赤霞珠(Cabernet Sauvignon)是世界范围栽培最广泛的酿酒葡萄品种之一,也是中国栽培面积最大的品种,在中国葡萄酒产品中具有不可替代的位置。赤霞珠果实产量和品质是生产的重要指标,是品牌葡萄酒发挥更大经济效益的重要前提条件。大量研究表明,施肥能够有效促进果树的生长发育并提高果实的品质和产量,在苹果[1]、梨[2]、葡萄[3]、桃[4]等果树上均有研究证实。
然而,目前果树营养研究严重滞后于实际生产的需要,果农仅能依靠经验甚至盲目大量施用化肥,由此造成产量低、品质差、肥料利用率低以及果园土壤面源污染等环境问题,严重影响了果农的经济收入。程杰山等[5]的研究表明,当施肥量(NPK复合肥)超过300 kg·hm-2时,巨玫瑰果实的糖含量、可滴定酸含量等指标并未显著增加,反而稍有下降趋势,葡萄果实的物理性状和硬度也没有显著差异。过量施用化肥会引起甜瓜果实硝酸盐含量显著升高,糖度急剧下降,降低品质[6]。过量施肥特别是氮肥过量,会降低橄榄果实的品质[7]。过量施用氮肥,往往造成氮素以硝态氮的形式渗入地下水中,或在局部区域内形成N2O,都对环境造成很大的不利影响[8]。为克服肥料在果树生产实践中施用时产生的以上问题,前人做了大量化肥减施的研究。李旭[9]的研究表明,减施氮肥会提高柑橘可溶性固形物含量5.70%~11.51%,增加出汁率1.11%~9.99%和提高可食率0.41%~5.44%。陈海宁等[10]连续3 a(年)的施肥试验证明,化肥减施处理的苹果果实产量、可溶性固形物含量、糖酸比和硬度分别提高了19.1%、5.7%、40.1%和7.4%。2016年,琯溪蜜柚的氮、磷减量施肥处理均比施肥量最高的处理有不同程度的增产,增产率在27.04%~58.93%之间[11]。邹立新等[12]研究表明,当氮磷钾肥减施20%时,藤稔葡萄的叶面积、新梢粗度、产量和果实可溶性固形物含量均会增加。所以,研究合理施肥对赤霞珠产量及果实品质的影响在生产上具有重大意义。
烟台市蓬莱区位于胶东半岛北部,是酿酒葡萄种植的优生区,但由于当地长期以来普遍存在重施化肥现象,造成土壤板结透气性较差,果实品质不高。除了对环境的影响,合理施肥也是提高酿酒葡萄产量和品质的主要措施之一,但同时考虑氮、磷、钾、钙、镁施肥量对酿酒葡萄的生长发育和果实品质影响的报道较少,笔者以蓬莱产区赤霞珠葡萄为试材,对其果园进行不同施肥处理,通过5416 肥完全正交试验方法设置了不同氮、磷、钾、钙、镁的施用比例,测定单穗质量、百粒质量、可溶性固形物含量、皮果比、籽果比、籽粒数、皮/籽总酚、花色苷以及皮/籽总黄酮、皮/籽黄烷醇、皮/籽单宁含量等指标,并对其进行综合评价;挖掘各元素对果实品质的影响力,给出具有品质特异性的建议施肥量,为提高赤霞珠果实品质提供理论依据。
试验于2018—2021 年进行,选取山东省烟台市蓬莱区酿酒葡萄赤霞珠代表性产地(君顶酒庄有限公司)的植株为试材,树龄10~13 a,砧木为SO4,株行距为1 m×2 m。试验地赤霞珠葡萄根系的富集深度为0~40 cm,0~40 cm 土层基础理化性质为土壤容重1.3 g·cm-3,pH=6.4、碱解氮含量(w,后同)69.0 mg·kg-1、速效钾含量288.1 mg·kg-1、速效磷含量104.2 mg·kg-1、可交换性钙含量2.7 mg·g-1、可交换性镁含量329.6 mg·kg-1。
选择16 个树体健康、长势中庸、产量较稳定的园区作为固定试验区,进行5416 配方肥施用试验[13]。距离葡萄根系30 cm处开15~20 cm深的施肥沟,将肥料充分溶解于水,均匀倒入施肥沟内,随即覆土灌水。5416 配方肥是指5 个因素(N、P、K、Ca、Mg)、4 个水平(每公顷各肥料原料的基础用量的倍数,即0倍、0.5倍、1倍、1.5倍),共计16个处理(T,表1)。配方肥是基于每公顷7500 kg果实的产量目标,设定5416 试验每公顷各肥料原料的基础用量分别为:N 124.5 kg、P2O5 46.5 kg、K2O 112.5 kg、CaO 112.5 kg、MgO 46.5 kg[14]。各肥料在萌芽期、初花期、末花期、转色期和成熟期的施用比例参考王小龙等[15]的研究。
表1 “5416”试验处理施肥总量
Table 1 The total amount of fertilizer applied in the“5416”experiment(kg·hm-2)
处理Treatment T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16氮N五氧化二磷0.0 0.0 0.0 0.0 62.3 62.3 62.3 62.3 124.5 124.5 124.5 124.5 186.8 186.8 186.8 186.8 P2O5 0.0 23.3 46.5 69.8 0.0 23.3 46.5 69.8 0.0 23.3 46.5 69.8 0.0 23.3 46.5 69.8氧化钾K2O 0.0 56.3 112.5 168.8 56.3 0.0 168.8 112.5 112.5 168.8 0.0 56.3 168.8 112.5 56.3 0.0氧化钙CaO 0.0 56.3 112.5 168.8 112.5 168.8 0.0 56.3 168.8 112.5 56.3 0.0 56.3 0.0 168.8 112.5氧化镁MgO 0.0 23.3 46.5 69.8 69.8 46.5 23.3 0.0 23.3 0.0 69.8 46.5 46.5 69.8 0.0 23.3
于成熟期取样,每处理随机选取30 个果穗,从果实的上中下各部位随机采集果粒720 粒,用于测定单穗质量、百粒质量、可溶性固形物含量、皮果比、籽果比、籽粒数、皮/籽总酚、花色苷、皮/籽总黄酮、皮/籽黄烷醇以及皮/籽单宁含量。单穗质量和百粒质量利用电子秤测定,可溶性固形物含量采用手持测糖量计测定。皮果比、籽果比分别是果皮与果实质量比和籽粒与果实质量比,以30粒为1组,剥离果皮和种子并称质量,按照定义进行计算;同时计算每组果实种子数量的平均值,即为籽粒数。葡萄果皮和葡萄籽总酚、花色苷、总黄酮、黄烷醇、单宁物质的提取和含量测定参照苏鹏飞[16]的方法,以上每年所有测定指标均进行3次生物学重复。同时,基于4 a各品质的平均值进行主成分分析[17],对果实品质进行综合评价。利用SAS 软件计算土壤肥力因子对各品质指标的影响力排序和理论最佳施肥量,SAS分析程序见图1。
图1 SAS 分析程序
Fig.1 SAS analysis program
采用Excel 2016 和SPSS 20.0 软件对4 a 数据进行统计分析。
由表2 可知,施肥处理对赤霞珠单穗质量有显著影响。T8 处理的单穗质量最大,为362.5 g,显著高于除T2和T9外的其他处理。不同施肥处理对可溶性固形物含量、百粒质量、皮果比、籽果比和籽粒数有一定影响,但均未达显著水平;不同施肥处理可溶性固形物含量为20.7%(T12)~22.9%(T2)、百粒质量为120.2(T10)~133.5(T2)g、皮果比为11.7%(T9)~15.8%(T1)、籽果比为5.8%(T4)~7.1%(T6)、籽粒数为52.8(T4)~60.0(T6)个;说明T2 处理对可溶性固形物含量、百粒质量的提高作用较强。
表2 不同施肥处理条件下的果实基本性状
Table 2 Basic characters of fruit under different fertilization treatments
注:同列数据后不同小写字母表示差异显著(p <0.05)。下同。
Note:Different lowercase letters indicate significant difference in the same column(p <0.05).The same below.
处理Treatment T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 56.3±1.1 a 59.6±1.8 a 56.7±0.9 a 52.8±1.5 a 56.1±1.6 a 60.0±1.1 a 56.7±1.0 a 54.6±0.8 a 55.6±1.0 a 57.3±1.5 a 53.1±0.5 a 58.3±1.4 a 55.2±0.9 a 53.9±0.7 a 57.9±1.1 a 56.6±1.5 a 295.3±41.3 c 321.8±44.7 abc 296.6±41.0 c 236.3±21.7 d 292.2±34.2 c 302.9±37.0 c 273.6±34.5 cd 362.5±54.1 a 357.0±51.8 ab 294.1±29.9 c 282.3±26.9 cd 308.4±42.3 bc 297.2±28.1 c 290.3±32.8 c 265.2±25.3 cd 294.7±39.1 c 21.8±0.5 a 22.9±0.8 a 22.4±0.7 a 21.6±0.7 a 22.3±0.6 a 21.8±0.7 a 22.2±0.8 a 22.1±0.8 a 22.0±0.8 a 22.1±0.7 a 22.0±0.7 a 20.7±0.7 a 21.2±0.7 a 21.4±0.5 a 21.9±0.6 a 22.0±0.6 a 127.7±5.1 a 133.5±5.6 a 133.1±3.2 a 126.5±5.0 a 131.1±7.0 a 126.6±5.6 a 129.9±6.9 a 121.3±4.9 a 126.3±6.0 a 120.2±5.0 a 127.3±5.2 a 123.3±3.7 a 126.8±4.8 a 121.3±2.3 a 130.7±5.7 a 126.3±4.5 a 15.8±0.8 a 12.9±0.5 a 13.9±0.9 a 13.2±0.4 a 13.2±0.4 a 15.1±0.4 a 13.1±0.3 a 15.2±0.7 a 11.7±0.5 a 12.1±0.6 a 13.3±0.2 a 15.2±0.6 a 13.4±0.6 a 13.5±0.4 a 13.5±0.4 a 13.2±0.1 a 6.3±0.3 a 6.3±0.2 a 6.1±0.1 a 5.8±0.3 a 6.3±0.3 a 7.1±0.4 a 6.2±0.3 a 6.3±0.3 a 6.2±0.2 a 6.6±0.2 a 6.5±0.3 a 6.2±0.2 a 6.5±0.2 a 6.2±0.3 a 6.3±0.3 a 6.4±0.2 a籽粒数Number of seeds单穗质量Berry weight per panicle/g w(可溶性固形物)Total soluble solids/%百粒质量Hundred berry weight/g皮果比Ratio of skin to fruit/%籽果比Ratio of seed to fruit/%
由表3 可知,不同施肥处理对果皮酚类物质含量有显著影响。T7 处理的皮总酚含量最高,为10.650 mg·g-1,较其他处理显著提高了17.876%~83.797%。不同施肥处理的皮黄烷醇含量为38.859(T6)~62.647(T2)mg·g-1,T2 的皮黄烷醇含量显著高于T4、T6、T8、T10、T12,增幅为28.204% ~61.215%。除T4和T6外,其他施肥处理的皮花色苷含量之间无显著差异,其中T9 处理的含量最高,为2.515 mg·g-1。不同施肥处理的皮总黄酮含量为3.882~7.373 mg·g-1,其中T9 处理含量最高,较其他处理显著增加14.435%(T10)~89.925%(T12)。T9处理的皮单宁含量最高,为2.746 mg·g-1,显著高于其他处理,增幅为17.953%~82.144%。说明T9处理对皮花色苷、皮总黄酮、皮单宁含量的提高作用较强。
表3 不同施肥处理条件下的果皮酚类物质含量
Table 3 Contents of phenolic substances in peels under different treatments
处理Treatment T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 w(总酚)Total phenols content/(mg·g-1)6.779±0.889 de 7.361±0.646 cde 6.993±0.942 cde 6.650±0.554 de 7.764±0.730 bcd 5.794±0.528 e 10.650±1.595 a 6.870±0.752 de 9.035±0.704 b 8.555±0.441 bc 6.991±0.910 cde 6.255±0.948 de 7.411±1.065 cde 7.550±0.809 bcd 7.464±0.790 cd 7.210±0.571 cde w(黄烷醇)Flavanols content/(mg·g-1)51.926±9.396 abcd 62.647±5.845 a 55.605±9.925 abcd 46.014±6.164 de 53.332±9.222 abcd 38.859±5.465 e 50.762±7.084 abcd 46.855±7.732 cde 55.488±9.182 abcd 46.898±5.614 cde 59.168±8.551 abc 48.865±7.172 bcde 57.912±9.303 abcd 60.079±7.990 ab 53.079±6.794 abcd 61.381±4.269 ab w(花色苷)Anthocyanins content/(mg·g-1)2.118±0.508 abc 2.311±0.425 abc 2.205±0.479 abc 1.880±0.374 bc 2.204±0.476 abc 1.737±0.359 c 2.160±0.472 abc 2.175±0.487 abc 2.515±0.540 a 2.207±0.288 abc 2.226±0.510 abc 2.053±0.588 abc 2.264±0.579 abc 2.455±0.452 ab 2.098±0.461 abc 2.373±0.342 ab w(总黄酮)Total flavonoids content/(mg·g-1)4.979±0.641 bcd 5.493±0.440 bc 5.581±0.736 bc 4.942±0.423 bcd 5.545±0.584 bc 4.312±0.361 cd 6.018±0.468 b 5.519±0.648 bc 7.373±0.669 a 6.443±0.350 ab 5.787±0.587 bc 3.882±0.427 d 5.215±0.728 bcd 5.909±0.623 b 4.931±0.496 bcd 5.865±0.186 bc w(单宁)Tannin content/(mg·g-1)1.807±0.180 cde 1.934±0.116 bcde 1.953±0.251 bcde 1.770±0.150 cde 2.236±0.286 bc 1.508±0.073 e 2.215±0.124 bcd 2.143±0.191 bcd 2.746±0.319 a 2.198±0.174 bcd 2.042±0.120 bcd 1.743±0.173 de 2.180±0.186 bcd 2.328±0.228 b 2.250±0.168 bc 2.325±0.079 b
由表4 可知,不同施肥处理对种子酚类物质含量有不同影响。除T5、T6、T11外,其他处理的籽总酚含量之间无显著差异;其中T3处理的籽总酚含量最高,为26.265 mg·g-1,较T5、T6、T11 分别提高了25.909%、24.421%、29.695%。不同施肥处理的籽黄烷醇含量为356.128~597.532 mg·g-1;其中T8的籽黄烷醇含量最高,除T10和T12外,较其他处理显著提高了23.330%(T3)~67.786%(T6)。除T2、T3、T4、T6、T7、T10、T12外,T8处理的籽总黄酮含量较其他处理显著提高了15.263%(T15)~52.982%(T11)。除T1、T6、T9、T11外,其他处理的籽单宁含量无显著差异,为9.452(T5)~11.777(T3)mg·g-1;T3处理的籽单宁含量较T1、T6、T9、T11分别显著提高了35.954%、37.984%、52.470%、33.744%。说明T3 对籽总酚、籽单宁含量的提高作用较强,T8对籽黄烷醇和籽总黄酮含量的提高作用较强。
表4 不同施肥处理条件下的种子酚类物质含量
Table 4 Contents of phenolic substances in seeds under different treatments
处理Treatment T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 w(总酚)Total phenols content/(mg·g-1)23.999±3.189 abc 24.443±3.001 abc 26.265±3.645 a 24.260±3.741 abc 20.860±3.146 bc 21.110±3.639 bc 22.948±3.805 abc 24.396±2.424 abc 23.895±2.837 abc 25.056±1.877 ab 20.251±3.708 c 24.326±2.259 abc 23.411±2.682 abc 23.421±2.782 abc 24.017±3.625 abc 22.712±2.726 abc w(黄烷醇)Flavanols content/(mg·g-1)401.107±56.380 def 437.344±51.869 bcd 484.497±69.045 b 478.998±93.377 b 376.006±64.393 ef 356.128±63.084 f 438.441±52.055 bcd 597.532±89.714 a 476.532±88.593 b 575.752±66.324 a 396.246±60.682 def 565.687±88.943 a 427.842±47.600 bcde 441.820±52.456 bcd 463.217±71.472 bc 418.819±37.985 cde w(总黄酮)Total flavonoids content/(mg·g-1)19.300±2.375 gh 27.769±3.173 abc 28.990±3.432 ab 28.876±3.950 ab 20.857±3.479 fgh 26.141±6.028 abcde 25.772±3.702 abcde 29.322±3.402 a 24.874±4.198 cde 28.926±3.297 ab 19.167±3.064 h 26.546±4.168 abcd 23.156±3.155 def 23.352±3.124 def 25.439±2.947 bcde 22.696±1.536 efg w(单宁)Tannin content/(mg·g-1)8.662±1.649 bcd 10.808±1.873 abc 11.777±2.098 a 10.866±2.411 abc 9.452±2.039 abcd 8.535±1.946 cd 11.389±2.600 a 10.921±1.508 abc 7.724±1.138 d 11.368±1.412 a 8.806±2.535 bcd 11.000±1.250 ab 11.052±1.785 ab 10.783±1.788 abc 10.413±2.251 abc 9.918±1.825 abcd
对赤霞珠单穗质量、可溶性固形物含量、百粒质量、皮果比、籽果比、籽粒数和皮/籽酚类物质含量等15个指标的数据通过降维、标准化处理后进行主成分分析,共提取5个主成分。由表5可知,各主成分Y1~Y5的贡献率分别为30.485%、21.471%、13.065%、11.511%、8.081% ,5 个主成分累积贡献率达84.612%,符合主成分分析法贡献率累加和大于80%的要求。因此,5个主成分可以表现出不同处理对赤霞珠各项指标的影响效果,与Y1相关性较显著的为皮果比、皮总酚、皮花色苷、皮总黄酮、皮单宁含量;与Y2相关性较强的为籽总酚、籽总黄酮、籽黄烷醇、籽单宁含量;与Y3相关性较强的为可溶性固形物含量和百粒质量;与Y4和Y5相关性较强的分别为单穗质量和皮黄烷醇含量。
表5 提取的主成分特征值、贡献率及累计贡献率
Table 5 Extracted principal component eigenvalue,contribution rate and cumulative contribution rate
指标Index单穗质量Berry weight per panicle可溶性固形物含量Total soluble solids content百粒质量Hundred berry weight皮果比Ratio of skin to fruit籽果比Ratio of seed to fruit籽粒数Number of seeds皮总酚含量Total phenols content in peel皮黄烷醇含量Flavanols content in peel皮花色苷含量Anthocyanins content in peel皮总黄酮含量Total flavonoids content in peel皮单宁含量Tannin content in peel籽总酚含量Total phenols content in seed籽总黄酮含量Total flavonoids content in seed籽黄烷醇含量Flavanols content in seed籽单宁含量Tannin content in seed特征值Eigenvalues贡献率Contribution rate/%累计贡献率Cumulative contribution rate/%0.239 0.402 0.070-0.781-0.421-0.337 0.726 0.657 0.891 0.914 0.907 0.139-0.100 0.086 0.010 4.573 30.485 30.485 0.123-0.107-0.335 0.001-0.446 0.016 0.057-0.277-0.058-0.035-0.040 0.842 0.854 0.901 0.739 3.221 21.471 51.955-0.306 0.667 0.860-0.178-0.126 0.485 0.153 0.127-0.186-0.088-0.230 0.186 0.267-0.283 0.280 1.960 13.065 65.021 0.758 0.342-0.099 0.037 0.584 0.617 0.064-0.259 0.050 0.213 0.077 0.012 0.239 0.133-0.321 1.727 11.511 76.532 0.415-0.007 0.201 0.401-0.202 0.082-0.460 0.545 0.355-0.215-0.062 0.275-0.173 0.026 0.005 1.212 8.081 84.612主成分Principal component Y1Y2Y3Y4Y5
各主成分得分结果如表6 所示,根据各主成分对应的方差贡献率在累积贡献率所占比例为权重,可构建综合评价模型为:Y=0.360 Y1+0.254 Y2+0.154 Y3+0.136 Y4+0.095 Y5。通过各主成分得分可知,主成分Y1中各处理得分表现为T9 处理最高,说明T9 处理对皮果比、皮总酚、皮花色苷、皮总黄酮、皮单宁含量的提高作用较强;主成分Y2中各处理得分表现为T8处理最高,说明T8处理对籽总酚、籽总黄酮、籽黄烷醇、籽单宁含量的提高作用较强;主成分Y3和Y5中各处理得分均表现为T2 处理最高,说明T2处理对可溶性固形物含量、百粒质量和皮黄烷醇含量的提高作用较强;主成分Y4中各处理得分表现为T6 处理最高,说明T6 处理对单穗质量的提高作用较强。在综合评分中,不同施肥条件下主成分得分最高的是T9处理,说明T9处理对提高产量、改善品质方面具有较好的综合效果。
表6 不同施肥处理果实各项指标的主成分得分
Table 6 Principal component scores of various indicators under different treatments
处理Treatment T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16主成分得分Principal component score Y1Y2Y3Y4Y5-1.725 1.018 0.262-1.521 0.617-5.090 1.471-0.404 4.261 1.070 0.417-3.104 0.164 1.581-0.362 1.347-1.581 0.197 1.869 1.740-2.420-2.055 0.210 2.659-0.492 2.456-3.131 2.076-0.410-0.002 0.106-1.223-0.374 2.916 2.244 0.326 0.623 0.224 1.488-1.711-1.257-0.512-0.958-1.366-0.782-1.816 1.201-0.246-0.250 1.130-0.265-2.867-0.304 2.330-0.379 1.444 1.798 1.306-0.941-0.274-0.835-1.303-0.460-0.130 1.220 1.526 1.146-1.298-0.342-1.172-1.888 0.714-0.177-1.950-0.158 1.051 0.403 0.478-0.191 0.640综合评分Comprehensive score,Y-0.998 1.166 0.988-0.570-0.370-2.116 0.581 0.530 1.444 0.921-0.935-0.740-0.241 0.157 0.001 0.180得分排序Score sorting 15 2 3 1 2 11 16 5 6 1 4 1 4 13 10 8 9 7
由表7可知,各矿质元素对不同品质指标的影响力排序和最佳理论配比有明显的组织特异性。Mg元素对皮总酚、皮花色苷、皮总黄酮和皮单宁含量影响力最大,且Mg肥施用量在2水平时,可使皮总酚、皮黄烷醇、皮花色苷、皮总黄酮和皮单宁含量达到最佳。K 元素对籽总酚、籽总黄酮、籽黄烷醇、籽单宁含量影响力最大,且P肥施用量在4水平时,可使上述指标达到最佳。当P、K、Ca、Mg 肥的施用量分别达到1、3、3、2水平时,可使皮总黄酮和皮单宁含量达到最佳;当P、K、Mg肥的施用量分别达到4、4、3水平时,可使籽总黄酮和籽单宁含量达到最佳。此外,K和Mg肥施用量分别达到3和2水平时,可使可溶性固形物含量和单穗质量达到最佳。百粒质量和可溶性固形物含量达到最佳时的P、Ca、Mg 施用水平均为P3Ca3Mg2;皮果比、籽果比、籽粒数品质达到最佳时的N、Mg 施用水平均为N2Mg3。说明各果实品质的累积过程不是独立的,而是彼此相关联的。
表7 各品质最佳时的元素影响力和理论配比
Table 7 Element influence and theoretical ratio at the best quality
注:N、P、K、Ca、Mg 后的1、2、3、4 分别代表各肥料的施用水平,即每公顷各肥料原料的基础用量的倍数,即0 倍、0.5 倍、1 倍、1.5倍。
Note: 1, 2, 3, and 4 after N, P, K, Ca, and Mg represent 0 times, 0.5 times, 1 times and 1.5 times of that the basic amount of each fertilizer raw material per hectare,respectively.
指标Index单穗质量Grain weight per panicle可溶性固形物含量Total soluble solids content百粒质量Hundred grain weight皮果比Ratio of skin to fruit籽果比Ratio of seed to fruit籽粒数Number of seeds皮总酚含量Total phenols content in peel皮黄烷醇含量Flavanols content in peel皮花色苷含量Anthocyanins content in peel皮总黄酮含量Total flavonoids content in peel皮单宁含量Tannin content in peel籽总酚含量Total phenols content in seed籽总黄酮含量Total flavonoids content in seed籽黄烷醇含量Flavanols content in seed籽单宁含量Tannin content in seed元素影响力Elemental influence K>Mg>P>N>Ca最佳理论配比Best theoretical ratio N3P1K3Ca2Mg2 Mg>Ca>N>P>K N1P3K3Ca3Mg2 P>N>K>Mg>Ca N1P3K2Ca3Mg2 Mg>K>Ca>N>P N2P4K1Ca1Mg3 K>P>N>Mg>Ca N2P2K1Ca2Mg3 Mg>K>P>Ca>N Mg>K>P>N>Ca N2P2K2Ca3Mg3 N2P3K4Ca1Mg2 N>Mg>Ca>P>K N4P1K3Ca2Mg2 Mg>K>N>Ca>P N4P1K3Ca3Mg2 Mg>K>P>Ca>N N3P1K3Ca3Mg2 Mg>N>K>P>Ca N4P1K3Ca3Mg2 K>N>Mg>Ca>P N1P4K3Ca3Mg1 K>P>Mg>Ca>N N1P4K4Ca4Mg3 K>P>Mg>N>Ca N3P4K3Ca2Mg1 K>P>Ca>N>Mg N4P4K4Ca3Mg3
在果树的高产优质栽培实践中,除通过选育新品种和改善栽培条件外,科学合理施肥是提高果实产量和品质、改善土壤环境、提升土壤肥力、保护生态平衡的有效手段之一[18]。施肥是提高土壤生产贡献力的重要措施,但不是施用量越大越好。陈海宁等[10]提出,与习惯施肥相比,化肥减施处理的苹果产量提高19.1%,果实可溶性糖含量、糖酸比和硬度分别显著提高5.7%、40.1%和7.4%。当京津地区苹果园减施化肥30%时,可在一定程度上促进树体生殖生长,降低土壤pH,且不影响果实成熟和品质[19]。与全量传统水溶肥处理相比,化肥减量25%并配施海藻复合肥可以提高葡萄果实可溶性糖含量[20]。张筠筠[21]的研究表明,25%化肥有机肥处理可显著增加酿酒葡萄单宁、花色苷、可溶性固形物含量。本试验研究结果表明,T9 处理总施肥量为429 kg·hm-2,而T4、T13和T15处理分别较T9增施11.2%、6.8%和6.8%,且这3个处理的单穗质量及皮总酚、皮总黄酮、皮单宁含量均显著低于T9,上述各品质较T9 处理的降幅分别为16.8%~33.8%、17.4%~26.4%、29.3%~33.1%、18.1%~35.5%。由此可见,当赤霞珠施肥总量降低6.8%~11.2%时,其单穗质量及皮总酚、皮总黄酮、皮单宁含量等可以显著提升。
李冬莲等[22]研究指出,配方肥(N∶P2O5∶K2O=14.90∶3.57∶12.00,质量比)处理的蜜橘可溶性总糖、维生素C 含量高于对照。陈丽楠等[23]研究表明,与单施氮、磷、钾肥相比,施用N 15%、P2O5 57.5%、K2O 18%、CaO 10%、SiO 28%、B 2%、Zn 1%配方肥的葡萄百叶质量、单穗质量、产量和果实可溶性固形物含量、糖酸比、维生素C含量均显著提高。在滴灌条件下,N∶P2O5∶K2O=1.3∶1.0∶1.0(质量比)的配方肥能够促进黑比诺葡萄叶面积的增大,叶绿素、叶片干物质和氮、磷、钾、镁元素含量的积累[24]。王瑞等[25]的研究表明,与其他处理相比,N∶P2O5∶K2O=2∶1∶3(质量比)配方肥处理的杏果实可溶性固形物含量较高,可滴定酸含量较低,其他多个感官品质最佳。由此说明,当氮、磷、钾肥的配比合理时,果实产量与品质可达到最佳。本试验中T9 和T10 处理的总施肥量相同,其N、P2O5、K2O、CaO、MgO 施用比例不同,分别为5.3∶0.0∶4.8∶7.2∶1.0 和5.3∶1.0∶7.2∶4.8∶0.0。T9作为高Ca型肥料处理,能够有效促进果皮细胞积累大量可溶性Ca,可诱导细胞程序性死亡,参与果皮海绵组织形成,有利于果皮后期延伸,促进营养物质的积累[26]。T10作为高K型肥料处理,能够促进植株对K的有效吸收;同时,K能提高叶片的光合作用效率,促进CO2的同化及叶片与果实间糖的转移,间接有利于果实成熟过程中酚类成分的合成[27]。本试验研究表明,T9 处理的单穗质量较T10 显著提高了21.4%;T9处理的皮酚类物质含量均高于T10,较T10的增幅范围为5.6%~24.9%,其中皮单宁含量差异显著;T9处理的籽酚类物质含量均低于T10,较T10的降幅范围为4.6%~32.1%,其中籽黄烷醇、籽总黄酮和籽单宁含量差异显著。由此可见,在相同施肥总量条件下,不同施肥配比对果实品质影响不同。T9处理更适合用于提升赤霞珠果实产量和皮酚类物质含量,T10处理更适合用于提升赤霞珠果实籽酚类物质含量。
赤霞珠果实品质指标决定酿造葡萄酒的品质,其中酚类物质是葡萄酒最重要的风味物质之一,包括总酚、总黄酮、黄烷醇、花色苷和单宁等,其不仅影响葡萄酒的口感、颜色,还决定葡萄酒的一些生理活性功能[28]。酿酒葡萄果实中果皮和种子的酚类物质含量远超过果肉,葡萄酒中的酚类物质也主要通过浸渍果皮和种子中的酚类物质获得[29]。有研究表明,葡萄籽多酚物质含量高达825.8~3 313.5 mg·g-1,显著高于葡萄皮(64.5~352.0 mg·g-1)[30]。本试验表明,各施肥处理的籽总酚、籽黄烷醇、籽总黄酮、籽单宁平均含量为23.461 mg·g-1、458.498 mg·g-1、25.074 mg·g-1和10.217 mg·g-1,分别显著高于皮总酚(7.458 mg·g-1)、皮黄烷醇(53.054 mg·g-1)、皮总黄酮(5.487 mg·g-1)、皮单宁(2.086 mg·g-1),这与上述结果基本一致。由SAS分析结果可知,Mg元素对皮果比、皮总酚、皮花色苷、皮总黄酮、皮单宁含量影响力最大;K元素对籽果比、籽总酚、籽总黄酮、籽黄烷醇、籽单宁含量影响力最大,这可能是因为Mg元素能够提升叶绿体的光合作用能力[31],果皮中叶绿体光合作用可以取代PPP(戊糖磷酸途径),提供果皮合成各种酚类物质所需的NADPH(还原辅酶Ⅱ)和碳架[32]。此外,土壤K元素含量与植株B 元素含量呈极显著正相关[33];在K 肥供应充足时,促进植株对B 养分的大量吸收,有利于果实籽粒发育[34],从而促进了籽酚类物质的积累。经过主成分分析得出的综合评价结果,除T6处理外,施肥处理的评价均高于不施肥处理(T1),T9处理的综合评分最高,说明N 124.5 kg·hm-2、P2O5 0.0 kg·hm-2、K2O 112.5 kg·hm-2、CaO 168.8 kg·hm-2、MgO 23.3 kg·hm-2是本试验条件下提高赤霞珠果实综合品质的最佳施用量。
在本试验条件下,T9处理对赤霞珠果实提升基本性状和改善品质的综合效果最佳。土壤Mg 和K元素分别对赤霞珠果皮和种子酚类物质的积累影响最大。由于施肥与土壤基础肥力有密切关系,因此在其他土壤条件下的施肥效果还有待进一步试验。
[1]张晓倩.滴灌条件下不同氮,钾施肥处理对红富士苹果树体生长、产量和果实品质的影响[D].保定:河北农业大学,2017.ZHANG Xiaoqian. Effects of different nitrogen and potassium fertilization treatments on the growth,yield and fruit quality of Red Fuji apple trees under drip irrigation[D]. Baoding:Hebei Agricultural University,2017.
[2]冯宇辉,李悦,丁想,章世奎,耿文娟,樊国全.不同施肥处理对库尔勒香梨果实产量和品质的影响[J].北方园艺,2021(13):52-57.FENG Yuhui,LI Yue,DING Xiang,ZHANG Shikui,GENG Wenjuan,FAN Guoquan. Effects of different fertilization treatments on fruit yield and quality of Korla Fragrant Pear[J].Northern Horticulture,2021(13):52-57.
[3]侯志强,刘永民.不同施肥处理对设施葡萄品质及产量的影响[J].江西农业,2019(20):19.HOU Zhiqiang,LIU Yongmin. Effects of different fertilization treatments on grape quality and yield in facility[J].Jiangxi Agriculture,2019(20):19.
[4]田光华,万太友,王文礼,饶念贤,付丽.营养诊断配方施肥对桃产量品质的影响[J].安徽农业科学,2015,43(2):137-138.TIAN Guanghua,WAN Taiyou,WANG Wenli,RAO Nianxian,FU Li. Effect of nutrition diagnosis and formula fertilization on peach production and quality[J]. Journal of Anhui Agricultural Sciences,2015,43(2):137-138.
[5]程杰山,蒋爱丽,奚晓军,田益华.不同施肥量对巨玫瑰葡萄生长和果实品质的影响[J].中国农学通报,2012,28(25):167-171.CHENG Jieshan,JIANG Aili,XI Xiaojun,TIAN Yihua. Study on the effects of growth and fruit quality in response to different fertilizing levels in‘Jumeigui’grapes[J]. China Agricultural Science Bulletin,2012,28(25):167-171.
[6]高俊杰,焦自高,于贤昌,孙巧峰,王崇启,董玉梅.施肥量对温室基质栽培甜瓜生理特性和产量品质的影响[J].西北农业学报,2005,14(5):92-96.GAO Junjie,JIAO Zigao,YU Xianchang,SUN Qiaofeng,WANG Chongqi,DONG Yumei.Effect of fertilization on physiologic character and yield and quality of muskmelon in solar greenhouse[J]. Acta Agriculturae Boreali-Occidentalis Sinica,2005,14(5):92-96.
[7]MORALES-SILLERO A, FERNÁNDEZ J E, ORDOVÁS J,SUÁREZ M P, PÉREZ J A, LIÑÁN J, LÓPEZ E P, GIRÓN I,TRONCOSO A. Plant-soil interactions in a fertigated‘Manzanilla de Sevilla’olive orchard[J]. Plant and Soil,2009,319(1):147-162.
[8]王天亮,程皓.农业生产中的氮肥施用现状及其环境效应研究进展[J].黑龙江环境通报,2020,33(3):58-59.WANG Tianliang,CHENG Hao. Research progress of nitrogen fertilizer application and its environmental effects in agricultural production [J]. Heilongjiang Environmental Journal,2020,33(3):58-59.
[9]李旭.减氮施肥对柑橘树体氮素含量、果实品质产量和氮肥利用的影响[D].武汉:华中农业大学,2020.LI Xu. Effects of reduced nitrogen fertilization on nitrogen content,fruit yield and nitrogen fertilizer utilization of citrus trees[D].Wuhan:Huazhong Agricultural University,2020.
[10]陈海宁,张强,沈彦辉,王敏,齐英杰,侯广军.化肥减施对‘烟富3’苹果叶片功能和果实产量与品质的影响[J].中国果树,2021(4):52-54.CHEN Haining,ZHANG Qiang,SHEN Yanhui,WANG Min,QI Yingjie,HOU Guangjun. Effects of reduced application of chemical fertilizers on leaf function,fruit yield and quality of‘Yanfu 3’apple[J].China Fruits,2021(4):52-54.
[11]位高生.氮磷减量施肥对琯溪蜜柚果实产量、品质及树体和土壤养分的影响[D].武汉:华中农业大学,2018.WEI Gaosheng. The effect of nitrogen and phosphorus fertilizer reduction on yield,quality of Guanxi pomelo and tree,soil nutrients[D].Wuhan:Huazhong Agricultural University,2018.
[12]邹立新,蒋宏,吴学平,龚林忠. 化肥减量配施有机肥对‘藤稔’葡萄的影响[J].林业科技通讯,2021(5):84-86.ZOU Lixin,JIANG Hong,WU Xueping,GONG Linzhong. Effects of chemical fertilizer reduction combined with organic fertilizer on‘Tengren’grape[J]. Practical Forestry Technology,2021(5):84-86.
[13]王海波,王孝娣,史祥宾,王小龙,王莹莹,刘凤之. 果树‘5416’测土配方施肥技术[J].落叶果树,2021,53(5):5-8.WANG Haibo,WANG Xiaodi,SHI Xiangbin,WANG Xiaolong,WANG Yingying,LIU Fengzhi.The‘5416’soil testing and formula fertilization technology of fruit trees[J].Deciduous Fruits,2021,53(5):5-8.
[14]CONRADIE W. Seasonal uptake of nutrients by Chenin blanc in sand culture:II. Phosphorus,potassium,calcium and magnesium[J]. South African Society for Enology and Viticulture,1981,2(1):7-13.
[15]王小龙,张正文,钟晓敏,王记侠,卞凤娥,王坤,刘凤之,王海波.不同施肥对酿酒葡萄果实产量和品质的影响[J].中国南方果树,2020,49(2):107-113.WANG Xiaolong,ZHANG Zhengwen,ZHONG Xiaomin,WANG Jixia,BIAN Feng’e,WANG Kun,LIU Fengzhi,WANG Haibo. Effects of different fertilization on fruit yield and quality of wine grapes[J].South China Fruits,2020,49(2):107-113.
[16]苏鹏飞.宁夏青铜峡产区主栽红色酿酒葡萄成熟度控制指标的研究[D].杨凌:西北农林科技大学,2016.SU Pengfei.Study of maturity control indexes of major red wine grapes from Qingtongxia City in Ningxia[D]. Yangling:Northwest A&F University,2016.
[17]王小龙,史祥宾,冀晓昊,王宝亮,张艺灿,王海波.基于主成分分析的酿酒葡萄杂交后代果实品质评价[J].中外葡萄与葡萄酒,2021(5):8-13.WANG Xiaolong,SHI Xiangbin,JI Xiaohao,WANG Baoliang,ZHANG Yican,WANG Haibo.Fruit evaluation of hybrid progeny of wine grape based on principal component analysis [J]. Sino-Overseas Grapevine&Wine,2021(5):8-13.
[18]吴长飞.合理施肥与土壤环境可持续发展关系探究[J].南方农业,2018,12(5):148-149.WU Changfei.Research on the relationship between rational fertilization and sustainable development of soil environment[J].South China Agriculture,2018,12(5):148-149.
[19]王贺,邓明江,王旋,赵志奇,王忆,许雪峰,韩振海.减施化肥对京津地区苹果生长发育的影响[J].果树学报,2020,37(2):196-203.WANG He,DENG Mingjiang,WANG Xuan,ZHAO Zhiqi,WANG Yi,XU Xuefeng,HAN Zhenhai. Effects of reducing chemical fertilizer use on apple tree growth and development in Beijing and Tianjin orchards[J]. Journal of Fruit Science,2020,37(2):196-203.
[20]于会丽,谢宁,徐国益,邵微,徐变变,乔宪生,司鹏.化肥减量配施海藻复合物对葡萄产量、品质和养分吸收的影响[J].果树学报,2022,39(4):584-592.YU Huili,XIE Ning,XU Guoyi,SHAO Wei,XU Bianbian,QIAO Xiansheng,SI Peng. Effects of chemical fertilizer reduction combined with seaweed complex application on yield,fruit quality and nutrient absorption of grape[J]. Journal of Fruit Science,2022,39(4):584-592.
[21]张筠筠.化肥减施对酿酒葡萄园土壤质量及酿酒葡萄产量品质的影响研究[D].银川:宁夏大学,2019.ZHANG Junjun. Effect of fertilizer reduction on soil quality and wine grape quality and yield at the vineyard[D]. Yinchuan:Ningxia University,2019.
[22]李冬莲,王允镔,叶海萍,郭志刚.柑橘均衡营养肥对黄岩蜜橘品质的影响[J].肥料与健康,2021,48(5):36-41.LI Donglian,WANG Yunbin,YE Haiping,GUO Zhigang. The effect of citrus balanced nutrient fertilizer on the quality of Huangyan Tangerine[J].Fertilizer&Health,2021,48(5):36-41.
[23]陈丽楠,刘秀春,王炳华.优化配方施肥对葡萄产量及品质的影响[J].中国果树,2014(2):33-36.CHEN Linan,LIU Xiuchun,WANG Binghua. Effects of optimized formula fertilization on grape yield and quality[J]. China Fruits,2014(2):33-36.
[24]马宗桓,赵津,马维峰,李文芳,毛娟,陈佰鸿.施肥配比对‘黑比诺’葡萄叶片生长及矿质元素的影响[J].中外葡萄与葡萄酒,2021(6):54-60.MAZonghuan,ZHAO Jin,MAWeifeng,LI Wenfang,MAO Juan,CHEN Baihong. Effects of proportioned fertilization on the growth and nutrient content of‘Pinot Noir’grapevine leaves[J].Sino-Overseas Grapevine&Wine,2021(6):54-60.
[25]王端,景晨娟,陈雪峰,刘志琨,武晓红.不同氮磷钾配比对杏光合性能及果实品质的影响[J]. 中国土壤与肥料,2021(6):175-179.WANG Duan,JING Chenjuan,CHEN Xuefeng,LIU Zhikun,WU Xiaohong. Effects of different NPK ratios on photosynthetic characteristics and fruit quality of apricot[J]. Soils and Fertilizers Sciences in China,2021(6):175-179.
[26]HUANG X M,YUAN W Q,WANG H C,LI G,HUANG H B.Early calcium accumulation may play a role in spongy tissue formation in litchi pericarp[J].The Journal of Horticultural Science Biotechnology,2004,79(6):947-952.
[27]LESTER G E,JIFON J L,MAKUS D J.Impact of potassium nutrition on postharvest fruit quality:Melon (Cucumis melo L.)case study[J].Plant and Soil,2010,335(1):117-131.
[28]岳泰新.不同生态区酿酒葡萄与葡萄酒品质的研究[D].杨凌:西北农林科技大学,2015.YUE Taixin. Study on wine grape and wine quality from different ecological regions[D].Yangling:Northwest A& F University,2015.
[29]刘政海,李六林,董志刚,谭伟,李晓梅,唐晓萍.梅鹿辄葡萄4个营养系果实酚类物质变化研究[J].中国酿造,2017,36(7):114-118.LIU Zhenghai,LI Liulin,DONG Zhigang,TAN Wei,LI Xiaomei,TANG Xiaoping. Changes of phenolic compounds in four clones of Merlot grape[J].China Brewing,2017,36(7):114-118.
[30]RODRIGUEZ-DELGADO M Á,GONZALEZ-HERNANDEZ G,CONDE-GONZALEZ J E,PEREZ-TRUJILLO J P.Principal component analysis of the polyphenol content in young red wines[J].Food Chemistry,2002,78(4):523-532.
[31]韩艳婷,杨国顺,石雪晖,刘昆玉,熊兴耀.‘红地球’葡萄叶片光合特性对镁素用量的响应[J].农业现代化研究,2011,32(3):381-384.HAN Yanting,YANG Guoshun,SHI Xuehui,LIU Kunyu,XIONG Xingyao. Response of photosynthetic characteristics of‘Red Earth’grape leaves to magnesium dosage[J]. Research of Agricultural Modernization,2011,32(3):381-384.
[32]黄旭明.葡萄浆果转熟生理变化的机理研究[D].广州:华南农业大学,1998.HUANG Xuming. Mechanism study on physiological changes of grape berries during ripening[D]. Guangzhou:South China Agricultural University,1998.
[33]黄春辉,曲雪艳,刘科鹏,冷建华,涂贵庆,李帮明,徐小彪.‘金魁’猕猴桃园土壤理化性状、叶片营养与果实品质状况分析[J].果树学报,2014,31(6):1091-1099.HUANG Chunhui,QU Xueyan,LIU Kepeng,LENG Jianhua,TU Guiqing,LI Bangming,XU Xiaobiao.Analysis of soil physicochemical properties,leaf nutrients and fruit qualities in the orchards of‘Jinkui’kiwifruit (Actinidia deliciosa)[J]. Journal of Fruit Science,2014,31(6):1091-1099.
[34]佟鑫,马振朝,张子涛,王志慧,张丽娟,吉艳芝.河北省赤霞珠葡萄土壤养分情况与叶片营养诊断分析[J].江苏农业科学,2021,49(13):146-151.TONG Xin,MA Zhenchao,ZHANG Zitao,WANG Zhihui,ZHANG Lijuan,JI Yanzhi. Diagnosis of soil nutrients and leaf nutrition of Cabernet Sauvignon grapes in Hebei province[J]. Jiangsu Agricultural Sciences,2021,49(13):146-151.
Effects of different fertilization treatments on quality characters and phenolic content of Cabernet Sauvignon fruit