 40.122-0.2070.2410.358-0.0580.0270.0360.0900.4000.0980.0540.082-0.3290.5830.429-0.4050.0301.2337.25432.36858.80073.66881.52534.20559.22473.99281.246

2.4 聚类分析与综合评价

根据38个形态性状数据和欧氏距离对195份杏种质资源进行聚类分析,由图4可以看出,当遗传距离为15时,可以分为6个类群。

图4 基于表型性状的树状聚类图
Fig.4 Dendrogram of cluster analysis based on the phenotype characters in apricot

第Ⅰ和第Ⅱ类群均为1 份材料组成,分别是山杏绿萼和普通杏露仁杏。绿萼,具有果核三径小、近球形,壳薄、种仁饱满且出仁率高等特点。露仁杏,属于杏种质资源中的珍稀材料,果核发育不完全,成熟时部分种仁与果肉直接连在一起[23]。第Ⅲ类群由18 份大扁杏和2 份果核纵径较长的品种(库尔代什克和甜仁黄口外)组成,具有核/仁外观大等特点。第Ⅳ类群由27份普通鲜食杏材料组成,该组大部分种质具有核壳薄、出仁率高等特点。其余146 份材料组成了第Ⅴ类群,占总体材料的74.87%。

在遗传距离为10时,第Ⅴ类群进一步被划分为6个亚群。在Ⅴa亚群中,包含4份种质,果核椭圆形且硬度较大。第Ⅴb亚群由果核圆形且硬度较大的4份种质组成。第Ⅴc亚群由种仁饱满、出仁率较高的29 份种质组成,如辽梅、大山杏、伯杏、克拉拉等。第Ⅴd亚群由12份果核横径较长的扁圆形种质组成,包括草坯杏、仙居杏、银香白等。第Ⅴe 亚群由草滩曹杏、张公园、蜜陀罗、红玉等7份种质组成,这些种质果核较大、种质发育较差,出仁率低。第Ⅴf亚群,由90份种质材料组成,占整体材料的46.15%,这些材料的果核、种仁性状均属于中间类型。除第Ⅲ类群以大扁杏为主以外,其余组群均由鲜食普通杏和山杏的不同类型组成。

通过主因子综合得分进行种质筛选是客观评价优异种质的一个重要方法[22]。根据表3中不同性状在各主成分中占比权重以及贡献率,计算不同品种的各主成分得分和综合因子得分。在195份杏种质资源果核/仁性状的综合得分中,综合排名前10名的种质材料分别为甜仁黄口外、丰仁、超仁、库尔代什克、一窝蜂、围选1 号、优一、馍馍杏、国仁和大偏头。再结合不同聚类群中的性状特异性,分别筛选出6份性状优异的大扁杏(表4)与19份性状特异的大扁杏、普通杏或山杏种质资源(表5),尤其是甜仁黄口外、库尔代什克、克孜克西米西、赛买提等普通杏种质可以进一步筛选作为仁用杏育种的重要亲本材料。

表4 性状优异种质
Table 4 Excellent germplasm in traits

品种Variety丰仁Fengren超仁Chaoren围选1号Weixuan No.1一窝蜂Yiwofeng优一Youyi国仁Guoren核干质量SDW 3.34出仁率KR/%33.63壳厚度SST/mm 2.22核破裂力SBF/N 241.30核硬度SH/N 582.44单仁质量KDW/g 1.123.0836.231.99268.86479.931.122.9734.432.17331.78498.361.022.7836.062.09290.06494.191.002.5336.761.59154.14646.350.933.0730.651.93162.84690.070.94

表5 性状特异种质
Table 5 Special germplasm in traits

注:括号内为该性状的具体数值。
Note:The specific values of this trait are in parentheses.

特殊性状Special traits干核质量SDW ≥4.0 g单仁质量KDW ≥1.0 g出仁率KR ≥40%壳厚度SST ≤1.20 mm破裂力SBF ≤110 N核硬度SH ≤460 N种质名称与数值Germplasm name and values馍馍杏(4.04),80D05(4.62)Momoxing(4.04),80D05(4.62)80D05(1.19),80A03(1.08),馍馍杏(1.04),新4号(1.04),龙王帽(1.00),甜仁黄口外(1.00)80D05(1.19),80A03(1.08),Momoxing(1.04),Xin No.4(1.04),Longwangmao(1.00),Tianrenhuangkouwai(1.00)露仁杏(51.20),绿萼(42.47),B110-2(40.34),克孜克西米西(40.42)Luren(51.20),Lü’e(42.47),B110-2(40.34),Kezikeximixi(40.42)克孜克西米西(1.00),绿萼(1.01),C202-2(1.14),B110-2(1.17)Kezikeximixi(1.00),Lü’e(1.01),C202-2(1.14),B110-2(1.17)克孜阿恰(96.92),垂枝杏(100.68),赛买提(101.95),C202-2(102.76),大山杏(106.83),克孜克西米西(109.61)Hacihaliloglu(109.64)Kezi’aqia(96.92),Chuizhixing(100.68),Saimaiti(101.95),C202-2(102.76),Dashanxing(106.83),Kezikeximixi(109.61),Hacihaliloglu(109.64)辽梅(460.00),垂枝杏(452.75),白仁(443.68),80B05(432.41),B110-2(401.31),绿萼(351.31)Liaomei(460.00),Cuizhixing(452.75),Bairen(443.68),80B05(432.41),B110-2(401.31),Lü’e(351.31)

3 讨论

我国山杏、普通杏种质资源非常丰富,存在许多变异类型[6,24],但是由于在果核、种仁性状方面的评价不足,在仁用杏育种中很少能够利用这些种质资源。在本研究中,杏果核大小、种仁大小和出仁率等性状的遗传变异系数均高于10%,与以前的山杏[6-7,10]和普通杏[11,24]的多样性报道类似,这表明本研究中所选材料存在着丰富的遗传变异。从核/仁形态来看,大扁杏的优点是果核大、平均单仁质量均显著高于其他品种群,在大扁杏类群中80D05 杏的单仁质量最大,达1.19 g。通过特异种质资源筛选,能够丰富仁用杏育种的亲本选择范围、以扩大遗传基础。笔者也从普通杏类群中筛选出甜仁黄口外和馍馍杏2份单仁质量超过1.0 g的特异种质资源。

通过相关性分析,发现本文中的出仁率与核仁侧径呈极显著的正相关,这表明杏核越鼓出仁率越高。因此,在仁用杏育种时增加种仁侧径可能是提高杏仁产量的一个重要途径。笔者也发现平均单仁质量与果核大小呈极显著的正相关,与果核厚度呈负相关,这表明在驯化选择大种仁大果核的过程中也连带增加了杏果核的厚度。大扁杏果核厚度增加,不仅降低了出仁率也加大了种仁加工过程的开核难度,因此,对于仁用杏的加工性状改良也需要新的种质引入到大扁杏的杂交育种中。在笔者所选杏品种中,露仁杏果核极薄、发育不完整并且种仁饱满[23]是仁用杏育种的良好亲本材料。同时,在普通杏和山杏类群中也筛选出了克孜克西米西、绿萼、B110-2和C202-2等果核薄、出仁率高的特异种质资源。但是,这些种质的缺点是单仁质量较小,这可能需要通过多代杂交才能筛选出符合理想性状的株系。

木质化的杏核增加了种仁加工成本,因此易开核性状(壳硬度低)是仁用杏选育的一个重要育种目标。吕春晶等[19]认为杏的果核硬度与厚度存在极显著的相关性,本文结果与之相吻合。在本文中,除了调查果核厚度外,还检测了不同类群杏果核的硬度和开裂破裂力变化。杏核硬度的分布范围为305.31~1573.37 N,平均值为902.32 N;杏核的开裂破裂力范围为84.87~495.56 N,平均值为196.75 N,变异多样性极为丰富。通过综合评价,认为克孜阿恰、克孜克西米西、赛买提、Hacihaliloglu、白仁等普通杏以及垂枝杏、大山杏、辽梅、绿萼、C202-2、B110-2等山杏的果核硬度小、易开核,这些种质材料可以用于易开核品种的选育。

主成分分析、聚类分析和综合因子得分等降维统计方法已被广泛应用于种质资源多样性评价和优良种质筛选等研究中[22]。笔者通过多种统计方法筛选,认为丰仁、超仁、围选1号、一窝蜂、优一、国仁等6个大扁杏品种是目前仁用杏栽培中综合性状表现优良的品种。另外,甜仁黄口外、库尔代什克、大偏头、馍馍杏等综合得分较高的鲜食普通杏可以作为仁用杏育种的亲本材料,而克孜克西米西、赛买提、绿萼、垂枝以及C202-2等种质资源是仁用杏出仁率和加工破壳性状改良的潜在亲本材料。

4 结论

杏果核与种仁数量性状具有丰富的遗传变异,是仁用杏新品种改良的重要基础;增加种仁侧径长度可能是提高出仁率的重要方式。从195 份杏种质资源中共筛选出6 份优异种质和21 份特异种质材料,这些种质在仁用杏遗传改良过程中具有较大潜力。

参考文献:

[1] 张加延,何跃.我国“三北”杏树产业带的发展现状[J].北方果树,2007(1):33-35.ZHANG Jiayan,HE Yue. The development status of the‘Three North’apricot industrial belt in China[J]. Northern Fruits,2007(1):33-35.

[2] 章秋平,刘威生,刘宁,张玉萍,徐铭,刘硕.基于形态性状的仁用杏种质资源分类研究[J].果树学报,2015,32(3):385-392.ZHANG Qiuping,LIU Weisheng,LIU Ning,ZHANG Yuping,XU Ming,LIU Shuo. Classification of kernel-using germplasm based on morphology in apricot[J]. Journal of Fruit Science,2015,32(3):385-392.

[3] 张立彬,王同坤,刘桂森,赵天永,吴学仁.山杏新品种‘绿萼山杏’[J].园艺学报,2004,31(5):700.ZHANG Libin,WANG Tongkun,LIU Guisen,ZHAO Tianyong,WU Xueren.A new Siberia apricot variety‘Lü’e shanxing’[J].Acta Horticulturae Sinica,2004,34(5):700.

[4] 王同坤,张立彬,刘桂森,赵天永,吴学仁.山杏新品种‘甜仁山杏’[J].园艺学报,2004,34(6):834.WANG Tongkun,ZHANG Libin,LIU Guisen,ZHAO Tianyong,WU Xueren.A new Siberia apricot variety‘Tianren shanxing’[J].Acta Horticulturae Sinica,2004,34(6):834.

[5] 李明,赵忠,杨吉安,卢斌,苗兴军.黄土高原山杏种质资源分类研究[J].西北林学院学报,2011,26(1):8-12.LI Ming,ZHAO Zhong,YANG Ji’an,LU Bin,MIAO Xingjun.Classification on germplasm resources of Armeniaca sibirica in the Loess Plateau[J]. Journal of Northwest Forestry University,2011,26(1):8-12.

[6] 刘明国,张欣,董胜君,吴月亮,梁海霞.西伯利亚杏优选无性系间数量性状的差异与重复力研究[J].沈阳农业大学学报,2015,46(5):548-554.LIU Mingguo,ZHANG Xin,DONG Shengjun,WU Yueliang,LIANG Haixia. Differences and repeatabilities of quantitative characters of Prunus sibirica superior clones[J]. Journal of Shengyang Agricultural University,2015,46(5):548-554.

[7] 董胜君,王力,刘立新,刘明国,吴月亮,陈建华,夏泽臻.不同种源西伯利亚杏无性系数量性状研究[J].经济林研究,2018,36(4):1-8.DONG Shengjun,WANG Li,LIU Lixin,LIU Mingguo,WU Yueliang,CHEN Jianhua,XIA Zezhen. Study on quantitative characteristics in Armeniaca sibirica clones from different provenances[J].Non-wood Forest Research,2018,36(4):1-8.

[8] 王丹,刘玉兰,张东东,杨金强.不同产地杏仁及其冷榨杏仁油的品质分析[J].中国粮油学报,2016,31(8):39-43.WANG Dan,LIU Yulan,ZHANG Dongdong,YANG Jinqiang.Quality analysis of apricot and cold pressed apricot kernel oil from different areas[J]. Journal of the Chinese Cereals and Oils Association,2016,31(8):39-43.

[9] 张倩茹,尹蓉,李捷,杨晓华,李小平,李鸿雁,王贤萍.不同杏品种果仁油脂的脂肪酸组成分析[J].中国粮油学报,2018,33(5):37-42.ZHANG Qianru,YIN Rong,LI Jie,YANG Xiaohua,LI Xiaoping,LI Hongyan,WANG Xianping. Analysis position of fatty acid in kernel oil of different apricot varieties[J].Journal of the Chinese Cereals and Oils Association,2018,33(5):37-42.

[10] 尹明宇,刘慧敏,包文泉,赵罕,乌云塔娜.内蒙古西伯利亚杏核仁表型变异及优株选择[J]. 林业科学研究,2017,30(6):961-968.YIN Mingyu,LIU Huimin,BAO Wenquan,ZHAO Han,WUYUN Tana. Phenotypic variation and superior individual selection of Siberian apricot (Armeniaca sibirica ) in Inner Mongolia[J].Forestry Research,2017,30(6):961-968.

[11] 黄雪,图尔荪古丽·吾拉伊木,郭玲.新疆南部杏种核表型性状与苦杏仁苷含量分析[J].经济林研究,2020,38(4):143-151.HUANG Xue,Tu’ersunguli·Wulayimu,GUO Ling.Phenotypic traits and amygdalin content of apricot seed kernels in southern Xinjiang[J].Non-wood Forest Research,2020,38(4):143-151.

[12] LIU W S,LIU N,YU X H,ZHANG Y P,SUN M,XU M,ZHANG Q P,LIU S.Kernel-using apricot resources and its utilization[J].Acta Horticulturae,2012,966:189-191.

[13] 高连祥.仁用杏新品种‘围选1 号’的选育[J].中国果树,2008(4):6-7.Gao Lianxiang. A new kernel-using apricot variety‘Weixuan No.1’[J].China Fruits,2004,34(6):834-834.

[14] 陈长春,苏春凤,郭庆才.‘长城1 号’仁用杏引种试验初报[J].落叶果树,2006,38(2):18-19.CHEN Changchun,SU Chunfeng,GUO Qingcai.Primary report on cultivation of introduced kernel apricot variety‘Changcheng 1’[J].Deciduous Fruits,2006,38(2):18-19.

[15] 刘宁,张加延,何跃. 仁用杏新品系选育报告[J]. 北方果树,1999(2):9-10.LIU Ning,ZHANG Jiayan,HE Yue. Selection of new apricot strains for kernel utilization[J].Northern Fruits,1999(2):9-10.

[16] ZHANG Q P,LIU D C,LIU S,LIU N,WEI X,ZHANG A M,LIU W S. Genetic diversity and relationships of common apricot (Prunus armeniaca L.) in China based on simple sequence repeat (SSR) markers[J]. Genetic Resources and Crop Evolution,2014,61(2):357-368.

[17] ZHANG Q P,ZHANG D Y,YU K,JI J J,LIU N,ZHANG Y P,XU M,ZHANG Y J,MA X X,LIU S,SUN W H,YU X,HU W Q,LAN S R,LIU Z J,LIU W S. Frequent germplasm exchanges drive the high genetic diversity of Chinese-cultivated common apricot germplasm[J].Horticulture Research,2021,8:215.

[18] 刘宁,刘威生.杏种质资源描述规范和数据标准[M].北京:中国农业出版社,2006.LIU Ning,LIU Weisheng.Discriptors and data standard for apricot (Armeniaca Mill.)[M]. Beijing:China Agriculture Press,2006.

[19] 吕春晶,章秋平,刘宁,张玉萍,徐铭,刘硕,马小雪,张玉君,刘威生. 杏果核物理特性与其主要化学组分的相关性分析[J].果树学报,2021,38(10):1717-1724.LÜ Chunjing,ZHANG Qiuping,LIU Ning,ZHANG Yuping,XU Ming,LIU Shuo,MA Xiaoxue,ZHANG Yujun,LIU Weisheng. Correlations between physical properties and major chemical components of shells in apricot[J].Journal of Fruit Science,2021,38(10):1717-1724.

[20] ALBA C M,FORCHETTI S M D,TIGIER H A. Phenoloxidase of peach(Prunus persica)endocarp:Its relationship with peroxidases and lignification[J]. Physiologia Plantarum,2000,109(4):382-387.

[21] 郭禄芹,赵世豪,朱华玉,胡建斌,孙守如,马长生,杨路明.167份西瓜种质材料的遗传多样性分析[J]. 中国瓜菜,2018,31(1):5-11.GUO Luqin,ZHAO Shihao,ZHU Huayu,HU Jianbin,SUN Shouru,MA Changsheng,YANG Luming.The genetic diversity analysis of 167 watermelon germplasms[J].China Cucurbits and Vegetables,2018,31(1):5-11.

[22] 于娅,李艳军,王飞,王娜,霍云龙,凤桐.北方地区黄瓜种质资源农艺性状的主成分和聚类分析[J].中国瓜菜,2020,33(12):29-34.YU Ya,LI Yanjun,WANG Fei,WANG Na,HUO Yunlong,FENG Tong. Principal component and cluster analysis of agronomic characters on cucumber germplasm resources in northern China[J].China Cucurbits and Vegetables,2020,33(12):29-34.

[23] ZHANG X,ZHANG L J,ZHANG Q P,XU J Y,LIU W S,DONG W X. Comparative transcriptome profiling and morphology provide insights into endocarp cleaving of apricot cultivar(Prunus armeniaca L.)[J].BMC Plant Biology,2017,17(1):72.

[24] 赵海娟,刘威生,刘宁,张玉萍,章秋平,刘硕.普通杏(Prunus armeniaca)种质资源数量性状的遗传多样性分析[J].果树学报,2014,31(1):20-29.ZHAO Haijuan,LIU Weisheng,LIU Ning,ZHANG Yuping,ZHANG Qiuping,LIU Shuo. Genetic diversity analysis for the quantitative traits of common apricot (Prunus armeniaca) germplasm[J].Journal of Fruit Science,2014,31(1):20-29.

Genetic diversity analysis of quantitative traits of fruit stone and kernel in apricot

ZHANG Qiuping, ZHANG Yuping, MA Xiaoxue, LIU Weisheng, LIU Ning, XU Ming, LIU Shuo,ZHANG Yujun

(Liaoning Institute of Pomology,Xiongyue 115009,Liaoning,China)

Abstract:【Objective】The kernel-using apricot is a unique apricot resource in China, which includes Siberian apricot(Armeniaca sibirica L.),common apricot(A.vulgaris L.)and A.cathayana D.L.Fu et al.Although apricot germplasm resources in China are very rich,the available materials in the breeding of kernel-using apricot are very few. The evaluation of stone and kernel related quantitative traits of apricot is the basis for the effective breakthrough of genetic improvement and breeding in kernel-using apricots.【Methods】Based on the phenotypic data of 195 apricot germplasm resources in the two consecutive years, the variation coefficient analysis, principal component analysis, correlation analysis and cluster analysis were carried out on the 17 traits of stone and kernel using Origin 9.0 software.【Results】The coefficients of variation of the 17 quantitative traits ranged from 9.61% to 36.88%, and the coefficient of variation of the stone breaking force(SBF)was largest,and the coefficient of variation of the stone lignin content (SLC)was smallest.The result of the Shapiro-Wilk test showed that those data were normally distributed except for SBF and SLC traits.The evaluation data in two consecutive years was stable and well repeatable. The coefficient of variation of the stone dry weight (SDW), kernel dry weight (KDW), stone hardness (SH) and kernel weight ratio (KR) were all over 20%, indicating that 195 accessions of germplasm resources had abundant genetic diversity. The distribution of the SH ranged from 305.31 to 1573.37 N, with an average of 902.32 N. The distribution of the KR ranged from 12.83% to 51.20%, with an average of 27.88%, indicating that there was a great potential for genetic improvement in the SH and KR traits. There was a significant correlation between the size and weight of the stone and kernel. In particular, the correlation coefficient between the stone length (SL)and the kernel length(KL)was as high as 0.899 indicating that the kernel size was closely related to the size of the stone.The positive correlation between the KR and kernel thickness(KT)trait(r=0.395)or kernel weight(KW)trait(r=0.377)was extremely significant,and the negative correlation between the KR and the SH trait(r=-0.551)or SBF trait(r=-0.346)or stone shell thickness(SST)(r=-0.570)was very significant.This result indicated that the KR could be increased by enlarging the KT or decreasing the SH. The principal component analysis showed that the 17 traits could be integrated into four main factors, and the accumulative contribution rate was over 81% in two years. The first principal component, accounted for 32.37%, was composed of the SL, stone width (SW), SDW, KL, KW, and KDW,and represented the size of stone or kernel. The second principal component, accounted for 26.43%,was composed of the stone thickness(ST),SL/SW,SL/ST,KT,KL/KT,and KL/KT traits,and represented the shape of stone or kernel.The third(14.87%)and fourth(7.86%)principal component represented the SH and SLC traits, respectively. The 195 accessions were grouped into 5 major clusters by cluster analysis when the genetic distances were 15. Cluster I only included one accession of Siberian apricot(Lve), and cluster Ⅱcomprised of one common apricot accession (Luren) collected from Liaoning province.The most varieties of the A.cathayana apricot,usually with thin stone shell,slightly juice and astringent flesh and large sweet kernel,were clustered into the cluster Ⅲ.The cluster Ⅳwas composed of 27 varieties, most of them had the traits of thin stone shell and high kernel ratio.The cluster Ⅴwas further divided into 6 subgroups when the genetic distance was 10.In the Va subgroup,four accessions were included, with oval shape stone and the great hardness in stone. The Vb subgroup was composed of four accessions with the hard stone. The accessions in the Vc subgroup were consisted of 29 accessions with full kernels and high kernel ratio, such as Dashanxin, Kelala, Boxing, and Liaomei, and so on. The Vd subgroup were consisted of 12 accessions with oblate stone and long transverse diameter.the Ve subgroup comprised of seven accessions, for example Caotancaoxing, Zhanggongyuan, Mituo luo,and Hongyu,etc.These accessions had large stone,poorly developed kernels and low kernel yield.The remaining 90 accessions were constituted the Vf subgroup, accounting for 46.15% of the total accessions.The stone or kernel traits of these accessions were intermediate types.Except for the group Ⅲ,the other groups are different types of germplasm of common apricots and Siberian apricots.【Conclusion】The quantitative traits of apricot stone or kernel had abundant genetic diversity, and the improvement of the SL or KL trait would be beneficial to the increase of kernel yield in the breeding of kernelusing apricot. The 6 excellent and 21 specific germplasms, especially the common apricot germplasm such as Tianren Huangkouwai,Dapiantou,Kuerdaisheke and Saimati,could be used as important breeding parents to increase the genetic diversity of kernel-using apricot.

Key words:Apricot;Germplasm resources;Fruit stone;Seed kernel;Quantitative traits;Genetic diversity

中图分类号:S662.2

文献标志码:A

文章编号:1009-9980(2023)02-0193-13

DOI:10.13925/j.cnki.gsxb.20220400

收稿日期:2022-07-21

接受日期:2022-08-17

基金项目:国家自然科学基金项目(31972365);国家园艺作物种质资源基础平台(NICGR2021-056);辽宁省农业科学院学科建设计划(2019DD164823)

作者简介:章秋平,男,研究员,博士,主要从事果树种质资源与遗传育种研究。Tel:13941786260,E-mail:lbzhangqiuping2@163.com