肥料袋控缓释对葡萄细根生长和氮素利用的影响

张守仕1,2,谢克英1,2,常介田2,徐明辉2,韩 芳2,柴梦颖2,乔宝营2*

1枣庄学院,山东枣庄 277160;2河南农业职业学院,郑州 451450)

摘 要:【目的】从葡萄细根生长、发育角度分析肥料袋控缓释施肥提高氮素利用率的原因,以期为葡萄合理施肥提供依据。【方法】采用微根管技术对7年生夏黑葡萄细根生长动态进行了连续3 a(年)的观测,15N同位素示踪研究肥料袋控缓释处理对葡萄氮素吸收影响。【结果】肥料袋控缓释处理土壤NH4+-N和NO3--N维持在一个较高浓度,浓度变化幅度小。肥料袋控缓释处理比肥料撒施处理和不施肥处理提高了葡萄细根发生数量,3月和7月或8月是细根发生的主要时期。葡萄细根褐变的时间,不施肥处理为46 d,撒施处理为63 d,肥料袋控缓释处理为71 d。细根中值寿命,不施肥处理为140 d,撒施处理为196 d,肥料袋控缓释处理为238 d。肥料袋控缓释处理细根现存量显著高于撒施处理和不施肥处理。肥料袋控缓释处理细根年周转率显著低于撒施处理和不施肥处理。肥料袋控缓释施肥处理来自肥料的氮占总氮比例(Ndff)显著高于肥料撒施处理,氮素利用率为16.69%,显著高于撒施施肥处理的8.38%。【结论】肥料袋控缓释提高了细根数量、延长了细根褐变时间和细根寿命,降低了细根周转率,提高了氮素利用率。

关键词:葡萄;肥料袋控缓释;细根;生长

随着“药肥双减”项目的持续推进,缓释肥因其养分利用率高[1]、省工[2]等优点在水果生产中得到重视[3-4]。袋控缓释肥根据果树养分需求特点,采用纸塑材料包裹袋内肥芯,与颗粒包膜类缓释肥相比降低了成本,取得了良好效果[5],在山东、陕西等果品生产大省得到推广应用。张亚飞等[6]研究认为,施用袋控缓释肥可以提高肥料利用率,提高果实品质。研究人员多从缓释肥养分释放和土壤养分供应角度出发,与化肥撒施的传统施肥方法相比,使用缓释肥后养分释放慢,土壤养分浓度变化幅度小,从而提高养分利用率[6-7]

根系尤其是新生细根是果树养分最主要的吸收器官。新生细根生长一段时间后会变褐,吸收能力降低[8],大部分新生细根死亡。能够进行次生生长的新根变为多年生骨干根,行使固定、养分通道等功能[9]。新根数量增多,根系变褐时间延长,寿命延长,有利于根系养分吸收[10]。刘照霞等[11]研究烟富3矮化中间砧苹果萌芽前不同位置施氮对新梢旺长期细根分布、氮素吸收的影响,发现施氮增加了细根根长密度,施肥位置不同根长密度增加不同,氮素利用率不同。Baldi等[12]研究表明,施用有机肥比撒施氮肥提高了桃细根数量,延长了褐变时间和细根寿命,根系寿命与土壤硝态氮含量相关。有机肥比化肥撒施养分释放缓慢,土壤养分浓度保持平稳。缓释肥在养分释放、土壤养分供应方面与有机肥类似,但缓释肥对果树根系生长、发育影响的研究尚不多见。因此,研究缓释肥施肥对根系的生长、发育的影响,尤其是新根产生、褐变、死亡等动态变化情况,从根系生长、发育角度探讨养分利用率提高的原因具有重要意义。生产中施肥对果树地上部生长、发育的影响研究较多[13-14],但是受观测方法困难的影响,对果树根系生长、发育的研究相对较少。现有研究多采用挖掘法[15]、根钻法[16]、根窖法[17]等方法研究果树根系,但这些方法存在根系扰动大、仅是阶段结果、准确度不高等问题。微根管法对根扰动较小,通过预先埋置在土壤中的摄像机定期拍摄根系图片及分析软件获得根系的生长、发育动态及有关参数。目前为止,微根管技术已被广泛地应用于植物根系的研究中[18],尤其是根系发生数量和根系寿命分析方面。因此笔者采用微根管观察肥料袋控缓释下葡萄根系细根生长情况,结合15N 同位素示踪技术,从细根生长、发育角度探讨肥料袋控缓释提高葡萄氮肥利用率的原因,以期为葡萄合理施肥提供依据。

1 材料和方法

1.1 试验设计

试验地点位于河南省大宗水果中牟综合试验站内,品种为夏黑,避雨栽培,南北行向,株行距为1.5 m×3.0 m,定植于2011 年3 月,单干、单臂“双十形”树形。2018 年3 月初挑选大小均匀一致7 年生葡萄树24 株,分为2 组,一组15 株用于根系观察试验,另外9 株用于15N 示踪试验。根系观察试验和15N 示踪试验均设肥料袋控缓释施肥(BCRF)、撒施施肥(SA)、不施肥(CK)3 个处理,根系观察试验每处理5次重复,15N示踪试验每处理3次重复,均为单株小区。

1.2 试验处理与样品采集

3月20日肥料袋控缓释施肥处理株施8袋袋控缓释肥(95 g·袋-1),每袋内含有尿素40 g、二铵14 g、硫酸钾41 g,挖坑施肥。施肥坑分别沿葡萄架面上最外侧铁丝位置地面投影往外20 cm 处,施肥时铁锹入土深20 cm,将铁锹略前倾撬开土后将1袋袋控缓释肥放入底部,抽出铁锹,踩实施肥位置。以后每年3 月中旬在上一年施肥异侧以同样量进行施肥。撒施施肥处理分别在相同位置分2 次撒施肥料,与袋控缓释肥等量且配比相同的掺混肥60%在3月份施入,剩余40%在8 月下旬施入。不施肥处理只挖土不施肥。施肥后在葡萄植株正东侧距树干40 cm处埋入70 cm长、外径70 mm粗微根管。微根管与地面呈45°夹角,管口距地5 cm左右,垂直距离40 cm,安装前管底密封,微根管漏出地面部分先用黑色胶带包裹,再加一层铝箔,试验过程中注意保护微根管,防止扰动。微根管安装后需要稳定一段时间,数据采集从2018 年6 月份开始,生长季内观测周期为2周,分别在每月1日和15日观察,休眠期观测周期为4 周,只在每月15 日观察。采用CI-600 植物根系生长监测系统进行根系图片的采集。根据微根管编号、观测层次、取样时间、细根编号建立细根数据库,统计细根数量。图像采集面积为21.59 cm×19.57 cm,利用系统所带ROOTSNAP 根系图像分析软件进行根系数量、寿命分析,白色与褐色细根定义为活根,黑色或皱缩的根和两次观测期间消失的根定义为死根。

15N示踪试验处理试材和处理方法与上面相同,袋控缓释施肥每个肥料袋内装有15N尿素(上海化工研究院,丰度10.10%)4 g 和36 g 普通尿素,撒施施肥处理两次施肥时分别混有2.4 g 和1.6 g15N 尿素。冬季葡萄植株落叶后对植株进行破坏性取样,整株解析为细根(直径<2 mm)、粗根(直径≥2 mm)、主干、主蔓、1 年生枝。样品洗净后,105 ℃杀青30 min,80 ℃烘干至恒质量,称量干物质质量,不锈钢电磨粉碎后过250 μm筛,混匀后装入自封袋中备用。植株样品采用Isoprime100型质谱仪测定15N丰度。植物样品经浓硫酸-过氧化氢消煮后,利用BDFIA8000流动注射分析仪铵态氮模块测定样品含氮量。

2018年在3月底、6月初、8月底、11月底用不锈钢土钻在葡萄行内距离施肥位置20 cm 处取土样,土样带回实验室进行土壤Nmin(NH4+-N+NO3--N)测定。土壤样品过2 mm筛后,用2 mol·L-1 KCl溶液浸提后用BDFIA8000流动分析仪铵态氮、硝态氮模块进行测试。

2018年在8月底、11月底在葡萄行内距离施肥位置20 cm处用土钻取土样,土样冲洗后保留根系,采用氯化三苯基四氮唑(TTC)还原法测定细根根系活力。

1.3 数据处理与统计分析

新根中值寿命采用SPSS 19.0 软件生存分析进行计算,指存活率为50%时对应的生存时间。新根年周转率为年新根死亡量与年新根现存量之比。

Ndff(%)指植株器官从肥料中吸收分配到的15N量对该器官全氮量的贡献率,它反映了植株器官对肥料15N的吸收征调能力,计算公式:

Ndf(f%)=[样品中的15N 丰度(%)-自然丰度(0.366%)]/[肥料中15N 的丰度(%)-自然丰度(0.366%)]×100;

总N量(g)=干物质质量(g)×N浓度;

吸收15N 量(mg)=总N量(g)×Ndf(f%)×1000;

氮肥利用率(%)=Ndf(f%)×植株总N 量(g)/施15N量(g)×100。

文中所有数据和图使用Excel 2019 和SPSS 19.0 软件分析和制作,不同处理间差异性分析采用Duncan新复极差法检验。

2 结果与分析

2.1 肥料袋控缓释对土壤Nmin的影响

土壤Nmin 可以被根系直接吸收,包括NH4+-N和NO3--N。表1采样结果表明,土壤NH4+-N含量处于较低水平,0~20 cm土层撒施施肥处理NH4+-N含量变化剧烈,袋控缓释处理NH4+-N 含量变化较小,第4 次取样时袋控缓释处理高于撒施处理。>20~40 cm土层,各采样期土壤NH4+-N含量袋控缓释处理均显著高于撒施处理,且均维持在较高水平。表2 结果表明,撒施处理每次施肥后土壤NO3--N 含量迅速提高,随着时间延长迅速降低。袋控缓释处理前2次采样低于肥料撒施处理,后2次采样均高于肥料撒施处理,并且维持在较高水平。

表1 肥料袋控缓释对土壤NH4+-N 含量的影响
Table 1 Effect of bagged controlled release fertilizer on soil ammonium nitrogen (mg·kg-1

注:数据为5 次重复的(平均值±标准误)。不同小写字母表示p <0.05 差异显著。下同。
Note:The values are(mean±standard error)(n=5).Different small letters indicate significant difference at p<0.05.The same below.

11-30 13.12 a 9.83 b 8.25 b 15.78 a 9.82 b 7.16 c处理Treatment BCRF SA CK BCRF SA CK土层Soil layer 0~20>20~40取样时间Sampling time 03-30 26.30 b 32.33 a 8.53 c 19.46 a 13.47 b 8.52 c 06-01 17.57 a 18.57 a 7.27 b 15.82 a 10.56 b 6.58 c 08-30 14.48 a 12.15 a 9.18 b 14.65 a 10.83 b 8.74 c

表2 肥料袋控缓释对土壤NO3--N 含量的影响
Table 2 Effect of bagged controlled release fertilizer on soil nitrate nitrogen (mg·kg-1

处理Treatment BCRF SA CK BCRF SA CK土层Soil layer 0~20>20~40取样时间Sampling time 03-30 103.69 b 376.34 a 26.83 c 39.56 b 176.46 a 23.47 c 06-01 83.47 b 107.61 a 19.35 c 26.33 b 68.93 a 16.87 c 08-30 62.76 a 40.68 b 14.27 c 21.12 a 14.77 b 9.66 c 11-30 57.62 a 18.31 b 11.97 c 15.49 a 10.25 b 10.78 b

2.2 肥料袋控缓释对葡萄细根生长的影响

表3 结果表明,试验观察到的葡萄细根数量以肥料袋控缓释处理最多,其次为撒施处理,不施肥处理最少,分别为603 条、413 条和326 条。2018 年各个观测期内各处理之间差异显著,2019年肥料袋控缓释处理和撒施处理显著高于不施肥处理,2020年肥料袋控缓释处理显著高于撒施处理和不施肥处理。图1 显示,2018 年各处理在8 月份有1 次生长高峰,2019年和2020年在3月份有1次生长高峰,2019年在8月份有1次生长高峰,2020年7月份有1次生长高峰,7月或8月生长高峰葡萄新根数量高于3月。

图1 肥料袋控缓释对葡萄细根发生动态的影响
Fig.1 Effect of bagged controlled release fertilizer on seasonal dynamic of grape new born roots

表3 肥料袋控缓释对葡萄细根数量的影响
Table 3 Effect of bagged controlled release fertilizer on number of grape new born roots

处理Treatment BCRF SA CK年份Year 2018 389 a 236 b 173 c 2019 101 a 91 a 75 b 2020 113 a 86 b 78 b

2.3 肥料袋控缓释对葡萄细根变褐和寿命的影响

葡萄新根颜色的变化反映了葡萄根系呼吸、吸收能力的变化。图2结果表明,不施肥处理平均根系褐变时间为46 d,撒施处理为63 d,肥料袋控缓释处理为71 d,肥料袋控缓释处理显著高于撒施和不施肥处理。

图2 肥料袋控缓释对葡萄细根褐变的影响
Fig.2 Effect of bagged controlled release fertilizer on the period of time until the grape new born roots became brown

图3 根系中值寿命计算结果表明,肥料袋控缓释处理为238 d,撒施处理为196 d,不施肥处理为140 d,肥料袋控缓释处理显著延长了根系中值寿命。

图3 肥料袋控缓释对葡萄细根寿命的影响
Fig.3 Effect of bagged controlled release fertilizer on survival probability of new born roots of grape

2.4 肥料袋控缓释对葡萄细根现存量和周转率的影响

试验观察期内,根系现存量肥料袋控缓释处理显著高于肥料撒施处理和不施肥处理(图4),2018年为241 条,2019 年、2020 年分别为79 条和69 条,2018年肥料撒施处理和不施肥处理差异显著,2019年、2020 年肥料撒施处理和不施肥处理差异不显著,数量均在60条以下。

图4 肥料袋控缓释对葡萄细根现存量的影响
Fig.4 Effect of bagged controlled release fertilizer on standing fine roots of grape

2018年、2020年各处理间根系周转率存在显著差异(表4),各年内数据均以肥料袋控缓释处理最低。2019年撒施处理和不施肥处理间差异不显著,但显著高于肥料袋控缓释处理。

表4 肥料袋控缓释对葡萄细根年周转率的影响
Table 4 Effect of bagged controlled release fertilizer on annual turnover rate of fine roots in grape

处理Treatment BCRF SA CK年份Year 2018 0.61 c 1.99 a 1.51 b 2019 0.35 b 0.57 a 0.50 a 2020 0.30 c 0.62 a 0.47 b

2.5 肥料袋控缓释对葡萄细根根系活力的影响

根系活力反映了细根吸收能力,8月底数据表明肥料袋控缓释处理根系活力达54.36 mg·g-1·h-1,显著高于撒施处理和不施肥处理,分别为37.48 和35.69 mg·g-1·h-1,肥料袋控缓释处理显著高于撒施处理和不施肥处理。11月底的结果表明,各处理间根系活力均处于较低状态,各处理间差异不显著(图5)。

图5 肥料袋控缓释对葡萄细根根系活力的影响
Fig.5 Effect of bagged controlled release fertilizer on the activity of grape fine roots

2.6 肥料袋控缓释对葡萄氮养分吸收的影响

落叶后采样时,各处理间器官生物量当年生器官细根和1年生枝差异显著,多年生器官如粗根、主干、主蔓处理间差异不显著(表5)。各器官氮浓度肥料袋控缓释处理均显著高于肥料撒施处理。Ndff(%)表示来源于肥料的氮占总氮的比率,Ndff(g)表示器官中的氮来自肥料的具体质量,肥料袋控缓释施肥处理Ndff(%)和Ndff(g)各部位显著高于肥料撒施处理。氮素利用率肥料袋控缓释处理达到16.69%,显著高于撒施施肥处理的8.38%。

表5 肥料袋控缓释对葡萄氮养分吸收的影响
Table 5 Effect of bagged controlled release fertilizer on nitrogen utilization rate of grape

注:数据为3 次重复(平均值±标准误)。
Note:The values are(mean±standard error)(n=3).

处理Treatment BCRF器官Organ细根Fine root粗根Coarse root主干Trunk主蔓Main cane 1年生枝Annual shoot细根Fine root粗根Coarse root主干Trunk主蔓Main cane 1年生枝Annual shoot干物质质量Dry matter mass/g 144.53 a 1 070.53 a 742.47 a 559.73 a 1 717.83 a 114.53 b 987.50 a 737.07 a 546.27 a 1 544.60 b w(N)/%1.91 a 1.53 a 0.77 a 0.56 a 0.79 a 1.22 b 0.81 b 0.57 b 0.50 b 0.67 b Ndff/%3.65 a 3.23 a 2.56 a 8.78 a 10.67 a 2.35 b 2.08 b 2.01 b 7.55 b 7.38 b Ndff/g 0.10 a 0.53 a 0.15 a 0.28 a 1.44 a 0.03 b 0.17 b 0.08 b 0.20 b 1.17 b氮利用率N utilization rate/%16.69 a SA 8.38 b

3 讨 论

果园土壤中NH4+-N 和NO3--N 含量低,果树生长过程中所需氮素需要施肥进行补充。传统施肥中果农片面追求高产,肥料用量过高,造成果实风味变差、不耐贮运等问题[19]。更严重的是大量肥料随灌溉水进入土壤深层[20],挥发进入大气,造成环境问题[21]。为解决这些问题,不同类型的缓释肥在果树生产中得到推广应用[6,8]。缓释肥养分释放缓慢,可以在控释期内稳定供应养分,因此土壤养分相对稳定[1],试验中Nmin结果与沙建川等[1,4]结果一致。本试验中袋控缓释肥在微孔袋的控制下,养分缓慢释放。传统肥料撒施可以迅速提高土壤中NH4+-N 和NO3--N含量,因此3月30日和6月1日两次取样时,撒施施肥处理显著高于袋控缓释肥处理。受土壤淋溶、硝化、反硝化等过程影响,土壤中NH4+-N 和NO3--N含量下降也很快,肥料袋控缓释处理土壤中NH4+-N 和NO3--N 含量不高,但波动较小。试验地区8 月份雨水多,施入肥料容易溶解并被降雨淋溶到土壤深处,袋控缓释肥袋内肥芯不受降雨影响,因此,8 月30 日取样时撒施施肥处理显著低于袋控缓释肥处理。

果树根系比农作物分布稀疏,不利于养分吸收、利用。白色细根吸收能力强,从提高肥料利用率角度考虑,应该提高细根数量和延长细根寿命。党祝庆等[22]在桃幼树上研究表明,有机肥、化肥配施比单施化肥有利于诱发细根,增加根系生物量,提高氮素利用率。Baldi 等[12]采用微根管原位观测技术研究了有机肥对桃树根系发生、生长的影响,认为施有机肥通过改变土壤NO3--N含量,比化肥撒施提高了细根发生数量。本试验结果表明,肥料袋控缓释施肥处理细根发生数量最多,这与桃树上采用挖掘法得到的结果一致[23]。果园施有机肥条件下,土壤养分浓度相对稳定。本试验中肥料袋控缓释施肥处理比撒施施肥处理土壤养分稳定,说明细根增多、细根变褐的时间和寿命延长与肥料袋控缓释施肥土壤养分稳定有关。葡萄年生长周期内3 月和7 月或8 月是细根产生的1 个高峰,但各年份之间在时间上有差异,这与Centinari等[24]在葡萄上、An等[25]在苹果上的观察结果一致。另外细根产生还受温度、水分、土层等其他因素影响,各年份间这些因素差异大。细根产生年份间变化较大,2018 年细根产生多,2019 年和2020年细根产生较少。有研究表明,细根产生和微根管安装有关[18],为避免微根管安装的影响[26],本试验将观察时间比微根管埋置时间推后3 个月,但仍然影响安装根管当年的新根数量,该方法应用中延长观测时间结果更为准确。细根产生数量后两年显著低于第1年的原因可能是随着时间的延长同一部位产生新根的能力逐渐变弱,新根发生受到影响。

细根数量增多,寿命延长,从而提高了根系现存量。试验中细根年死亡量与细根现存量的比值表示新根周转率,试验中肥料袋控缓释施肥处理根系现存量显著高于其他处理,细根周转率显著低于其他处理。肥料撒施处理根系因施肥后短期土壤养分浓度迅速上升,土壤养分浓度不适宜,会造成较多细根死亡[27],后期脱肥造成土壤养分浓度低,因此造成细根现存量降低,细根周转率显著提高。罗飞雄等[28]研究苹果不同砧木对细根周转率影响,结果表明矮化自根砧细根死亡高峰提前,细根寿命短导致矮化自根砧新根的年周转率高于乔化砧。本试验肥料撒施处理和不施肥处理细根寿命显著低于肥料袋控缓释施肥处理,因此细根年周转率高于肥料袋控缓释施肥处理。

根系活力表征根系吸收能力,于坤等[29]在葡萄上的研究表明,葡萄一侧地下穴贮滴灌施肥或一侧地面滴灌施肥处理提高了20~60 cm土层深度处根系的根系活力。滴灌施肥提高了土壤NH4+-N和NO3--N含量,本试验中肥料袋控缓释处理根系活力能够在8 月份维持较高水平,结果与其一致。进入休眠期后仅维持微弱吸收能力,11月下旬取样结果表明各处理根系活力都处于较低水平。

本试验15N示踪试验结果表明,肥料袋控缓释施肥处理显著提高了各器官氮含量和Ndff(%),促进了葡萄氮素养分吸收。这与肥料袋控缓释施肥在苹果上的结果一致[1,4]。滴灌施肥因其土壤养分浓度高且变化小,可以提高葡萄氮素利用率[30],肥料袋控缓释具有相似效果。本试验对根系生长、发育观测结果表明,氮素养分吸收率提高的原因除土壤氮素养分稳定供应外,肥料袋控缓释施肥对根系发生、生长的改变也是一个重要因素。

4 结 论

肥料袋控缓释处理生长季内土壤Nmin 含量波动小,保持稳定,显著增加了葡萄细根数量,延长了细根变褐时间以及细根寿命,降低了葡萄根系细根年周转率,提高了生长季根系活力,提高了葡萄氮素利用率。

参考文献:

[1]沙建川,王芬,田歌,于波,葛顺峰,姜远茂.控释氮肥和袋控肥对‘王林’苹果15N-尿素利用及其在土壤累积的影响[J].应用生态学报,2018,29(5):1421-1428.SHA Jianchuan,WANG Fen,TIAN Ge,YU Bo,GE Shunfeng,JIANG Yuanmao. Effects of controlled-release nitrogen fertilizer and bag-controlled release fertilizer on utilization of15N-urea in‘Orin’apple and its accumulation in soil[J]. Chinese Journal of Applied Ecology,2018,29(5):1421-1428.

[2]郭继英,姜全,赵剑波,任飞,李新越,王真,王尚德,张瑜.袋控缓释肥在北京山坡地桃园的应用效果初探[J].中国果树,2020(2):23-25.GUO Jiying,JIANG Quan,ZHAO Jianbo,REN Fei,LI Xinyue,WANG Zhen,WANG Shangde,ZHANG Yu. Application of bag controlled-release fertilizer in hillside peach orchard of Beijing[J].China Fruits,2020(2):23-25.

[3]宋海岩,陈栋,涂美艳,李靖,孙淑霞,刘春阳,江国良.多年施用袋控缓释肥对桃生长发育及产量品质的影响[J].西南农业学报,2020,33(1):104-108.SONG Haiyan,CHEN Dong,TU Meiyan,LI Jing,SUN Shuxia,LIU Chunyang,JIANG Guoliang. Effects of applying bag-controlled release fertilizer for years on growth,yield and quality of peach[J]. Southwest China Journal of Agricultural Sciences,2020,33(1):104-108.

[4]沙建川,葛顺峰,陈建明,丰艳广,姜远茂.袋控肥对苹果土壤Nmin 及15N-氮素吸收利用和损失的影响[J].水土保持学报,2017,31(2):267-271.SHA Jianchuan,GE Shunfeng,CHEN Jianming,FENG Yanguang,JIANG Yuanmao.Effects of bag-controlled release fertilizer on soil mineral nitrogen and15N-urea absorption,utilization and loss of Fuji apple[J]. Journal of Soil and Water Conservation,2017,31(2):267-271.

[5]张亚飞,罗静静,彭福田,王国栋,郜怀峰.黄腐酸钾与化肥控释袋促进桃树生长及氮肥吸收利用[J].植物营养与肥料学报,2017,23(4):998-1005.ZHANG Yafei,LUO Jingjing,PENG Futian,WANG Guodong,GAO Huaifeng. Fulvic acid potassium and nutrient-controlled release paper bag enhance peach tree growth,nitrogen absorption and utilization[J]. Plant Nutrition and Fertilizer Science,2017,23(4):998-1005.

[6]张亚飞,罗静静,彭福田,郜怀峰,王国栋,孙希武.肥料袋控缓释对桃树根系生长、氮素吸收利用及产量品质的影响[J].中国农业科学,2017,50(24):4769-4778.ZHANG Yafei,LUO Jingjing,PENG Futian,GAO Huaifeng,WANG Guodong,SUN Xiwu. Effects of fertilizer being bagcontrolled released on root growth,nitrogen absorption and utilization,fruit yield and quality of peach trees[J].Scientia Agricultura Sinica,2017,50(24):4769-4778.

[7]范伟国,杨洪强,王超,杨超,张民.包膜掺混肥对苹果园土壤养分、果实产量和品质的影响[J].西北农业学报,2018,27(4):545-553.FAN Weiguo,YANG Hongqiang,WANG Chao,YANG Chao,ZHANG Min. Effect of blending-coated fertilizer on soil nutrient contents,apple yield,and fruit quality[J]. Acta Agriculturae Boreali-Occidentalis Sinica,2018,27(4):545-553.

[8]BALDI E,WELLS C E,MARANGONI B. Nitrogen absorption and respiration in white and brown peach roots[J]. Journal of Plant Nutrition,2010,33(3):461-469.

[9]杨洪强,范伟国.苹果根系构型及其调控研究进展[J].园艺学报,2012,39(9):1673-1678.YANG Hongqiang,FAN Weiguo.Advances in research of apple root system architecture and its regulation[J].Acta Horticulturae Sinica,2012,39(9):1673-1678.

[10]ZHANG Y F,LUO J J,PENG F T,XIAO Y S,DU A Q.Application of bag-controlled release fertilizer facilitated new root formation,delayed leaf,and root senescence in each trees andimproved nitrogen utilization efficiency[J/OL]. Frontiers in Plant Science,2021,12:627313.DOI:10.3389/fpls.2021.627313.

[11]刘照霞,邢玥,吴晓娴,田歌,朱占玲,葛顺峰,姜远茂. 矮化中间砧苹果施氮位置对细根分布、氮素吸收和产量品质的影响[J].园艺学报,2021,48(2):219-232.LIU Zhaoxia,XING Yue,WU Xiaoxian,TIAN Ge,ZHU Zhanling,GE Shunfeng,JIANG Yuanmao. Effects of nitrogen application position on fine root distribution,nitrogen absorption,yield and quality of dwarfing interstock apple trees[J].Acta Horticulturae Sinica,2021,48(2):219-232.

[12]BALDI E,TOSELLI M,EISSENSTAT D M,MARANGONI B.Organic fertilization leads to increased peach root production and lifespan[J].Tree Physiology,2010,30(11):1373-1382.

[13]陈倩,刘照霞,邢玥,吴晓娴,葛顺峰,姜远茂.有机无机肥分次配施对嘎拉苹果生长、15N-尿素吸收利用及损失的影响[J].应用生态学报,2019,30(4):1367-1372.CHEN Qian,LIU Zhaoxia,XING Yue,WU Xiaoxian,GE Shunfeng,JIANG Yuanmao. Effects of split combined application of organic-inorganic fertilizers on plant growth,15N absorption,utilization and loss of Gala apple tree[J]. Chinese Journal of Applied Ecology,2019,30(4):1367-1372.

[14]王国栋,肖元松,彭福田,张亚飞,郜怀峰,孙希武,贺月.尿素配施不同用量纳米碳对桃幼树生长及氮素吸收利用的影响[J].中国农业科学,2018,51(24):4700-4709.WANG Guodong,XIAO Yuansong,PENG Futian,ZHANG Yafei,GAO Huaifeng,SUN Xiwu,HE Yue.Effects of urea application combined with different amounts of nano-carbon on plant growth along with nitrogen absorption and utilization in young peach trees[J]. Scientia Agricultura Sinica,2018,51(24):4700-4709.

[15]孙文泰,马明.黄土高原长期覆膜苹果园土壤物理退化与细根生长响应[J].植物生态学报,2021,45(9):972-986.SUN Wentai,MA Ming. Response of soil physical degradation and fine root growth on long-term film mulching in apple orchards on Loess Plateau[J]. Chinese Journal of Plant Ecology,2021,45(9):972-986.

[16]宋小林,吴普特,赵西宁,高晓东.黄土高原肥水坑施技术下苹果树根系及土壤水分布[J]. 农业工程学报,2016,32(7):121-128.SONG Xiaolin,WU Pute,ZHAO Xining,GAO Xiaodong. Distribution characteristic of soil moisture and roots in rain-fed old apple orchards with water-fertilizer pit on the Loess Plateau[J].Transactions of the Chinese Society of Agricultural Engineering,2016,32(7):121-128.

[17]李子敬,陈晓,舒健骅,孙红彦,丛日晨.树木根系分布与结构研究方法综述[J].世界林业研究,2015,28(3):13-18.LI Zijing,CHEN Xiao,SHU Jianhua,SUN Hongyan,CONG Richen. Research methods for tree root system distribution and structure:A review[J].World Forestry Research,2015,28(3):13-18.

[18]肖爽,刘连涛,张永江,孙红春,白志英,张科,田士军,董合忠,李存东.植物微根系原位观测方法研究进展[J].植物营养与肥料学报,2020,26(2):370-385.XIAO Shuang,LIU Liantao,ZHANG Yongjiang,SUN Hongchun,BAI Zhiying,ZHANG Ke,TIAN Shijun,DONG Hezhong,LI Cundong. Review on new methods of in situ observation of plant micro-roots and interpretation of root images[J].Plant Nutrition and Fertilizer Science,2020,26(2):370-385.

[19]FRANCIEZER V L,ELIAS A M,VANDER M,LUANA M O,MARLENILDO F M,WILMA F C,LUCIANA F M M,ANDERSON A A,TONI H S I,FRANCISCO R A F,RAPHAEL H S.Nitrogen and organic fertilizer on the postharvest quality of Isabel Precoce grapes[J].Journal of Plant Nutrition,2021,44(12):1693-1704.

[20]王冲,秦亚旭,张珂,孔旭,郑朝霞,冯天宇,翟丙年.渭北旱塬矮化苹果园滴灌下土壤剖面水分和养分时空分布特征[J].水土保持学报,2020,34(5):343-348.WANG Chong,QIN Yaxu,ZHANG Ke,KONG Xu,ZHENG Zhaoxia,FENG Tianyu,ZHAI Bingnian.The spatial and temporal distributions of moisture and nutrients in soil profile of dwarf apple orchards under drip fertigation in Weibei dry-land,China[J].Journal of Soil and Water Conservation,2020,34(5):343-348.

[21]张林森,李雪薇,王晓琳,张立新,吕殿青,王朝辉,韩明玉.根际注射施肥对黄土高原苹果氮素吸收利用及产量和品质的影响[J].植物营养与肥料学报,2015,21(2):421-430.ZHANG Linsen,LI Xuewei,WANG Xiaolin,ZHANG Lixin,LÜ Dianqing,WANG Zhaohui,HAN Mingyu. Effects of fertilization with injection to the rhizosphere on nitrogen absorption and utilization,fruit yield and quality of apple in the Loess Plateau[J]. Plant Nutrition and Fertilizer Science,2015,21(2):421-430.

[22]党祝庆,王娜娜,张亚飞,蒋晓梅,张江红,彭福田.不同施肥模式对桃幼树根系生长与氮素吸收分配的影响[J].水土保持学报,2015,29(4):171-176.DANG Zhuqing,WANG Nana,ZHANG Yafei,JIANG Xiaomei,ZHANG Jianghong,PENG Futian. Effects of different fertilization mode on root growth,nitrogen uptake and distribution of young peach trees[J].Journal of Soil and Water Conservation,2015,29(4):171-176.

[23]郜怀峰,肖元松,彭福田,张亚飞,王国栋,孙希武,贺月.含钼袋控复混缓释肥对土壤酶活性及桃树植株生长的影响[J].水土保持学报,2019,33(2):220-226.GAO Huaifeng,XIAO Yuansong,PENG Futian,ZHANG Yafei,WANG Guodong,SUN Xiwu,HE Yue. Effects of molybdenum bag-controlled release fertilizer on soil enzyme activity and growth of peach[J]. Journal of Soil and Water Conservation,2019,33(2):220-226.

[24]CENTINARI M,HEUVEL J E V,GOEBEL M,SMITH M S,BAUERLE T L.Root-zone management practices impact above and belowground growth in Cabernet Franc grapevines[J].Australian Journal of Grape and Wine Research,2016,22(1):137-148.

[25]AN H S,LUO F X,WU T,WANG Y,XU X F,ZHANG X Z,HAN Z H. Dwarfing effect of apple rootstocks is intimately associated with low number of fine roots[J].Hortscience,2017,52(4):503-512.

[26]LIANG B W,SUN Y,LI Z Y,ZHANG X Y,YIN B Y,ZHOU S S,XU J Z.Crop load influences growth and hormone changes in the roots of‘Red Fuji’apple[J]. Frontiers in Plant Science,2020,11:665.

[27]彭玲,田歌,于波,何流,葛顺峰,姜远茂.供氮水平和稳定性对苹果矮化砧M9T337 幼苗生长及15N 吸收、利用的影响[J].植物营养与肥料学报,2018,24(2):461-470.PENG Ling,TIAN Ge,YU Bo,HE Liu,GE Shunfeng,JIANG Yuanmao. Effects of nitrogen supply levels and stability on growth and15N absorption and utilization of M9T337 dwarf rootstocks seedlings[J].Plant Nutrition and Fertilizer Science,2018,24(2):461-470.

[28]罗飞雄,侯常伟,马丽,吴婷,王忆,张新忠,韩振海.不同砧木苹果树细根周转动态的研究[J].园艺学报,2014,41(8):1525-1534.LUO Feixiong,HOU Changwei,MA Li,WU Ting,WANG Yi,ZHANG Xinzhong,HAN Zhenhai. Dynamics of fine root turnover in different apple scion-stock combinations[J].Acta Horticulturae Sinica,2014,41(8):1525-1534.

[29]于坤,郁松林,刘怀锋,王文静,白泽晨,孙军利.不同根区交替滴灌方式对赤霞珠葡萄幼苗根冠生长的影响[J].农业工程学报,2015,31(4):113-120.YU Kun,YU Songlin,LIU Huaifeng,WANG Wenjing,BAI Zechen,SUN Junli. Effects of alternate partial root-zone drip irrigation on growth of root and shoot of Cabernet Sauvignon grape seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering,2015,31(4):113-120.

[30]陈丽楠,韩晓日,孙占祥,刘秀春.局部根区交替灌溉与氮素耦合对葡萄生长及15N-尿素利用的影响[J].核农学报,2021,35(2):447-453.CHEN Li’nan,HAN Xiaori,SUN Zhanxiang,LIU Xiuchun.Coupling effects of alternate partial root-zone irrigation and nitrogen rate on growth and15 N-urea use of grapes[J]. Journal of Nuclear Agricultural Sciences,2021,35(2):447-453.

Effects of bagged controlled-release fertilizer on grape fine root growth and nitrogen absorption

ZHANG Shoushi1, 2, XIE Keying1, 2, CHANG Jietian2, XU Minghui2, HAN Fang2, CHAI Mengying2,QIAO Baoying2*

(1Zaozhuang University, Zaozhuang 277160, Shandong, China;2Henan Vocational College of Agriculture, Zhengzhou 451450, Henan,China)

Abstract:【Objective】With the continuous promotion of the“double reduction of pesticide and fertilizer”action,slow-release fertilizer has been paid attention to in fruit production because of its high nutrient utilization rate and labor-saving. Slow-release fertilizer can improve nutrient utilization rate. From the perspective of nutrient release and soil nutrient supply, the nutrient release of such fertilizer is slow and the change range of soil nutrient concentration is small after using slow-release fertilizer,compared with using the traditional chemical fertilizer. According to the nutrient demand characteristics of fruit trees,controlled-release fertilizer bagged with paper and plastic materials reduces the cost and achieves good results. It has been popularized and applied in Shandong, Shanxi and other fruit production provinces. Root system is the nutrient absorption organ of fruit trees, especially the new root system. The mechanisms involved in improvement of nitrogen use efficiency via the usage of bagged controlled-release fertilizer were studied from the perspective of grape fine root growth and development with an aim to provide reference for rational fertilization in grape production.【Methods】In field conditions,seven-year old trees of grape Summer black (Vitis vinifera) were taken for the experiment.The experiment used a randomized complete design with three treatments, bagged controlled-release fertilization(BCRF), broadcasting application fertilization (SA) and no fertilization (CK). For root observation,there were 5 replicates in each treatment,while for15N tracing,there were 3 single-tree biological replicates.Root observation tubes were installed at an angle of 45°40 cm from the vine trunk in the east direction.Fine root growth dynamics were determined using the minirhizotron technique in three consecutive years.Root images were taken using a CI-600 Root Imager and analyzed using a ROOTSNAP image analysis software. Effects of bagged controlled-release fertilizer on nitrogen utilization of grape were studied with15N isotope tracer method. Soil samples were taken using a stainless steel soil sampling auger, and the samples were taken to the laboratory for testing. Fine roots were washed from the soil samples and analyzed for root activity.【Results】The soil ammonium and nitrate nitrogen concentration in BCRF was maintained at a high concentration and with little variation. The number of fine roots increased more in BCRF than SA and the control.The number of fine roots was 603,413 and 326 in BCRF, SA and control, respectively. Fine roots birth showed a typical double sigmoid model with two peaks. The first in spring, the second in autumn, and the autumn peak was higher than the spring peak.Fine roots in SA and the control became pigmented at day 46 and 63,respectively,while those in BCRF at day 71.The median lifespan of fine roots was 238,196,140 days in BCRF,SA and control,respectively. The turnover rate of the fine roots in BCRF was markedly lower than in SA and control in 2018. It was 0.61, 1.99 and 1.51, respectively. The turnover rate of the fine roots in BCRF was also markedly lower than in SA and control in 2019,and was 0.35,0.57 and 0.50,respectively.In 2020,fine root turnover rate in BCRF,SA and control was 0.30,0.62 and 0.47,respectively.At the end of August,the root activity in BCRF was 54.36 mg·g-1·h-1,which was significantly higher than that in SA and control.At the end of December,the root activity in all treatments was low and had no difference.The biomass of current year organs in BCRF was significantly higher than that in SA and control.There was no difference in biomass of perennial organs among treatments.The nitrogen derived from BCRF was significantly higher than that from SA.The nitrogen utilization rate reached 16.69%in BCRF,significantly higher than 8.38% in SA.【Conclusion】The soil Nmin concentration was maintained at a high level with little variation in the growing season with bagged controlled-release fertilizer treatment,which significantly increased the number of fine roots,prolonged their lifespan,reduced the annual fine root turnover rate,and improved the root activity of grape in growing season.The bagged controlled-release fertilizer treatment significantly improved the nitrogen utilization rate of grape by affecting the supply of soil nutrients and changing the growth and development of roots.

Key words:Grape;Bag controlled-release fertilizer;Fine root;Growth

中图分类号:S663.1

文献标志码:A

文章编号:1009-9980(2023)01-0088-10

DOI:10.13925/j.cnki.gsxb.20220060

收稿日期:2022-02-15

接受日期:2022-07-23

基金项目:河南省重点研发与推广专项(192102110039);河南省大宗水果产业技术体系建设专项资金(Z2014-11-01)

作者简介:张守仕,男,博士,研究方向为果树栽培生理。Tel:0371-67296335,E-mail:zhangxie626@163.com

*通信作者Author for correspondence.Tel:0371-67296335,E-mail:13938231179@163.com