西番莲果皮质构特性和显微结构特征分析

田青兰1,张英俊1,刘洁云1,吴艳艳1,韦毅刚2,温 放2,黄伟华1,辛子兵2,韦 弟1,牟海飞1*

1广西农业科学院生物技术研究所,南宁 530007;2广西壮族自治区中国科学院广西植物研究所,广西桂林 541006)

摘 要:【目的】筛选适合西番莲果皮质构特性的测试方法,综合评价西番莲的果皮质构特性与果皮显微结构的相关性,为提高西番莲果实耐贮性及改良种质资源提供参考。【方法】以台农1号(TN)及编号为MB、H2、DH、ZS的5个西番莲品种(系)的成熟果实为试验材料,分别采用质地剖面分析(TPA)和整果穿刺(分别设置穿刺深度为5 mm和10 mm)进行果皮质构分析,同时观察果皮显微结构,并对果皮质构特性和显微结构参数进行相关性分析。【结果】(1)TPA测试与穿刺测试的果皮硬度趋势不一致,而穿刺5 mm和穿刺10 mm测试多项结果一致,相关分析显示TPA测试与穿刺测试的质构指标间无显著相关性。(2)穿刺测试下的各项质构参数间存在显著相关性,穿刺硬度、硬度形变量、穿刺果皮做功、黏力和黏性均可以作为西番莲果皮质地的参数。(3)西番莲的果皮主要由外果皮和中果皮组成,外果皮由外向内结构依次为角质层、表皮细胞和内表皮细胞;中果皮细胞由外向内呈现形态逐渐增大的趋势,是构成西番莲果皮结构的最主要部分。(4)相关分析显示果皮厚度与TPA硬度、胶着性、咀嚼性和穿刺硬度均呈极显著正相关;角质层厚度与TPA硬度和胶着性呈显著正相关,而与内聚性呈极显著负相关;距离外果皮400~1000 μm和1500~2300 μm的中果皮细胞长径和短径、表皮细胞短径与硬度形变量均呈极显著负相关,而与黏力和黏性均呈极显著正相关。(5)5个西番莲品种(系)中TN的果皮角质层和果皮厚度最小,中果皮细胞大而稀疏,致使其果皮硬度最小;H2的中果皮细胞小而紧密,使其有较大的果皮硬度;DH和ZS的果皮最厚,ZS角质层最厚,更耐贮运,而MB的外果皮最薄。【结论】整果穿刺测试较TPA测试更适合西番莲果皮质构特性分析;西番莲果皮质构特性与果皮显微结构具有显著相关性,果皮硬度较大的西番莲果皮组织结构特点为角质层、表皮、果皮厚度较大且中果皮细胞小而排列紧密。

关键词:西番莲;果皮;质构特性;显微结构

西番莲(Passiflora edulis),又名百香果,在广西、广东、云南、福建、贵州等地均有种植,果汁香气浓郁,是我国南方的特色果树。西番莲果实收获后有一段后熟的过程,不同的品种表现出果皮出现皱缩的程度和时间有较大差异,果皮的皱缩会影响果实的耐贮运性。前人研究认为果皮结构与果实的贮藏特性紧密相关,如果皮硬度较大的西瓜品种更耐贮运,其外果皮较厚、表皮细胞长宽比大、细胞排列紧密[1];而果皮厚的石榴品种更容易裂果[2]。因此,了解不同类型品种的果皮结构差异可以为提高西番莲果实的耐贮性提供参考。

质构特性是评价水果品质的重要指标之一,质构仪的原理是通过仪器得到食品的力学特征,然后将获取的信息与质构参数建立联系,从而得到食品的质构特性[3]。目前,质构分析技术在水果质地方面已经有广泛应用,一是分析不同测试条件对水果质地属性的影响,并针对单一水果形成标准化、统一化的质地评价方法[3-5];二是检测果实发育期间质地参数的变化规律,以确定水果的最佳采收期和适宜货架期[3,6-8];三是分析果实采后和贮藏期间的质地差异和变化规律[3,9-11]。已有研究认为,果皮质构特性与果皮结构存在一定的相关性,如西瓜果皮硬度与果皮厚度、外果皮厚度等紧密相关[1]。目前关于西番莲果皮质构特性的研究报道较少,陈蔚辉等[12]用穿刺法比较了3 个西番莲品种的果皮硬度,但并未对果皮显微结构与质构特性的关系进行探讨。笔者结合5 个果皮结构差异较大的西番莲品种(系),分别采用质地剖面分析(Texture profile analysis,TPA)和穿刺模式进行果皮质构特性的测定,并结合果皮显微结构观察进行分析,以明确适宜西番莲果皮质构分析的方法,并综合评价西番莲果皮质构特性与果皮显微结构的关系,为提高西番莲果实耐贮性及改良种质资源奠定理论基础。

1 材料和方法

1.1 试验材料

试验材料为5 个果皮差异较大的西番莲品种(系),分别为主栽紫果品种台农1 号(TN)和团队自主筛选的编号为MB、H2、DH、ZS 的4 个品系,均为在黄色果和紫色果杂交后代中选育的品系,其中,MB、H2 为中果型黄色果,MB 单果质量60~90 g,H2 单果质量70~100 g;DH 为大果型黄色果,单果质量130~160 g;ZS、TN 为中果型紫色果,ZS单果质量80~100 g;TN 单果质量60~80 g。每个品种(系)为1 个处理;供试材料成熟果实外观性状见图1。供试材料种植于广西南宁市西乡塘区美丽南方示范园区(22°46′N,108°09′E)内,试验于2020 年11 月中旬同时采集成熟、大小均匀的果实,每个处理25 个。

图1 供试材料成熟果实外观性状
Fig.1 Appearance characters of mature fruits of tested materials

1.2 测定项目与方法

1.2.1 果皮质构特性的测定 采用CT3 质构仪(美国BrookField 公司)进行西番莲果皮质构特性的测定。试验共选用3 种不同模式进行测定,每个处理在每种模式下均测定5组数据,每组数据重复测定5次。模式(1):将各处理西番莲果实沿横轴中线切开,借助刻度直尺,用刀片切取中线两侧1.5 cm×1.5 cm 方形大小的果皮备测。选取TA25/1000(直径50.8 mm)探头,采用TPA 测试,触发点负载4 g,测试速度0.5 mm·s-1,返回速度0.5 mm·s-1,目标形变量30%,2次循环,数据频率每秒50点。模式(2):选取整果待测,测试部位为果实横轴中线。选取TP39(直径2 mm)探头,采用整果穿刺测试,触发点负载4 g,测试速度0.5 mm·s-1,返回速度0.5 mm·s-1,穿刺深度5 mm,1 次循环,数据频率每秒50 点。模式(3):穿刺深度10 mm,其他同模式(2)。TPA模式和穿刺模式下测定的果皮质构参数及定义见表1,质构仪测试特征曲线见图2。

表1 质构参数的定义
Table 1 Definition of texture parameters

计算方法Computing method定义Definition单位Unit质构参数Texture parameters TPA测试Texture profile analysis test TPA硬度TPA hardness内聚性Cohesiveness弹性Springiness g_m m胶着性Gumminess第一次压缩时的最大力值Maximum force at first compression第二次循环压缩功/第一次循环压缩功Second cycle compression work/first cycle compression work第二次压缩中所检测到的样品恢复高度/第一次的压缩变形量Sample recovery height detected in the second compression/first compression deformation硬度×内聚性Hardness×cohesiveness g咀嚼性Chewiness第一压缩循环的峰值负载Peak load of the first compression cycle第一次压缩变形后与第二次压缩变形后的相对抵抗能力Relative resistance after the first compression deformation and the second compression deformation压缩至目标形变量后,样品可恢复的程度The degree to which the sample can recover after being compressed to the target shape variable咀嚼半固体食品至可吞咽状态时所需的能量The energy required to chew semi-solid food to a swallowable state将固体样品咀嚼成吞咽时的稳定状态所需的能量The energy required to chew a solid sample into a steady state when swallowed硬度×内聚性×弹性Hardness×cohesiveness×springiness mJ穿刺测试Puncture test穿刺硬度Puncture hardness硬度形变量Deformation穿刺果皮做功pericarp puncture work黏力Adhesive force黏性Adhesiveness到达指定形变所需的力The force required to achieve the specified deformation与第一断裂形变对应一致的值Value corresponding to the first fracture deformation刺穿样品所需的总能量Total energy required to pierce the sample探头从样品中拔出所需的力Force required to pull the probe out of the sample用来克服样品表面和接触物表面之间的吸引力所做的功The work done to overcome the attraction between the sample surface and the contact surface正向峰值力Positive peak force峰值负载时样品被压缩的距离Distance of sample compressed at peak load正向总面积Total positive area负向峰值力Negative peak force负向总面积Total negative area g mm mJ g mJ

图2 西番莲果皮TPA 测试(A)和穿刺测试(B)特征曲线
Fig.2 Characteristic curves of TPA test(A)and puncture test(B)of passion fruit pericarp

1.2.2 果皮显微结构的测定 用刀片沿果实横轴中线切取1 cm×1 cm块状果皮,每个处理选取5个果实分别切取5份果皮样品,投入FAA固定液中固定,经过脱水浸蜡、包埋、切片(厚度4µm)、脱蜡、番红染色、脱色、固绿染色、透明封片的过程制作石蜡切片,在明美ML31 生物显微镜下观察和拍照,观察各处理西番莲果皮的表皮细胞层数、外果皮层细胞层数,配合显微镜数码测量分析系统测量表皮细胞层厚度(µm)、外果皮厚度(µm),上述指标每张切片测量20个数值取平均值;测量角质层厚度(µm)、表皮细胞长径和短径(µm)、距离外果皮0~200µm 范围中果皮细胞的长径和短径(µm)、距离外果皮400~1000µm 范围中果皮细胞的长径和短径(µm)、距离外果皮1500~2300µm 范围中果皮细胞的长径和短径(µm),上述指标每张切片测量30 个数值取平均值,导出测量的Excel文件。测量模式图如图3。此外,在奥林巴斯SZ61解剖镜下拍摄和测量各处理果皮厚度,每张切片测定3个数值,每个处理共测定15个数值,导出数据。

图3 西番莲果皮显微结构
Fig.3 Microstructure of passion fruit pericarp

1.3 数据分析

用Excel 软件进行数据的统计和整理,用DPS 7.05 软件进行方差分析,采用LSD 法对平均值进行多重比较差异显著性分析,用SPSS 18 对数据进行相关分析。

2 结果与分析

2.1 西番莲果皮质构特性分析

2.1.1 不同测试模式下的西番莲果皮质构特性 分别采用TPA 测试和整果穿刺测试(包含穿刺深度5 mm 和10 mm)对西番莲的果皮质构特性进行分析。由表2可知,在TPA测试模式下,除了弹性外各品种(系)的果皮质构特性均有显著性差异。其中,DH 的果皮硬度极显著高于MB、H2 和TN,但其内聚性则极显著低于其他3 个品种(系);此外,DH 的果皮胶着性显著高于H2和TN,DH和MB的果皮咀嚼性显著高于H2。

表2 4 个西番莲品种(系)TPA 测试比较
Table 2 TPA test comparison of four passion fruit varieties(lines)

注:同一纵列不同小写字母表示在p<0.05 水平上差异显著;**、*分别表示达到0.01、0.05 显著水平。下同。
Note: Different lowercase letters in the same column indicate significant difference at p<0.05**,* denote significant difference at the 0.01 and 0.05 probability levels,respectively.The same below.

品种(系)Varieties(lines)DH MB H2 TN F值F value咀嚼性Chewiness/mJ 19.61±4.68 a 17.23±3.63 a 10.01±4.90 b 14.67±3.83 ab 4.01*TPA硬度TPA hardness/g 3 178.76±741.00 a 1 688.44±331.51 b 1 162.95±809.59 b 1 470.75±93.08 b 12.28**内聚性Cohesiveness 0.46±0.06 b 0.70±0.01 a 0.68±0.04 a 0.67±0.01 a 55.38**弹性Springiness/mm 1.30±0.20 1.51±0.10 1.24±0.19 1.59±0.63 1.38胶着性Gumminess/g 1 522.52±283.85 a 1 195.63±221.36 ab 802.99±513.43 b 1 011.65±77.33 b 4.24*

由表3 和表4 可知,在穿刺深度为5 mm 和10 mm 的穿刺模式下,3 个西番莲品种(系)的果皮质构特性差异表现出相同的趋势,即DH、H2、ZS 的果皮硬度无显著差异;硬度形变量为H2 >DH >ZS,均达显著差异水平;穿刺果皮做功为H2显著高于DH 和ZS;黏力和黏性均为ZS 显著高于DH 和H2。但考虑到西番莲果皮厚度一般都超过5 mm,但不超过10 mm,故可以优先选择穿刺10 mm的深度。

表3 3 个西番莲品种(系)穿刺测试比较(穿刺深度5 mm)
Table 3 Puncture test comparison of three passion fruit varieties(lines)(puncture depth 5 mm)

品种(系)Varieties(lines)DH H2 ZS F值F value穿刺硬度Puncture hardness/g 1 535.50±254.97 1 618.08±184.28 1 533.50±211.07 0.31硬度形变量Deformation/mm 2.89±0.58 b 4.34±0.51 a 2.12±0.43 c 51.59**穿刺果皮做功Pericarp puncture work/mJ 36.92±6.40 b 45.71±4.63 a 37.16±5.13 b 8.24**黏力Adhesive force/g 93.87±56.84 b 71.58±40.55 b 231.70±60.02 a 27.16**黏性Adhesiveness/mJ 2.63±1.89 b 1.68±1.16 b 6.75±1.73 a 20.27**

表4 5 个西番莲品种(系)穿刺测试比较(穿刺深度10 mm)
Table 4 Puncture test comparison of five passion fruit varieties(lines)(puncture depth 10 mm)

品种(系)Varieties(lines)DH MB H2 ZS TN F值F value穿刺硬度Puncture hardness/g 1 431.47±235.29 a 1 321.00±271.74 a 1 519.90±173.18 a 1 459.93±106.04 a 1 046.30±111.79 b 6.12**硬度形变量Deformation/mm 2.91±0.64 bc 3.43±0.75 b 4.37±0.49 a 2.14±0.16 d 2.35±0.45 cd 18.62**穿刺果皮做功Pericarp puncture work/mJ 45.19±8.30 bc 52.84±8.54 ab 59.03±8.62 a 48.29±3.42 b 39.17±6.60 c 7.30**黏力Adhesive force/g 79.97±32.19 b 216.97±40.57 a 79.07±35.88 b 217.77±37.85 a 204.40±36.01 a 23.28**黏性Adhesiveness/mJ 4.83±2.53 b 15.39±2.26 a 4.36±2.82 b 15.19±2.67 a 13.27±2.73 a 27.17**

此外,在穿刺深度10 mm 模式下综合比较5 个西番莲品种(系)的果皮质构特性,由表4 可知,H2的果皮硬度、硬度形变量、穿刺果皮做功均为5个品种中最高,果皮硬度显著高于TN,硬度形变量、穿刺果皮做功显著高于ZS 和TN;而DH 和H2 的黏力和黏性显著低于其他3个品种(系),这可能与MB、ZS和TN 果实存在脱囊现象有关,导致探头拔出时阻力增大。其次,对比果皮硬度可知,TPA和穿刺两种测试模式下各处理的果皮硬度趋势有差异,可能与样品的测试形态有关。

2.1.2 西番莲果皮质构指标间的相关分析 分别对TPA测试和穿刺(10 mm)测试的质构指标间进行相关分析,由表5 可知,TPA 测试的5 个质构指标间具有不同程度的相关性,硬度与内聚性呈极显著负相关(p<0.01),而与胶着性和咀嚼性均呈极显著正相关(p<0.01),内聚性与胶着性呈极显著负相关(p<0.01),胶着性与咀嚼性呈极显著正相关(p<0.01);弹性与其他指标均无显著相关性。

表5 质构指标间的相关分析
Table 5 Correlation analysis between texture indexes

内聚性Cohesiveness弹性Springiness胶着性Gumminess咀嚼性Chewiness穿刺硬度Puncture hardness硬度形变Deformation穿刺果皮做功Pericarp puncture work黏力Adhesive force黏性Adhesiveness质构指标Texture indexes TPA硬度TPA hardness内聚性Cohesiveness弹性Springiness胶着性Gumminess咀嚼性Chewiness穿刺硬度Puncture hardness硬度形变量Deformation穿刺果皮做功Pericarp puncture work黏力Adhesive force黏性Adhesiveness TPA硬度TPA hardness 1-0.876**-0.133 0.919**0.741**0.203 1 0.209-0.637**-0.439-0.116 1-0.052 0.418-0.206 1 0.871**0.239 1 0.1711-0.3460.354-0.218-0.332-0.3690.538*1-0.1270.318-0.1620.0430.0220.792**0.801**1-0.117-0.078 0.399 0.380 0.154 0.153 0.110 0.157 0.126 0.171-0.427-0.370-0.297-0.281-0.133-0.097 1 0.991**1

此外,穿刺(10 mm)测试的质构指标间硬度与硬度形变量、穿刺果皮做功分别呈显著(p<0.05)和极显著(p<0.01)正相关,硬度形变量与穿刺果皮做功呈极显著正相关(p<0.01),黏力与黏性呈极显著正相关(p<0.01)。但是TPA 测试的质构指标与穿刺测试的质构指标间无显著相关性,结合前文测试结果可知两种方法测试的西番莲果皮硬度结果不一致,可能是由于TPA测试样品为果皮方块,不能保证其大小完全一致,且初始测试时果皮样品不能完全贴合测试台,对测试结果均会造成一定影响;故整果穿刺测试较TPA 测试操作更简便,且测试结果可重复性更好。

2.2 不同西番莲品种(系)的果皮显微结构

对西番莲的果皮进行解剖分析,由图4 可以看出,西番莲的果皮主要由外果皮和中果皮组成,外果皮由外向内结构为角质层、表皮细胞和内表皮细胞。结合表6 可知,最外层的角质层厚度为2.5~5.0 μm;表皮细胞共有1~4层,为排列紧密的矩形细胞,其长短径比值为1.15~1.65,内表皮细胞则无色透明,共有1~4层细胞,较表皮细胞更大。

表6 果皮组织结构比较
Table 6 Comparison of pericarp tissue structure

品种(系)Varieties(lines)角质层厚度Cuticle thickness/μm厚度Thickness/μm果皮厚度Pericarp thickness/mm DH MB H2 ZS TN F值F value 3.99±0.15 b 3.11±0.6 cd 3.20±0.29 c 4.64±0.36 a 2.67±0.32 d 25.02**表皮Epidermal细胞层数Number of cell layers 2~4 2~3 2~3 2~4 1~3—42.33±4.08 b 40.15±5.37 b 44.69±1.94 ab 49.81±3.21 a 39.79±4.25 b 5.33**细胞长径Cell long diameter/μm 22.73±2.00 24.37±1.43 23.54±1.14 23.16±1.63 22.55±1.23 1.00细胞短径Cell short diameter/μm 14.60±1.24 b 14.81±1.75 b 15.00±0.94 b 20.24±1.09 a 15.89±0.65 b 26.26**细胞长径/短径Cell long diameter/short diameter 1.56±0.13 ab 1.65±0.15 a 1.58±0.16 ab 1.15±0.09 c 1.42±0.10 b 13.65**内表皮细胞层数Number of inner epidermal cell layers 2~3 1~3 1~3 2~4 2~4—外果皮厚度Exocarp thickness/μm 127.49±13.71 a 107.54±8.58 b 127.82±2.42 a 136.34±4.43 a 138.73±11.04 a 10.69 9.97±1.10 a 6.77±0.87 bc 7.66±0.83 b 9.59±0.87 a 5.93±0.18 c 20.35**

图4 5 个西番莲品种(系)的显微结构比较
Fig.4 Comparison of five passion fruit varieties(lines)

对5个西番莲品种(系)的果皮组织结构进行比较,由表6 可知,ZS 的角质层厚度和表皮厚度均显著高于DH、MB 和TN;MB 的外果皮厚度显著低于其他4 个品种(系);DH 和ZS 的果皮厚度显著高于H2、MB 和TN;TN 的果皮最薄,仅为5.93 mm,其角质层和表皮厚度也最薄;而ZS在几个品种(系)中角质层厚度、表皮厚度、表皮细胞短径和果皮厚度(图4-DH-1~TN-1)均有较大值,但其表皮细胞的长短径比值是最小的,表皮细胞相对较方正,其他品种表皮细胞形态更细长。

中果皮是西番莲果皮的最主要构成部分,进一步对中果皮不同部位细胞的形态进行比较,从图4-DH-2~TN-2可以看出,中果皮细胞由外向内呈现形态逐渐增大的趋势,细胞从排列紧密过渡到排列稀疏。由表7可知,TN的0~200 μm中果皮细胞长径和长短径比值显著大于H2、DH 和MB;TN 和ZS 的400~1000 μm中果皮细胞长径和短径显著大于MB、DH 和H2;TN 的1500~2300 μm 中果皮细胞长径和短径均显著大于DH 和H2;且MB 的细胞长短径比值最小。

表7 中果皮细胞形态比较
Table 7 Comparison of cell morphology of mesocarp

品种(系)Varieties(lines)DH MB H2 ZS TN F值F value 0~200 μm细胞长径Cell long diameter/μm 45.97±4.03 b 45.21±3.84 b 48.04±1.38 b 48.18±2.36 b 52.55±3.00 a 4.65*细胞短径Cell short diameter/μm 34.14±3.02 34.93±2.16 35.41±1.50 32.53±2.69 35.76±1.75 1.81长径/短径long diameter/short diameter 1.35±0.06 b 1.30±0.06 b 1.36±0.05 b 1.48±0.09 a 1.47±0.14 a 5.05**400~1000 μm细胞长径Cell long diameter/μm 89.76±6.21 b 90.77±7.10 b 87.22±3.03 b 103.04±5.04 a 105.24±5.40 a 12.67**细胞短径Cell short diameter/μm 66.71±5.27 cd 69.68±3.63 bc 63.13±2.21 d 71.44±3.34 b 76.10±2.53 a 10.5**长径/短径long diameter/short diameter 1.35±0.11 b 1.30±0.03 b 1.38±0.05 ab 1.44±0.04 a 1.38±0.05 ab 3.26*1500~2300 μm细胞长径Cell long diameter/μm 111.34±5.64 b 115.04±9.14 b 98.25±7.67 c 121.51±7.29 ab 129.36±7.38 a 10.25**细胞短径Cell short diameter/μm 80.14±5.13 b 89.34±4.38 a 69.29±9.29 c 89.37±3.24 a 89.60±2.95 a 10.94**长径/短径long diameter/short diameter 1.39±0.10 a 1.29±0.08 b 1.42±0.04 a 1.36±0.06 ab 1.45±0.04 a 3.75*

2.3 西番莲果皮质构参数与果皮显微结构参数的相关分析

对TPA 和穿刺测试模式下的西番莲果皮质构特性与果皮显微结构指标进行相关分析,由表8 可知,果皮厚度与TPA硬度、胶着性、咀嚼性和穿刺硬度均呈极显著正相关(p<0.01),角质层厚度与TPA硬度和胶着性呈极显著(p<0.01)和显著(p<0.05)正相关,而与内聚性呈极显著负相关(p<0.01)。表皮细胞短径与硬度形变量呈极显著负相关(p<0.01),与黏力和黏性呈极显著正相关(p<0.01)。外果皮厚度与硬度形变量和穿刺果皮做功均呈显著负相关(p<0.05)。距离外果皮400~1000 μm 和1500~2300 μm 中果皮细胞长径和短径与硬度形变量均呈极显著负相关(p<0.01),而同时与黏力和黏性均呈极显著正相关(p<0.01)。距离外果皮400~1000 μm 和1500~2300 μm 中果皮细胞长短径比值与胶着性和咀嚼性均呈显著负相关(p<0.05)。

表8 果皮质构特性与果皮显微结构的相关分析
Table 8 Correlation analysis between pericarp texture characteristics and pericarp microstructure

指标Indexes果皮厚度Pericarp thickness角质层厚度Cuticle thickness表皮厚度Epidermal thickness外果皮厚度Exocarp thickness表皮细胞Epidermal cell TPA硬度TPA hardness 0.790**0.716**0.007 0.008-0.070内聚性Cohesiveness-0.849**-0.807**-0.131-0.254 0.290长径Long diameter短径Short diameter长径/短径Long diameter/short diameter长径Long diameter短径Short diameter长径/短径Long diameter/short diameter长径Long diameter短径Short diameter长径/短径Long diameter/short diameter长径Long diameter短径Short diameter长径/短径Long diameter/short diameter弹性Springiness-0.210-0.249-0.186-0.024-0.073胶着性Gumminess 0.601**0.520*-0.037-0.156 0.102咀嚼性Chewiness 0.453*0.331-0.122-0.219 0.098穿刺硬度Puncture hardness 0.519**0.321 0.504*-0.259 0.125硬度形变量Deformation-0.239-0.365-0.244-0.516**0.134穿刺果皮做功pericarp puncture work 0.045 0.000 0.147-0.487*0.336黏力Adhesive force-0.297 0.025 0.065-0.064 0.217黏性Adhesiveness-0.252 0.078 0.074-0.096 0.213-0.1100.182-0.0160.023-0.0180.185-0.543**-0.0280.506**0.515**0.0090.091-0.0430.0330.061-0.1020.526**0.155-0.377-0.380 0~200 μm中果皮细胞0~200 μm mesocarp cell-0.3480.2410.386-0.304-0.154-0.332-0.306-0.3560.0560.016-0.0060.1050.463*0.0470.191-0.0270.2180.014-0.225-0.221-0.3560.158-0.005-0.355-0.331-0.293-0.496*-0.3520.2600.215 400~1000 μm中果皮细胞400~1000 μm mesocarp cell-0.2100.2100.374-0.1320.011-0.214-0.640**-0.3570.574**0.542**0.0020.1650.648**0.1360.392-0.247-0.537**-0.2940.585**0.554**-0.3910.099-0.390-0.479*-0.639**-0.033-0.337-0.2070.1370.127 1500~2300 μm中果皮细胞1500~2300 μm mesocarp cell 0.0260.0940.4010.1700.293-0.403*-0.661**-0.397*0.618**0.605**0.2120.0700.4230.4130.536*-0.308-0.554**-0.2300.741**0.752**-0.3450.047-0.092-0.450*-0.467*-0.117-0.112-0.233-0.279-0.317

综上,果皮厚度与果皮硬度关系密切,西番莲果皮厚度增加有利于提高果皮硬度;其次,距离外果皮400~2300 μm 的中果皮细胞形态细长则不利于果皮胶着性和咀嚼性的提高,同时,距离外果皮400~2300 μm的中果皮细胞形态越大则越不利于硬度形变量的提高,但相反地,有利于黏力和黏性的增加,在显微结构上相应地可观察到中果皮细胞大而稀疏、细胞排列不够紧密,如图4-DH-3~TN-3中TN的中果皮。

3 讨 论

3.1 西番莲果皮的质构分析方法及质构特性

TPA和穿刺试验是在果蔬质地分析中应用最多的质构分析方法,针对不同的果蔬样品,应选择对应合适的测试模式和合理的表述参数,才能更好地表述该样品的质构特性[13]。一般认为,穿刺试验不受果实大小和形状的影响,能更加灵敏、细微地检测果实局部组织特性,而TPA 容易受果实大小、性状和组织比例的影响,但也能反映出不同果实品种间的质地差异[10]。本研究中,TPA测试显示DH的果皮硬度极显著高于H2,而在2 种穿刺测试中均表明DH与H2的果皮硬度无显著差异,故TPA测试结果与穿刺测试不一致,相关分析也显示TPA测试的质构指标与穿刺测试的质构指标间无显著相关性,结合2种穿刺测试多项结果的一致性可以初步判断西番莲果皮的质构分析更适宜采用穿刺测试。由于TPA需要切取一定体积的果皮,通过对样品进行两次压缩过程模拟人类口腔的咀嚼运动,从而得出果皮硬度等质构参数[14],但在切取果皮样品时不能准确控制样品的大小一致,且测试中发现西番莲果皮并不是完全平展贴合测试台,因此会对测试结果造成一定影响。此外,在西番莲整果穿刺测试中,笔者发现MB、ZS和TN这3个品种(系)的黏力和黏性显著高于DH 和H2,结合这3 个品种(系)果实有明显的脱囊现象,推测黏力、黏性大小是否与果实脱囊有关,有待进一步研究。

穿刺测试下的各质构指标间存在紧密相关性,硬度与硬度形变量、穿刺果皮做功分别呈显著和极显著正相关,硬度形变量与穿刺果皮做功呈极显著正相关,黏力与黏性呈极显著正相关。杨玲等[10]对苹果质构特性的研究也认为果皮硬度与穿刺果皮做功呈显著正相关,潘好斌等[15]对薄皮甜瓜的穿刺测试中黏力与黏性也呈极显著正相关。故在西番莲果皮的穿刺测试中,穿刺硬度、硬度形变量、穿刺果皮做功、黏力和黏性均可以作为反映西番莲果皮质地的参数。综合比较,H2的果皮硬度、硬度形变量、穿刺果皮做功均为5 个品种(系)中最高,且黏力和黏性较低;而TN的果皮硬度和穿刺果皮做功较低,黏力和黏性相对较大。

3.2 西番莲果皮显微结构及与质构特性的关系

果皮是保护果实的重要屏障,显微观察显示,西番莲的果皮主要由外果皮和中果皮组成,外果皮由外向内结构依次为角质层、表皮细胞和内表皮细胞;中果皮细胞由外向内呈现形态逐渐增大的趋势,细胞从排列紧密过渡到排列稀疏,中果皮是构成西番莲果皮结构的最主要部分。本研究中的5个西番莲品种(系)中,DH和ZS均为果皮较厚的品种(系),且ZS 角质层、表皮厚度均最高;H2 果皮厚度中等,但其中果皮细胞小且紧密;TN 的果皮较薄,且中果皮细胞大而疏松;MB外果皮最薄,角质层、表皮、果皮厚度均较小。结合果皮质构分析结果可知,H2的果皮硬度最高,可能主要与它的中果皮细胞结构紧密有关。王学征等[1]对西瓜果皮的研究也表明果皮硬度较大的品种细胞排列紧密,中果皮由小细胞过渡到大细胞的结构特点可以提高细胞抗压强度和韧性。

果皮的力学性能与解剖微观结构密切相关,力学性能的强弱取决于表皮上微裂纹的数量和宽度、表皮的形状、细胞的纵横比以及细胞之间的距离[16]。如西瓜表皮厚度与表皮硬度、表皮破裂做功、外果皮硬度、外果皮穿刺做功间存在显著的相关性[17]。本研究也证实西番莲果皮显微结构与果皮的质构参数间存在显著相关性,果皮厚度与TPA 硬度、胶着性、咀嚼性和穿刺硬度均呈极显著正相关,说明西番莲果皮厚度增加有利于提高果皮硬度,与陈蔚辉等[12]的结论一致。而外果皮厚度则与硬度形变量和穿刺果皮做功呈显著负相关,但与穿刺硬度无显著相关性。角质层厚度与TPA 硬度和胶着性呈显著正相关,而与内聚性呈极显著负相关;角质层是探头穿过的第一层果皮组织,其形态会影响果皮的力学性质[16],因此,角质层越厚,探头压缩果皮所需的力越大。此外,表皮细胞短径、距离外果皮400~1000 μm 和1500~2300 μm 的中果皮细胞长径和短径与硬度形变量均呈极显著负相关,而与黏力和黏性均呈极显著正相关,说明相对细长的表皮细胞形态和小细胞紧密排列的中果皮结构更利于提高硬度形变量,减小黏力和黏性。这可能与果皮结构的紧实度有关,相较细胞大而疏松的结构,探头更难穿透细胞小而紧密的果皮结构。

此外,果皮的组织结构与果实的贮运性具有较显著的相关性[18-19],前人研究表明,耐贮藏果实一般角质层较厚,表皮细胞较厚,外果皮细胞层数多[18,20-21],果皮硬度较大[1]。因ZS的角质层及表皮细胞层最厚,果皮硬度较大,可推测其耐贮性较好,采后果皮不易皱缩,可作为耐贮藏品种选育的候选材料。而TN 的角质层和表皮细胞层较薄,果皮硬度较小,耐贮性相对较差,采后果皮更快出现皱缩,与实际观察结果一致。

综上,不同西番莲品种的果皮显微结构和果皮质构特性均有较大差异,且二者间有显著相关性,整果穿刺测试较TPA测试更适合西番莲果皮质构特性的检测。果皮硬度较大的西番莲果皮组织结构特点为角质层、表皮、果皮厚度较大且中果皮细胞小而排列紧密。

参考文献References:

[1]王学征,杨天天,刘争,孙蕾,朱子成,高鹏,刘识,栾非时.西瓜果皮硬度相关性状分析[J].东北农业大学学报,2020,51(2):35-44.WANG Xuezheng,YANG Tiantian,LIU Zheng,SUN Lei,ZHU Zicheng,GAO Peng,LIU Shi,LUAN Feishi.Analysis on hardness related characters of watermelon rind[J]. Journal of Northeast Agricultural University,2020,51(2):35-44.

[2]唐贵敏,贾明,刘丙花,梁静,舒秀阁,王小芳,郝兆祥,赵登超.不同裂果易感性石榴品种果皮质构特性分析与显微结构观测[J].热带作物学报,2021,42(3):777-781.TANG Guimin,JIA Ming,LIU Binghua,LIANG Jing,SHU Xiuge,WANG Xiaofang,HAO Zhaoxiang,ZHAO Dengchao.Texture characteristics and microstructure observation of exocarp from pomegranate varieties with different cracking susceptibility[J]. Chinese Journal of Tropical Crops,2021,42(3):777-781.

[3]冯建英,李鑫,原变鱼,穆维松.智能感官技术在水果检测中的应用进展及趋势[J].南方农业学报,2020,51(3):636-644.FENG Jianying,LI Xin,YUAN Bianyu,MU Weisong. Progress and trend of fruit detection by intelligent sensory technology[J].Journal of Southern Agriculture,2020,51(3):636-644.

[4]张文会,郭小静,王荣,夏燕飞,沈向.质构仪P/2 探头与P/100探头反映苹果质地程度分析[J].山东农业科学,2013,45(11):37-38.ZHANG Wenhui,GUO Xiaojing,WANG Rong,XIA Yanfei,SHEN Xiang. Degree analysis on apple texture reflected by P/2 and P/100 probes[J]. Shandong Agricultural Sciences,2013,45(11):37-38.

[5]赵爱玲,薛晓芳,王永康,任海燕,弓桂花,焦晋华,隋串玲,李登科.质构仪检测鲜枣果实质地品质的方法研究[J].果树学报,2018,35(5):631-641.ZHAO Ailing,XUE Xiaofang,WANG Yongkang,REN Haiyan,GONG Guihua,JIAO Jinhua,SUI Chuanling,LI Dengke.Measuring texture quality of fresh jujube fruit using texture analyser[J].Journal of Fruit Science,2018,35(5):631-641.

[6]何全光,黄梅华,张娥珍,辛明,黄茂康,覃仁源,黄振勇.杧果TPA 质构测定优化及不同成熟度杧果质构特性分析[J].食品工业科技,2016,37(18):122-126.HE Quanguang,HUANG Meihua,ZHANG Ezhen,XIN Ming,HUANG Maokang,QIN Renyuan,HUANG Zhenyong. Optimization for mango texture profile analysis and characterization of texture to different maturaity of mango[J].Science and Technology of Food Industry,2016,37(18):122-126.

[7]许玲,魏秀清,章希娟,许家辉.质构仪整果穿刺法评价3 个毛叶枣品种果实质地参数[J].福建农业学报,2018,33(6):621-625.XU Ling,WEI Xiuqing,ZHANG Xijuan,XU Jiahui.Instrumental measurements and texture evaluation fruits from three varieties of Zizyphus mauritiana[J].Fujian Journal of Agricultural Science,2018,33(6):621-625.

[8]杨丽萍,马荣雪,周永海,程登虎,魏春华,张显,张勇.甜瓜质地差异及相关细胞壁酶活性变化[J].中国瓜菜,2020,33(5):12-17.YANG Liping,MA Rongxue,ZHOU Yonghai,CHENG Denghu,WEI Chunhua,ZHANG Xian,ZHANG Yong. Study on the difference of melon texture and related cell wall enzyme[J].China Cucurbits and Vegetables,2020,33(5):12-17.

[9]袁成龙,董晓颖,李培环,李鼎立,段艳欣.TPA 质构分析硬肉桃果实采后质地变化[J].食品科学,2020,34(20):273-276.YUAN Chenglong,DONG Xiaoying,LI Peihuan,LI Dingli,DUAN Yanxin.Changes in texture properties of crisp peach during postharvest storage by texture profile analysis[J]. Food Science,2020,34(20):273-276.

[10]杨玲,丛佩华,王强,康国栋.不同苹果品种在贮藏过程中果实质构的变化[J].果树学报,2016,33(11):1439-1446.YANG Ling,CONG Peihua,WANG Qiang,KANG Guodong.Texture changes of different apple varieties during storage[J].Journal of Fruit Science,2016,33(11):1439-1446.

[11]刘聪,李亚珍,尹嘉敏,邓云,孙静,王吉力特.不同贮藏温度对磴口华莱士蜜瓜质构特性、理化指标、感官品质变化及相关性分析[J].中国瓜菜,2022,35(1):47-53.LIU Cong,LI Yazhen,YIN Jiamin,DENG Yun,SUN Jing,WANG Jilite. Correlation analysis of changes in texture characteristics,physical and chemical indexes and sensory quality of Dengkou Hualaishi melon at different storage temperatures[J].China Cucurbits and Vegetables,2022,35(1):47-53.

[12]陈蔚辉,李昶炎,彭珩,张福平,黄俊生.不同品种百香果品质评价及质构分析[J].韩山师范学院学报,2020,41(3):53-60.CHEN Weihui,LI Changyan,PENG Heng,ZHANG Fuping,HUANG Junsheng. Quality evaluation and texture Analysis of Passiflora edulis of different varieties[J]. Journal of Hanshan Normal University,2020,41(3):53-60.

[13]刘亚平,李红波.物性分析仪及TPA 在果蔬质构测试中的应用综述[J].山西农业大学学报(自然科学版),2010,30(2):188-192.LIU Yaping,LI Hongbo.Review on the application of texture analyzer and TPA in the assessment for fruits and vegetables texture[J]. Journal of Shanxi Agricultural University (Natural Science Edition),2010,30(2):188-192.

[14]邵兴锋,屠康.采后热空气处理对嘎拉苹果质地的影响及其作用机理[J].果树学报,2009,26(1):13-18.SHAO Xingfeng,TU Kang. Effect and mechanism of hot air treatment on the fruit texture of Gala apple cultivar[J]. Journal of Fruit Science,2009,26(1):13-18.

[15]潘好斌,刘东,邵青旭,高歌,齐红岩.不同品种薄皮甜瓜成熟期果实质地品质分析及综合评价[J].食品科学,2019,40(21):35-42.PAN Haobin,LIU Dong,SHAO Qingxu,GAO Ge,QI Hongyan.Analysis and comprehensive evaluation of textural quality of ripe fruits from different varieties of oriental melon (Cucumis melo var. makuwa Makino)[J]. Food Science,2019,40(21):35-42.

[16]WANG J X,CUI Q L,LI H B,LIU Y P. Mechanical properties and microstructure of apple pericarps during storage[J]. International Journal of Food Properties,2017,20(5):1159-1173.

[17]杨静,祝彪,何勇,应泉盛,张蕾琛.西瓜果实力学特性与品质分析[J].浙江农业学报,2017,29(9):1581-1588.YANG Jing,ZHU Biao,HE Yong,YING Quansheng,ZHANG Leichen. Study on mechanical properties and fruit quality analysis of watermelon(Citrullus lanatus)[J].Acta Agriculturae Zhejiangensis,2017,29(9):1581-1588.

[18]李治梅,张玉星,许建锋,赵慧芹.鸭梨、黄金梨果实结构与耐贮性的关系[J].果树学报,2006,23(1):108-110.LI Zhimei,ZHANG Yuxing,XU Jianfeng,ZHAO Huiqin. Effects of fruit tissue structure of Yali and Whangkeumbae pear cultivars on the fruit stor ability[J]. Journal of Fruit Science,2006,23(1):108-110.

[19]周会玲,李嘉瑞.葡萄果实组织结构与耐贮性的关系[J].园艺学报,2006,33(1):28-32.ZHOU Huiling,LI Jiarui. The relationship between fruit texture and storage character in grapes[J]. Acta Horticulturae Sinica,2006,33(1):28-32.

[20]满艳萍,张建农.不同贮运性西瓜果皮显微结构的差异[J].甘肃农业大学学报,2006,41(4):64-67.MAN Yanping,ZHANG Jiannong. Pericarp microstructure difference among watermelon types with different storage and transport quality[J]. Journal of Gansu Agricultural University,2006,41(4):64-67.

[21]张琦,姜喜,段黄金. 不同贮藏方式对梨果皮组织结构的影响[J].果树学报,2016,33(S):175-179.ZHANG Qi,JIANG Xi,DUAN Huangjin. Effects of different storage methods on the structure of pear skin tissue[J]. Journal of Fruit Science,2016,33(S):175-179.

Analysis of texture characteristics and microstructure of passion fruit pericarp

TIAN Qinglan1,ZHANG Yingjun1,LIU Jieyun1,WU Yanyan1,WEI Yigang2,WEN Fang2,HUANG Weihua1,XIN Zibing2,WEI Di1,MOU Haifei1*

(1Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, Guangxi, China;2Guangxi Institute of Botany,Chinese Academy of Sciences,Guilin 541006,Guangxi,China)

Abstract:【Objective】In this study,we compared the pericarp texture characteristics of passion fruit by means of the texture profile analysis(TPA)and whole fruit puncture test to screen out suitable test methods for the texture characteristics of passion fruit.Combined with the observation results of pericarp microstructure,the correlation was comprehensively evaluated between the pericarp texture characteristics and the pericarp microstructure, so as to provide reference for improving the storage resistance and germplasm resources of passion fruit.【Methods】In this study,the mature fruits of Tainong 1(TN)and five passion fruit varieties (lines) coded as MB, H2, DH and ZS were used as experimental materials.Three kinds of pericarp texture analysis test modes were set up in the experiment: TPA, whole fruit puncture (puncture depth of 5 mm) and whole fruit puncture (puncture depth of 10 mm).Among them,TPA test required sample pre-treatment,and pericarps of 1.5 cm×1.5 cm square size on both sides of the central line were cut for testing. The puncture test samples were complete fruits, and the puncture site was along the central line of the horizontal axis of the fruit. In addition, we made paraffin sections of the pericarp and observed the microstructure of the longitudinal section of the pericarp. We also analyzed the correlation between pericarp texture characteristics and microstructure parameters.【Results】(1)The pericarp hardness trend of TPA test was not consistent with that of puncture test,while puncture 5 mm test and puncture 10 mm test had many consistent results. In addition, correlation analysis showed that there were no significant correlations in texture indexes between TPA test and puncture test.We speculated that the consistency of sample size could not be accurately controlled when the fruit pericarp samples were cut, and it was found in the test that the passion fruit pericarps were not completely flat and fitted to the test table, so the TPA test results would be affected. Therefore, we judged that puncture test was more suitable for texture analysis of passion fruit pericarp. (2) In puncture test mode(puncture depth of 10 mm),the results showed that there were significant correlations among texture parameters: pericarp hardness was significantly and extremely significantly positively correlated with deformation and pericarp puncture work; deformation was significantly and positively correlated with pericarp puncture work; adhesive force was significantly and positively correlated with adhesiveness. Therefore, puncture hardness, deformation, pericarp puncture work, adhesive force and adhesiveness can all be used as the parameters to reflect the texture of passion fruit pericarp.(3)The pericarp of passion fruit was mainly composed of exocarp and mesocarp. The exocarp was composed of cuticle,epidermal cells and inner epidermal cells from outside to inside.The thickness of the outermost cuticle was about 2.5-5.0 μm.There were 1-4 layers of epidermal cells,which were closely arranged rectangular cells with the ratio of length to diameter by 1.15-1.65. There were 1-4 layers of inner epidermal cells, which were colorless and transparent, and were larger than the epidermal cells. Mesocarp cells gradually increased in shape from outside to inside, and the cell transition was from tight to sparse arrangement.Mesocarp was the most important part of passion fruit pericarp structure.(4)The correlation analysis of texture parameters and microstructure parameters of pericarp showed that there were significant and positive correlations between pericarp thickness and TPA hardness,gumminess,chewiness and puncture hardness. The thickness of cuticle was positively correlated with TPA hardness and gumminess, but negatively correlated with cohesiveness. Furthermore, the long and short diameters of mesocarp cells were 400-1000 μm and 1500-2300 μm away from exocarp, the short diameter of epidermal cells was significantly and negatively correlated with deformation,but significantly and positively correlated with adhesive force and adhesiveness.These results suggested that the relatively elongated epidermal cell morphology and the mesocele structure with compact arrangement of small cells were more conducive to improving the deformation and reducing the adhesive force and adhesiveness. (5)Among the 5 passion fruit varieties(lines),TN had the smallest cuticle and pericarp thickness,and its mesocarp cells were large and sparse, resulting in the lowest pericarp hardness. In contrast, the mesocarp cells of H2 were small and compact, giving it greater pericarp hardness. Besides, DH and ZS had the thickest pericarp,and ZS had the thickest cuticle and was more resistant to storage and transportation,while MB had the thinnest exocarp, and its thickness of cuticle, epidermal and pericarp was small.【Conclusion】Compared with TPA test, whole fruit puncture test was more suitable for analyzing the texture of passion fruit pericarp,the puncture depth can be set to 10 mm.There was a significant correlation between the texture and microstructure of passion fruit pericarp.According to this study,it can be concluded that the hard pericarp of passion fruit is characterized as large thickness of cuticle, epidermis and pericarp,and small and tight mesocarp cells.

Key words:Passion fruit;Pericarp;Texture characteristics;Microstructure

中图分类号:S667.9

文献标志码:A

文章编号:1009-9980(2022)12-2365-11

DOI:10.13925/j.cnki.gsxb.20220119

收稿日期:2022-03-17

接受日期:2022-07-06

基金项目:广西科技重大专项(桂科AA22068091,桂科AA22068091-2);广西自然科学基金(2021GXNSFBA075044);广西农业科学院科技发展基金项目(桂农科2021JM84);广西科技创新联盟科技先锋队“强农富民”“六个一”专项行动(桂农科盟202004,桂农科盟202104-05)

作者简介:田青兰,女,助理研究员,硕士,主要从事果树栽培及育种研究。Tel:0771-3243484,E-mail:tianqinglan1991@163.com

*通信作者Author for correspondence.Tel:0771-3243531,E-mail:mhf@gxaas.net