苹果苗木是产业高质量发展的种源基础,直接关系到建园后树体的早果丰产能力。由于形态指标易于观察测量,被作为果树苗木分级和苗木质量评价的唯一标准[1]。形态指标在一定程度上可以反映苗木质量,但苗木的高度与苗木栽植后树体的田间生长表现相关性并不强,干径和根系的数量与苗木定植后的生长潜力显著相关,是衡量苗木质量的最佳形态指标[2]。果树苗木的性能不仅受苗木高度和干径等外部形态指标的影响,还受氮和碳水化合物含量等生理参数的影响,内在生理因素对苗木成活和翌年的生产潜力影响更大,定植后萌芽、抽枝、展叶和最初几周的苗木生长几乎完全依赖于苗木中的贮备营养[3]。果树作为多年生木本植物,贮藏营养水平对植株翌年的生长发育具有重要影响。非结构性碳水化合物(non-structural carbohydrate,NSC)可溶性糖和淀粉是苗木体内的重要碳源,是苹果苗木定植后早期生长发育的重要物质和能量来源,直接关系到苗木的生长代谢和对环境的适应能力[4]。果树新生器官构建所需的50%~90%的氮均依赖于苗木中贮备氮的再动员和再分配[5],休眠季氮以氨基酸或蛋白质的形式贮存在根部和树皮中[6],春季被重新动员和活化用于新生器官的生长[7],第2年树体内再活化的氮水平高度依赖于上一季节的氮供应和氮储备[8]。
矮化密植栽培是世界苹果产业发展的方向和趋势,在减少营养生长、增加早期产量和降低劳动成本等方面发挥了重要的作用[9]。利用矮化自根砧和矮化中间砧是实现苹果矮密栽培的主要途径之一。目前世界苹果主要生产国广泛应用矮化自根砧栽培方式,我国苹果园由于立地条件复杂多样,矮化自根砧具有固地性和适应性弱等缺点,利用矮化中间砧是目前苹果园进行矮砧密植栽培的主要方式之一[10]。不同矮化砧木影响嫁接品种茎部横截面积(TCA)、树高、新梢长度等外部形态[11],也对根系的形态、空间分布特征产生重要影响[12]。不同矮化砧木根系吸收营养物质及运输的速率和程度有很大差异,导致碳水化合物等物质在树体内运转与分配不同,植株整个生长周期内贮藏营养的积累也产生变化[13]。王颖达等[14]研究了3个品种4个砧木组合苗木的高度、粗度、分枝、成活率和成苗率,筛选出了适宜岳冠、岳阳红和望山红的适宜砧木GM256。宋晓敏[13]研究发现M9 砧木的长富2 号和福岛短枝叶片中的淀粉和非结构性碳水化合物含量显著高于M26 和八棱海棠。砧木生长势越强,根系提供给再动员的贮藏氮就越多,新生器官生长发育可利用的氮就越丰富[15]。
我国苹果产业正处于新旧栽培模式转化的关键时期,对苗木的数量和质量提出了更高的要求。然而,我国苹果苗木的质量普遍不高,导致建园整齐度差,开花结果晚,产量效益低下,严重制约了我国苹果产业的转型升级和高质量发展[16]。因此,研究不同矮化砧木对苹果苗木生长特性、根系构型、碳氮贮藏养分的影响,对评价和筛选适宜的砧穗组合、培育高质量苗木具有重要的理论和实践意义。
试验于2018 年4 月—2020 年11 月在中国农业科学院果树研究所温泉试验基地进行。2018年4月在园地定植组培山定子幼苗1400株,株行距为15 cm×60 cm,组培山定子为果树所栽培与生理研究中心组培室自已培育而成。同年8 月采集M9、M9-T337、M9-Pajam 2、M26、MM111、Mac9、P1、SH1、SH6、SH38、SH40、GM256、GM310 和辽砧2 号共14 种砧木的接穗于距地面5 cm处进行T字形芽接,每种砧木嫁接100 株,2019 年4 月剪砧,同年8 月于中间砧30 cm处嫁接烟富3号富士苹果接芽,2020年4月剪砧,2020年秋季成苗。10月中旬落叶前选择生长势整齐一致的苗木起苗,保证植株和根系的完整性。每个砧穗组合选择10 棵长势均匀一致的单株进行相关指标测定。
树体生长特性:起苗后使用钢卷尺测量不同中间砧苗木的高度、节间长度、根深、根幅(南北和东西);采用电子游标卡尺Sylvac SA测定基砧粗度、中间砧粗度和品种粗度,中间砧粗度调查下接口以上10 cm处,品种粗度调查上接口以上10 cm处。将根系置于贴有坐标纸的平板上,分别测量根系垂直分布的长度,水平分布南北和东西方向的最大直径,计算根幅。计算中间砧与基砧、品种与中间砧直径的比值。
根冠比:每个处理的植株按照叶片、品种枝条、中间砧、根系4部分进行株解,分别称量地上部和地下部鲜质量,根冠比=地下部鲜质量/地上部鲜质量。
根系形态指标:清洗后用根系扫描仪EPSONTWAIN PRO(32 bit)和专业的根系形态学和结构分析应用软件WINRhizo测定总根长、总根表面积、总根体积、平均根系直径、根尖数、分枝数、根叉数。
淀粉和可溶性糖含量:分别称取不同处理不同部位烘干后样品粉末0.2 g,采用蒽酮比色法测定可溶性糖和淀粉含量,使用紫外分光光度计测620 nm处的吸光值,根据葡萄糖标准曲线计算可溶性糖和淀粉含量。
可溶性蛋白与游离氨基酸含量:分别称取不同处理不同部位烘干后样品粉末0.2 g,可溶性蛋白质含量采用考马斯亮蓝G-250 法测定,使用紫外分光光度计测595 nm处的吸光值,根据牛血清白蛋白标准曲线计算可溶性蛋白含量;游离氨基酸含量采用茚三酮显色法测定,使用紫外分光光度计测570 nm处的吸光值,根据氨基酸标准曲线计算游离氨基酸含量。
采用Excel 2010 进行图表制作,采用SPSS 19.0统计软件进行Tukey方差分析和相关性分析。采用隶属函数综合评价法[17]对各指标进行综合评价分析,根据得分高低进行排名。
茎部干截面积是衡量树体生长势强弱的重要指标,与树体的高度、叶面积和分枝的数量高度相关[18]。从表1 可以看出,山定子基砧部分干截面积以SH1 中间砧最大,显著高于其他中间砧,MM111中间砧次之,与M26 无显著差异,但高于其他中间砧,M26 中间砧位列第三,与P1 和辽砧2 号未达到显著差异水平,但显著高于剩余的其他中间砧;中间砧部分干截面积SH1中间砧位列第一,与辽砧2号、M26、MM111差异不显著,但显著高于其他中间砧,SH38 中间砧干截面积最小,与GM256、GM310、SH6、Mac9、M9-Pajam 2、M9-T337、M9 和P1 未达到显著差异水平,但显著低于其他中间砧;品种烟富3号干截面积以SH1 中间砧为最大,与MM111 和SH38差异不显著,显著高于其他中间砧,MM111显著高于P1、GM310、GM256 和M9,与其他中间砧差异不显著,M9中间砧品种干截面积最小,显著低于其他中间砧。
表1 不同中间砧对苗木各部位干截面积及其比值影响
Table 1 Effects of interstock combination on TCSA and stem diameter ratio
注:不同小写字母表示差异显著(p<0.05)。下同。
Note:Different small letters indicated significant difference at p<0.05.The same below.
中间砧Interstock M9 M9-T337 M9-Pajam 2 M26 MM111 Mac9 P1 SH1 SH6 SH38 SH40 GM256 GM310辽砧2号Liaozhen No.2基砧干截面积TCSA of primary rootstock/cm2 1.79±0.28 d 1.84±0.21 d 1.95±0.24 d 3.26±0.14 bc 3.43±0.38 b 2.43±0.16 d 2.64±0.03 cd 4.74±0.60 a 2.23±0.32 d 2.19±0.21 d 2.43±0.08 d 2.06±0.44 d 2.03±0.06 d 2.51±0.33 cd中间砧干截面积TCSA of interstem rootstock/cm2 1.57±0.26 de 1.70±0.24 de 1.73±0.18 de 2.35±0.34 abc 2.35±0.40 abc 1.98±0.26 bcde 1.52±0.17 de 2.88±0.53 a 1.80±0.46 cde 1.36±0.08 e 1.99±0.25 bcd 1.92±0.58 cde 1.91±0.59 cde 2.53±0.05 ab品种干截面积TCSA of scion/cm2 1.13±0.23 e 1.40±0.22 bcd 1.41±0.06 bcd 1.48±0.11 bcd 2.15±0.64 ab 1.58±0.35 bcd 1.21±0.13 de 2.55±0.57 a 1.71±0.28 bcd 1.99±0.08 abc 1.61±0.15 bcd 1.32±0.14 cd 1.34±0.27 cd 1.67±0.28 bcd中间砧粗度/基砧粗度Ratio of interstock and primary rootstock diameter 0.94 0.96 0.94 0.85 0.83 0.90 0.77 0.78 0.89 0.79 0.84 0.96 0.97 1.01品种粗度/中间砧粗度Ratio of scion and interstock diameter 0.85 0.93 0.90 0.79 0.97 0.89 0.95 0.93 0.98 1.21 0.90 0.84 0.95 0.81
嫁接口上下部位粗度比被定义为嫁接部位的平滑度,通常被认为是砧木和接穗亲和性的重要指标[19],也与砧木生长势不同有关[20]。比值越接近1,砧木和接穗之间的亲和力越好[21]。如表1 所示,辽砧2 号中间砧与基砧山定子粗度最接近,粗度比为1.01,GM310、G256、M9-T337、M9-Pajam 2、M9、Mac9 与基砧的粗度比介于0.90~0.97 之间,其余则低于0.9。SH38中间砧嫁接品种后表现出明显的小脚现象,品种与中间砧粗度比为1.21,其余中间砧粗度均高于品种粗度,品种与中间砧粗度比介于0.9~0.98 之间的中间砧包括M9-T337、M9-Pajam 2、MM111、P1、SH1、SH6、SH40和GM310。
致矮性是砧木选择的重要性状之一,苗木大小受砧木固有遗传特性以及砧穗互作的影响[22]。如表2所示,不同矮化中间砧烟富3号苹果苗木的高度存在差异。SH1 中间砧烟富3 号的苗木高度最大,与MM111、Mac9、SH38、辽砧2号、SH6、M26差异不显著,但显著高于其他中间砧。GM310、GM256、M9与P1中间砧烟富3号的苗木高度不存在显著差异,但显著低于其他中间砧。砧木对品种1年生枝的节间长度有一定影响,本试验中SH38中间砧烟富3号的1 年生枝节间长度最大,与M9、SH1、SH6、M26、M9-T337、Mac9、SH40、GM310 之间差异不显著,但显著高于MM111、辽砧2号、GM256、M9-Pajam 2和P1。P1 中间砧烟富3 号的1 年生枝节间长度最小,与辽砧2 号、GM256、M9-Pajam 2 差异不显著,但显著低于其他中间砧。根深和根幅代表根系在土壤中分布的深度和广度,SH1 中间砧组合具有最大的根系深度和幅度,M9-Pajam 2 中间砧组合根深和根幅则最小。根冠比是植物光合作用产物分配的重要体现[23]。从表2 可以看出,GM256 中间砧组合根冠比最大,与Mac9 和辽砧2 号差异不显著,但显著高于其他中间砧。P1和M9-Pajam 2的根冠比最小。
表2 不同中间砧对苗木外部形态的影响
Table 2 Effects of interstock combination on seedling morphology
中间砧Interstock M9 M9-T337 M9-Pajam 2 M26 M111 Mac9 P1 SH1 SH6 SH38 SH40 GM256 GM310辽砧2号Liaozhen No.2高度Height/cm 180.67±9.02 def 186.67±10.41 cde 189.67±8.5 bcde 193.00±3.06 abcde 206.33±4.93 ab 204.33±5.13 abc 165.33±17.47 f 210.00±14.42 a 195.33±6.51 abcde 203.67±5.13 abc 191.00±18.52 bcde 167.00±12.12 f 178.67±13.87 ef 198.00±5.29 abcd节间长度Internode length/cm 3.46±0.24 ab 3.37±0.15 abc 2.99±0.06 de 3.48±0.22 ab 3.21±0.19 bcd 3.37±0.13 abc 2.85±0.35 e 3.45±0.06 ab 3.45±0.10 ab 3.54±0.06 a 3.29±0.17 abc 3.12±0.20 cde 3.26±0.25 abcd 3.13±0.10 cde根深Root depth/cm 40.33±3.51 abcd 39.33±3.51 abcd 35.33±1.53 d 36.33±3.51 cd 36.67±3.51 bcd 43.00±1.73 abc 40.33±2.08 abcd 44.67±4.73 a 39.33±4.51 abcd 42.67±4.62 abc 46.00±7.55 a 44.67±2.52 a 43.33±5.77 ab 40.00±2.65 abcd根幅(东西)Root east-west width/cm 49.33±11.24 bcd 44.67±3.79 bcd 28.33±2.31 e 46.00±7.21 bcd 47.33±3.79 bcd 42.33±3.21 cd 40.33±2.08 d 69.67±6.66 a 39.00±4.36 d 48.33±6.81 bcd 51.33±8.08 bc 53.00±7.00 b 48.00±2.00 bcd 47.00±9.00 bcd根幅(南北)Root south-north width/cm 36.33±6.35 bcd 37.33±1.53 bcd 23.00±2.00 e 35.00±4.58 bcd 37.33±3.79 bcd 33.67±3.06 cd 30.00±3.46 de 49.67±6.43 a 30.33±2.03 de 37.67±2.52 bcd 39.00±6.24 bc 42.00±6.93 ab 37.00±4.36 bcd 35.33±7.57 bcd根冠比Root/Shoot ratio 0.44±0.06 d 0.44±0.09 d 0.40±0.05 d 0.41±0.08 d 0.55±0.09 bcd 0.70±0.11 ab 0.40±0.06 d 0.59±0.10 bcd 0.47±0.10 cd 0.54±0.12 bcd 0.46±0.08 cd 0.86±0.04 a 0.57±0.11 bcd 0.69±0.10 abc
如表3 所示,不同中间砧组合的根系性状差异显著,辽砧2 号中间砧组合具有最大的总根长,与MM111、M9-Pajam 2、SH1 差异不显著,但显著高于其他中间砧。SH40总根长最小,与M9-T337、M26、Mac9、SH6、SH38不存在显著差异,但明显低于其他中间砧。SH1中间砧组合总根表面积最大,与辽砧2号、MM111 差异不显著,但显著高于其他中间砧。SH40总根表面积最小,与M9、M9-T337、M26、P1、SH6、SH38未达到显著水平。Mac9和M9-T337中间砧组根系直径最大,与GM256A 和SH1 差异不显著。P1 和M9-Pajam 2 根系直径最小,与M9、MM111、M26、SH6、SH38、SH40、GM310 和辽砧2号未达到差异显著水平。SH1中间砧组合具有最大的根体积,显著高于其他中间砧。P1 总根体积最小,与SH6、SH40、SH38、M9、M9-Pajam 2、M26差异不显著。辽砧2号中间砧组合的根尖数、分枝数和根叉数最高,M9-T337具有最少的根尖数和根叉数,SH40的分枝数最少。
表3 不同中间砧对苗木根系特征参数的影响
Table 3 Effects of interstock combination on root characteristic parameters
中间砧Interstock M9 M9-T337 M9-Pajam 2 M26 M111 Mac9 P1 SH1 SH6 SH38 SH40 GM256 GM310辽砧2号Liaozhen No.2总根长度Root length/cm 3 828.3±399.4 cde 2 895.1±739.0 ef 4 818.5±541.6 ab 3 487.2±209.3 def 5 016.6±405.1 ab 2 978.7±310.9 ef 3 607.0±275.3 cde 4 673.4±351.9 abc 2 689.6±195.5 ef 3 129.1±320.1 def 2 375.4±373.5 f 3 672.0±461.3 cde 4 181.3±629.8 bcd 5 612.1±376.3 a总根表面积Surface area/cm2 930.6±108.7 defg 841.5±112.7 efg 1 024.5±176.2 cde 905.1±39.1 efg 1 147.2±62.5 abc 972.6±66.8 cdef 830.8±50.6 efg 1 325.1±78.8 a 774.7±97.9 fg 831.5±84.7 efg 700.2±72.3 g 1 077.3±101.2 bcd 1 082.0±124.8 bcd 1 275.7±71.1 ab平均根系直径Average diameter/mm 1.1±0.1 cd 1.6±0.2 a 1.0±0.1 d 1.2±0.1 cd 1.1±0.1 d 1.6±0.1 a 1.0±0.3 d 1.4±0.2 abc 1.1±0.2 cd 1.3±0.2 bcd 1.2±0.3 cd 1.4±0.3 abc 1.3±0.2 bcd 1.2±0.1 cd总根体积Root volume/mm3 31.3±3.1 fg 41.4±5.7 de 32.5±4.4 efg 29.1±1.1 g 38.7±5.0 def 57.3±4.5 b 24.1±1.2 g 70.5±6.8 a 28.0±2.4 g 32.0±3.7 efg 27.8±3.6 g 46.1±7.0 cd 47.8±5.7 bcd 54.2±1.4 bc根尖数Tips 11 581.3±1 216.4 cde 7 433.7±1 646.7 e 14 627.7±2 390.2 abc 11 736.0±1 028.6 cde 16 507.3±1 224.7 ab 8 165.6±760.6 e 9 923.0±1 090.9 de 16 105.3±1 769.0 ab 9 669.0±1 161.1 de 9 185.0±863.3 de 8 825.3±918.2 de 11 567.7±1 517.1 cde 13 159.2±1 533.8 bcd 18 604.8±1 295.5 a分枝数Forks 11 381.1±1 879.0 cde 7 084.0±1 248.2 e 13 084.0±1 583.6 bcd 10 649.3±534.1 cde 16 059.9±1 615.3 ab 7 148.0±738.2 e 10 338.7±1 196.2 cde 13 027.3±1 827.9 bcd 9 691.0±861.9 de 9 106.0±1 244.5 de 6 268.0±587.6 e 10 105.6±1 852.6 cde 13 641.1±1 941.9 bc 20 068.1±1 602.2 a根叉数Crossings 1 425.6±226.1 cd 768.3±120.8 d 1 586.7±230.0 bc 1 202.1±78.9 cd 2 017.2±208.8 b 828.3±81.0 d 1 233.7±191.1 cd 1 608.0±223.8 bc 1 183.3±155.8 cd 1 125.0±112.5 cd 776.7±82.4 d 1 179.2±216.2 cd 1 703.2±362.9 bc 2 940.3±259.7 a
可溶性糖和淀粉是植株碳素贮藏营养的重要部分,其含量反映了当年植株光合产物的积累和分配状况,是评价苗木质量和抗性的重要指标[4]。从表4 可以看出,叶片和根系中的可溶性糖含量高于枝条和中间砧部位,SH1 中间砧烟富3 号叶片的可溶性糖含量最高,与MM111 和SH38 差异不显著,P1 中间砧组合叶片可溶性糖含量最低,与M9 和GM256 未形成显著差异。枝条中可溶性糖含量以SH1中间砧组合为最高,与MM111 没有显著差异,P1 中间砧组合枝条部位可溶性糖含量依然为最低,与M9 和SH40 差异不显著,中间砧部位可溶性糖含量以MM111 为最高,与其未形成显著差异的中间砧组合包括SH1、辽砧2号、SH40、M26、SH6、SH38、GM310,M9-Pajam 2中间砧部位可溶性糖含量最低,与M9、M9-T337、GM256和P1差异不显著。MM111中间砧组合根系中的可溶性糖含量最高,与SH1、辽砧2 号、SH38、Mac9、M26 差异不显著,根系中可溶性糖含量最低的为M9,与M9-T337、M9-Pajam 2、SH40 未形成显著差异。淀粉含量总体表现为根系>中间砧>枝条>叶片,叶片中的淀粉含量以P1 中间砧组合最高,与Mac9、M9、M9-Pajam 2 和M9-T337 差异不显著,以MM111 组合淀粉含量最低。枝条中的淀粉含量以P1 中间砧组合最高,显著高于其他中间砧,MM111组合枝条的淀粉含量最低,与SH1和SH38差异不显著。中间砧部位淀粉含量以P1最高,与M9-Pajam 2和M9-T337 差异不显著。SH1 中间砧淀粉含量最低,与SH38未形成显著差异。P1中间砧组合根系中的淀粉含量最高,显著高于其他中间砧,MM111 组合根系中的淀粉含量最低,与SH1、SH6、SH38、GM310和辽砧2号差异不显著。
g·g-1)t/(m 5.36 b 9±9±8±4±5±6±5±0±6±3±1±7±3±7±nten 2.95 bc 3.02 bcd 7.30 cde 1.63 g 8.22 cd 5.80 a 4.19 fg 6.55 efg 2.36 efg 3.31 cdef 1.34 cd 3.60 efgefg 7.11 d co 5750494233487034353642483641.6.5.3.8.1.0.1.2.4.2.3.2.2.1 g·g-1)gfgefg abcd aabcd bcde abcdef 1.16 0.90 1.57 1.16 0.48defg 4.82 0.33 2.80 0.84abc cdef 5.05 1.70 3.29bcde abc 1.71 4.53 content/(m 21.27±22.72±23.98±29.04±33.30±29.63±27.81±31.91±27.22±31.17±25.65±27.10±28.30±31.27±e 0.88 ab 2.80 ab 0.64 ef g·g-1)0.46 fg 1.15 cde 0.48 d 0.83 a 0.72 j i 1.39 h 0.82 ijhc 6.78 g 4.29 b 1.77 cd 3.16 cde(m .04±3239392824324212181420363432.10±.91±.43±.60±.53±.56±.31±.21±.72±.83±.57±.01±.87±t/(m 0.75 d 5±7±3±9±2±0±6±5±7±5±5±2±9±6±1.00 d 2.09 ab 2.62 a 0.80 bc 0.76 cd g·g-1)1.19 a 2.13 ab 0.70 ab 1.39 ab 0.65 ab conten 1.96 a 1.22 d 0.86 cd.5.1.4.6.6.5.4.2.5.9.8.2.8.0 1314131920171520191819151820同不bin木苗)1.47 bc 7±5±9±5±6±1±5±5±0±7±9±3±8±5±f interstock com粉Starch content/g·g-1)4.38 bcd 1.37 bc 3.02 bcde 1.28 g 0.09 ef 4.79 a 1.57 fg 3.96 bcde 0.24 fg 1.71 ef 0.80 def 0.62 cde 1.26 b对w(淀砧.8.2.0.2.1.4.6.7.3.3.9.4.4.5 2727282517223219262022232428间(m中同不4)ar g·g-1)efde de de abde fabbc efcde bcd b表Effects o糖性Table 4Branches 1.65 0.42 1.02 1.85 1.30 0.86 0.60 5.46 1.41 1.39 0.21 0.51 1.40 0.88条w(Solu 溶ble sug可枝content/(m 14.10±15.83±15.96±15.65±21.08±16.51±12.47±23.92±20.49±19.66±15.12±17.01±18.24±20.56±aababceaade粉)2.14 Starch content/3±1±0±1±2±8±1±5±7±0±8±4±0±6±0.75 0.94 1.59 0.84 2.15 1.00 1.07 g·g-1)2.11 bcbcbccdcdbc 0.39 0.94 0.88 1.59 1.63(m w(18.4 16.9淀18.3 15.3 11.4 18.5 19.0 11.8 15.7 14.6 14.7 14.1 14.2 15.0)Leaf 糖溶g·g-1)性可luble sugar 0.62 e t/(m 1±3±4±5±2±0±2±3±6±9±9±4±7±0±nten 1.80 cd 2.77 cd 1.77 bc 2.78 ab 3.50 bc 1.86 e 2.98 a 0.91 bc 0.79 ab 0.95 cd 0.56 de 0.68 cd 3.26 cd片.0.4.6.6.0.6.5.2.0.6.0.7.2.2叶w(So co 2428283033292334303228252829 2辽Liaozhen ck 7 33中Intersto 砧M9M9 No.2间-T-P6 ajam M9 M2M111 Mac93102号P1SH 163840256 SH SH SH GM GM砧
游离氨基酸作为氮代谢的枢纽,是氮经根系吸收后同化的第一产物,是果树体内贮藏氮素的主要形态[24]。如表5 所示,M9-Pajam 2 中间砧组合各部位的游离氨基酸含量均为最高,叶片、枝条和根系中的游离氨基酸含量均显著高于其他中间砧,中间砧部位与Mac9 和P1 之间无显著差异,但显著高于其他中间砧。叶片中的游离氨基酸含量以MM111为最低,与M26、SH1、SH38 和SH40 差异不显著。枝条中的游离氨基酸含量以SH40 为最低,与MM111、SH6 和SH38 不存在显著差异。SH1 中间砧部位的游离氨基酸含量最低,与SH6、SH40、SH38 未形成显著差异。根系中的游离氨基酸含量以SH6 为最低,与SH38、SH40、M9 和M9-T337 差异不显著。可溶性蛋白含量的高低可以反映植物对氮素的同化能力,积累的营养贮藏蛋白质是苗木翌年春季重新开始生长所需氮素的主要来源[25]。从表5 可以看出,MM111 叶片和枝条中可溶性蛋白含量均最高,叶片中含量显著高于其他中间砧,枝条与其他中间砧不存在显著差异。Mac9 中间砧组合叶片的可溶性蛋白含量最低,与P1、GM310 和M9-Pajam 2 差异不显著。SH1 中间砧和根系中的可溶性蛋白含量均为最高,中间砧部位显著高于Mac9和M26,与其他中间砧不存在显著差异。根系部位显著高于SH6 和SH40,与其他中间砧差异不显著。中间砧部位可溶性蛋白含量以Mac9 最低,根系部位以SH40为最低。
ababaaababababcabcababab 1.21 1±0±3±9±0±2±4±0±3±4±3±1±0±5±1.31 2.68 0.91 2.55 2.40 2.77 1.24 1.55 0.27 2.93 0.60 2.00 1.46 23.6 22.3 24.9 24.3 22.5 23.1 23.1 25.3 20.9 23.4 19.0 22.5 23.1 23.8 1.04 ef 4.60 def 4.12 a 2.03 bcd 2.68 ef 2.62 bcd 2.06 b 2.63 cde 1.26 f 2.30 f 4.83 ef 3.82 cde 4.35 cde 4.10 bc.76±.79±.56±.68±.84±.41±.48±.26±.82±.45±.68±.41±.87±.35±2021382620263023161720242328 2 b.3.3.4 0.43 ab 6 b 0.43 ab 1.07 ab 1.69 ab 3±1±5±7 ab 0±5±7±6±0±1±8±7±1.66 ab 2.49 ab 9.43±11.03 ab 1.68 ab 9.93±20.64 a 2.87 ab 9.33±01.89 a 101110.9.2.3.9.3.4.7.6.7.4.3 1112101111101211 ec.32 d.92 b 1.19 a.07±±0.42 cd 0.40 a.40 f 0.33 a±0.20 d±0.22 ef.51 b±0.27 b.90 b.14 b.44 efef±0±0±0±0±0±2.01±5.34 7.26 128.05 6.18.06±±0 4.46 5.02 4.65 7.97 8.25 7.94 11113.92 1.66 a 1.76 a 1.61 a 1.61 a 1.23 a 0.94 a 2.06 aa 1.93 2.82 a 1.92 a 1.01 a 2.36 a 1.74 a 1.96 a.04±13 10111213121011111211121212.86±.98±.15±.19±.05±.46±.11±.35±.97±.86±.55±.36±.18±cde 1.33 ffe B Free am acid co cde abc 13.84±±00.85 0.58 2.04 1.24.50 fgh def b bcd bcd不15.00±2±0.45.84 efg.14 fghh±2.67 g±0.99 hcde离±02.44 2.20 1.24 5 w(Table 5 E 条游表枝11.14±11.51±19.92±8.01 10.51±8.86 7.75 7.36 5.65 11.17±13.46±13.27±蛋rotein质)g·g-1)e ef ef e性1.39 bcd白溶ble p 0±7±9±4±2±9±0±7±2±7±8±4±5±5±content/(m 2.07 defg 2.50 cdef 1.34 cdef 0.96 a 1.33 g 0.96 fg 2.02 bcd 0.94 bcd 1.59 b 0.46 bc 1.23 bcd 1.94 efg 1.76 bcd 24.5 w(So 23.9 23.3可lu 24.2 29.6 21.2 22.4 25.4 25.9 26.9 26.2 24.4 23.2 25.1酸)基g·g-1)Leaf 氨离±0.64 cdba 0.90±0.91 ebbc Free amino acid content/(m 12.99±0.53 1.41±1.19 ebcee 1.36 15.45±±0.18 d±3.89 dbbbc 1.50 0.32 11.99±±0.93 e 10.77±10.90±0.28 0.79片游叶w(9.39 6.96 6.49 6.67 7.43 8.35 11.74±11.90±10.72±2 o.间terstock 2Liaozhen N砧M9M9-T 337 ajam 602号中In M9-P M26 M111 Mac9 P1SH 1638402531 SH SH SH GM GM砧辽
14 种矮化中间砧苹果苗木的评价指标存在差异,依据单一指标难以选择出适宜的砧穗组合,需要对其进行综合评价。采用隶属函数综合评价法对14种矮化中间砧苗木的外部形态、根系构型、碳氮营养进行分析(表6)。计算32 个指标的隶属函数值,排名前十的指标包括:品种干截面积(0.603 0),中间砧淀粉含量(0.045 89),中间砧游离氨基酸含量(0.041 66),叶片淀粉含量(0.040 85),苗木高度(0.040 15),根尖数(0.038 75),总根体积(0.038 44),节间长度(0.038 01),叶片游离氨基酸含量(0.375 6),根表面积(0.364 9)。利用熵值法确定各指标权重,计算不同砧穗组合的综合得分。由综合评价值和排名结果可知,不同中间砧苗木综合评价值在0.70 以上的中间砧总共有4 种:M9-Pajam 2、P1、M9、GM256,其中M9-Pajam 2 的综合评价值最高,为0.77,表明烟富3号/M9-Pajam 2/山定子苗木表现较好。
表6 不同砧穗组合苹果苗木评价指标的隶属函数综合评价
Table 6 Subordinate function comprehensive analysis on apple nursery trees evaluation indicators in different interstock combination
中间砧Interstock M9 M9-T337 M9-Pajam 2 M26 M111 Mac9 P1 SH1 SH6 SH38 SH40 GM256 GM310辽砧2号Liaozhen No.2综合评价值Comprehensive evaluation value 0.71 0.68 0.77 0.60 0.56 0.66 0.76 0.58 0.57 0.54 0.59 0.71 0.67 0.69排名Rank 3 6 1 9 1 3 8 2 1 1 12 14 10 4 7 5
随着现代矮砧集约果园在我国的规模化发展,采用具有最佳质量参数的苗木建园成为保证生产者获得早期产量和实现投资成本短期回报的关键[26]。苗木高度、干截面积、节间长度、根系数量等形态指标在目前苗木质量评价中较为通用[27]。前人研究结果表明,嫁接在矮化砧木上的苹果具有较短的枝条长度、较小的干截面积(trunk cross-sectional area,TCSA)和较弱的生长特性[28]。较大的接穗TCSA与更高的产量和营养生长潜力相关,TCSA 成为评价苗木质量更准确的指标[29]。本试验中,SH1 和MM111 中间砧的烟富3 号苗木干截面积和高度均为最大,生长势最强,M9和P1中间砧组合苗木干截面积和高度则最小,生长势最弱,Mark9中间砧烟富3号苗木干截面积和高度介于MM111和M26之间,生长势偏强。其中M 和MM 系砧木系列中生长势MM11>M26>M9 的趋势与前人研究结果相似[30],但Mark9 和P1 作为中间砧的生长势出现了不同的结果,Marini等[31]研究发现P1为半矮化砧木,致矮性与M7相当,生长势强于M26,Mark9则为矮化砧木,与M9 及M9 的优系M9-Pajam 2 和M9-T337 相当[32]。究其原因可能是矮化中间砧组合存在两个嫁接口,每一个嫁接口都会因嫁接面维管组织的异常引起同化物、水和养分的交流障碍,因此品种的生长势不仅受接穗与中间砧之间营养和激素调运的影响,而且与基砧和中间砧之间的物质代谢有关[33]。本试验使用的我国自育砧木中,SH系列中间砧组合生长势偏强,依次为SH1>SH38>SH6>SH40。 GM310 和GM256 中间砧组合则生长势偏弱,与M9 和P1 相当。与李民吉等[34]得出的干周直径SH40>SH1>SH6研究结果存在差异,也进一步佐证了采用不同的基砧山定子和平邑甜茶对中间砧组合产生了不同的树体响应。Xu等[29]的研究认为,砧木和接穗相似的生长速度将使嫁接部位更加牢固,因此将砧木和接穗的粗度比作为嫁接亲和性的评价指标,比值越接近1,表明砧木和接穗之间的营养物质和水分运输之间平衡关系越好。也有研究结果表明,接穗和砧木之间的树干直径差异可能与嫁接不亲和无关,而且并不总是影响接穗的园艺性能[35]。本试验中SH1中间砧/基砧和品种/中间砧的粗度比为0.78和0.93,但生长势在所有组合中最强。砧木和接穗的粗度比与苗木的生长性能没有表现出明显的对应关系。
根系是苹果苗木获得水分和养分的重要器官[36]。根系数量和总根表面积越大,植株获取水分和营养物质的能力就越强,根直径也是根系活动的一个重要信号,细根在营养和矿物质的吸收中起着至关重要的作用[37]。前人研究发现,矮化砧木的根系在土壤中比生长旺盛的砧木分布更浅,矮化砧木的细根直径较小,寿命较短,根长密度和根数密度相对于旺盛的砧木较低,半矮化砧木比矮化砧木产生更高的根长密度和更深的垂直分布[38]。本试验中,SH1 中间砧组合具有最大的根系深度和幅度、总根表面积和根体积,辽砧2号具有最大的总根长、根尖数、分枝数和根叉数。SH1 和辽砧2 号中间砧组合良好的根系为地上部分的生长提供了充足的水分和养分,促进地上部分的生长发育,因此表现出较强的生长势。M9-Pajam 2 中间砧组合根深和根幅最小,根直径和根体积也小,但总根长、总根表面积、根尖数、分枝数和根叉数均保持较高水平,表明M9-Pajam 2 中间砧组合单位面积内根系数量多,根密度大,根直径虽然小,但径向吸水能力强,在一定范围内具有更强的获取水分和养分的能力。这与罗国涛等[39]的研究结果一致。也有研究结果[40]显示砧木基因型通过改变砧穗组合间糖代谢、生长素和细胞分裂素的信号转导而影响了根系的表型性状。
树体内的营养储备是苗木出圃时决定其品质的重要性状之一,充足的养分积累会通过春季养分的再分配和再运输促进苗木定植后的生长,也会增加苗木田间定植后的成活率[41]。可溶性糖和淀粉是植株贮藏营养的重要部分,其含量反映了当年植株光合产物的积累和分配状况。可溶性糖是碳运输和代谢过程中的主要形式,用来满足植株当前的生命活动需要,淀粉则是较为长期的能量储存物质,用于供应植株未来的生长需求,具有更高NSC的植株将会在翌年的新生长中表现出更高的养分再利用能力以及生长潜力[42]。本试验中,生长势强旺的SH1 和MM111 组合叶片、枝条、中间砧和根系中的可溶性糖含量均高于其他中间砧,但淀粉含量却最低,而生长势偏弱的P1和M9组合叶片、枝条、中间砧和根系中的可溶性糖含量则最低,淀粉含量却高于其他中间砧。表明矮化砧木以牺牲根系和接穗生长为代价保留了过量的淀粉储备,处于糖耗尽和细胞活性降低的状态[43]。而生长强旺基因型的中间砧大量消耗了器官中贮备的淀粉,导致接穗旺盛生长。这与Hayat 等[44]关于淀粉水平与嫁接苹果树的生长活力呈负相关的研究结果一致。Foster等[45]使用M9砧木和嘎拉共砧嫁接嘎拉品种进行非结构性碳水化合物和代谢分析,结果显示M9嫁接嘎拉品种的根、茎和叶片中的淀粉浓度是共砧组合同等组织的2 倍,果糖和葡萄糖浓度却低很多,是矮化砧木中淀粉合成基因的上调所致,矮化砧木M9 在感知和维持淀粉贮备、糖酵解和细胞代谢之间的平衡方面存在缺陷。
氮代谢是植物生命活动中最基本的物质代谢,游离氨基酸是氮经根系吸收同化后的第一产物,也是氮化合物在植物体内的存在方式和主要运输形式[25],也有研究表明蛋白态氮是主要的贮藏氮素形态[46]。游离氨有助于苗木维持较高水平的代谢活动从而提高苗木质量,氮素贮藏营养充足的苗木能够通过更高的氮素再利用量来获得更大的生长量[5]。本试验中,M9-Pajam 2中间砧组合各部位的游离氨基酸含量均为最高,可能原因为根系是合成氨基酸的主要场所,根的结构与生理特征与氮的吸收和利用密切相关,M9-Pajam 2 单位面积内根系数量多,根密度大,细根丰富。MM111叶片和枝条以及SH1中间砧和根系各部位的可溶性蛋白含量高于其他中间砧组合,是因为二者具有较大的总根长和总根表面积,与土壤的接触面积增大,进而增强了矿物养分的吸收能力,地上部生物量大,吸收调运氮的能力也强,将同化后易于运输的氨基酸运送到植株各组织器官中,并在该处合成贮藏蛋白质[47]。有研究表明,蛋白质对贮藏氮并不太重要,只是植株必须将移入主干或根系中的物质转化为淀粉或蛋白质等不溶性组分来维持库强度。从数量上看,碳水化合物在苗木的贮藏养分中占主导地位,但从质量上看,精氨酸和天冬酰胺等氮素营养的贡献更大。碳水化合物储备并不决定新生器官生长的数量,而贮藏氮对枝条生长活力具有决定性的作用[48]。
矮化砧木以牺牲根系和接穗生长为代价保留了过量的淀粉储备,通过糖耗尽和细胞活性降低来实现对植株长势的控制。品种干截面积、中间砧淀粉含量、中间砧游离氨基酸含量、叶片淀粉含量、苗木高度、根尖数、总根体积、节间长度、叶片游离氨基酸含量和总根表面积可作为评价苹果苗木质量的重要指标。通过隶属函数综合评价,结合致矮性、根系特征和贮藏营养综合考虑,山定子/M9-Pajam 2/烟富3号苗木表现最好。在选择适宜的中间砧组合时,应结合建园时立地条件、栽植密度、树形等因素进行综合考虑。
[1]鲁敏,姜凤岐,宋轩.容器苗质量评定指标的研究[J].应用生态学报,2002,13(6):763-765.LU Min,JIANG Fengqi,SONG Xuan.Assessing indices of container seedling quality[J]. Chinese Journal of Applied Ecology,2002,13(6):763-765.
[2]DEY D C,PARKER W C. Morphological indicators of stock quality and field performance of red oak (Quercus rubra L.)seedlings underplanted in a central Ontario shelterwood[J]. New Forests,1997,14(2):145-156.
[3]CHENG L L.Growth performance of apple nursery trees in relation to reserve nitrogen and carbonhydrates[J]. New York Fruit Quarterly,2002(10):15-18.
[4]倪铭,高振洲,吴文,张于卉,喻方圆.不同氮素施肥方法对纳塔栎容器苗生长及非结构性碳水化合物积累的影响[J].南京林业大学学报(自然科学版),2021,45(4):107-113.NI Ming,GAO Zhenzhou,WU Wen,ZHANG Yuhui,YU Fangyuan. Effects of different nitrogen fertilization methods on growth and non-structure carbohydrate accumulation of Quercus nuttallii seedlings[J]. Journal of Nanjing Forestry University(Natural Sciences Edition),2021,45(4):107-113.
[5]王佳茜.氮加载对栓皮栎氮内循环与苗木质量的影响[D].北京:北京林业大学,2019.WANG Jiaxi. Effect of nitrogen loading on seasonal nitrogen internal cycling and seedling quality of Quercus variabilis[D].Beijing:Beijing Forestry University,2019.
[6]MAILLARD A,DIQUÉLOU S,BILLARD V,LAÎNÉ P,GARNICA M,PRUDENT M,GARCIA-MINA J M,YVIN J C,OURRY A. Leaf mineral nutrient remobilization during leaf senescence and modulation by nutrient deficiency[J]. Frontiers in Plant Science,2015,6:317.
[7]NEILSEN D,MILLARD P,HERBERT L C,NEILSEN G H ,HOGUE E J,PARCHOMCHUK P,ZEBARTH B J.Remobilization and uptake of N by newly planted apple (Malus domestica)trees in response to irrigation method and timing of N application[J].Tree Physiology,2001,21(8):513-521.
[8]TAN B Z,CLOSE D C,QUIN P R,SWARTS N D.Nitrogen use efficiency,allocation,and remobilization in apple trees:Uptake is optimized with pre-harvest N supply[J].Frontiers in Plant Science,2021,12:657070.
[9]ROBINSON T.Advances in apple culture worldwide[J]. Revista Brasileira de Fruticultura,2011,33:37-47.
[10]李民吉,张强,李兴亮,周贝贝,杨雨璋,周佳,张军科,魏钦平.SH6 矮化中间砧‘富士’苹果不同树形对树体生长和果实产量、品质的影响[J].中国农业科学,2017,50(19):3789-3796.LI Minji,ZHANG Qiang,LI Xingliang,ZHOU Beibei,YANG Yuzhang,ZHOU Jia,ZHANG Junke,WEI Qinping. Effect of three different tree shapes on growth,yield and fruit quality of‘Fuji’apple trees on dwarfing interstocks[J]. Scientia Agricultura Sinica,2017,50(19):3789-3796.
[11]VAN HOOIJDONK B M,WOOLLEY D J,WARRINGTON I J,TUSTIN D S. Rootstocks modify scion architecture,endogenous hormones,and root growth of newly grafted‘Royal Gala’apple trees[J]. Journal of the American Society for Horticultural Science,2011,136(2):93-102.
[12]GREGORY P J,ATKINSON C J,BENGOUGH A G,ELSE M A,FERNÁNDEZ-FERNÁNDEZ F,HARRISON R J,SCHMIDT S. Contributions of roots and rootstocks to sustainable,intensified crop production[J]. Journal of Experimental Botany,2013,64(5):1209-1222.
[13]宋晓敏.苹果苗木质量评价与砧穗组合对幼树生长的影响[D].杨凌:西北农林科技大学,2014.SONG Xiaomin.Assessment of the seedling quality and effects of rootstock-scion combinations on the growth of young apple tree[D].Yangling:Northwest Agriculture and Forestry University,2014.
[14]王颖达,黄金凤,闫忠业,王冬梅,吕天星,刘志.不同砧穗组合对苹果苗木生长的影响[J].中国果树,2020(4):37-40.WANG Yingda,HUANG Jinfeng,YAN Zhongye,WANG Dongmei,LÜ Tianxing,LIU Zhi. Effects of different rootstock-scion combinations on the growth of apple seedling[J]. China Fruits,2020(4):37-40.
[15]WU Y,SUN M D,QI Y Y,LIU S Z. Remobilization of storage nitrogen in young pear trees grafted onto vigorous rootstocks(Pyrus betulifolia)[J].Horticulturae,2021,7(6):148.
[16]赵德英,程存刚,仇贵生,董雅凤,张彩霞,李壮,张怀江,胡国君,厉恩茂. 苹果高质量发展技术创新途径[J]. 中国果树,2021(8):1-5.ZHAO Deying,CHENG Cungang,QIU Guisheng,DONG Yafeng,ZHANG Caixia,LI Zhuang,ZHANG Huaijiang,HU Guojun,LI Enmao. Technological innovation approach of high quality development in apple industry[J].China Fruits,2021(8):1-5.
[17]袁继存,程存刚,赵德英,刘尚涛,厉恩茂.不同中间砧木对寒富苹果生长、产量和果实品质的影响[J].应用生态学报,2021,32(9):3145-3151.YUAN Jicun,CHENG Cungang,ZHAO Deying,LIU Shangtao,LI Enmao. Effects of different interstocks on the growth,yield and fruit quality of Hanfu apple[J]. Chinese Journal of Applied Ecology,2021,32(9):3145-3151.
[18]KNÄBEL M,FRIEND A P,PALMER J W,DIACK R,WIEDOW C,ALSPACH P,DENG C,GARDINER S E,TUSTIN D S,SCHAFFER R,FOSTER T,CHAGNÉ D. Genetic control of pear rootstock-induced dwarfing and precocity is linked to a chromosomal region syntenic to the apple Dw1 loci[J]. BMC Plant Biology,2015,15:230.
[19]DE CARVALHO W S,MARINHO C S,ARANTES M S T,CAMPBELL G,AMARAL B D,DA CUNHA M. Agronomic and anatomical indicators of dwarfism and graft incompatibility in citrus plants[J]. Journal of Agricultural Science. 2018,10(9):263-274.
[20]POKHREL S,MEYERING B,BOWMAN K D,ALBRECHT U. Horticultural attributes and root architectures of field-grown‘Valencia’trees grafted on different rootstocks propagated by seed,cuttings,and tissue culture[J]. HortScience,2021,56(2):163-172.
[21]DA CRUZ M A,NEVES C S V J,DE CARVALHO D U,COLOMBO R C,BAI J H,YADA I F U,LEITE J R P,TAZIMA Z H. Five rootstocks for‘Emperor’mandarin under subtropical climate in southern brazil[J/OL]. Frontiers in Plant Science,2021,12:777871.
[22]DALLABETTA N,GUERRA A,PASQUALINI J,FAZIO G.Performance of semi-dwarf apple rootstocks in two-dimensional training systems[J].HortScience,2021,56(2):234-241.
[23]樊勇明,李伟,温仲明,郭倩,刘晶,杨雪,郑诚,杨玉婷,姜艳敏,张博.黄土区不同恢复年限草地群落生物量及根冠比对氮添加的响应[J].生态学报,2021,41(24):9824-9835.FAN Yongming,LI Wei,WEN Zhongming,GUO Qian,LIU Jing,YANG Xue,ZHENG Cheng,YANG Yuting,JIANG Yanmin,ZHANG Bo. Responses of grassland community biomass and root-shoot ratio to nitrogen addition in different restoration years on the Loess Plateau[J]. Acta Ecologica Sinica,2021,41(24):9824-9835.
[24]王思语. 越橘氮素代谢规律研究[D]. 长春:吉林农业大学,2021.WANG Siyu. Study on nitrogen metabolism of blueberry[D].Changchun:Jilin Agriculture University.2021.
[25]于波.贮藏营养对苹果生长及氮素吸收利用的影响[D].泰安:山东农业大学,2018.YU Bo. Effects of storage nutrition on growth and nitrogen absorption and utilization of apple[D]. Tai’an:Shandong Agriculture University,2018.
[26]ATAY E,KOYUNCU F. Branch induction via prolepsis in apple nursery trees[J].Acta Horticulturae,2016(1139):439-444.
[27]田长平,尹砾,张福兴,张序,李芳东,孙庆田.2 年生甜樱桃苗木质量综合评价研究[J].果树学报,2018,35(12):1500-1508.TIAN Changping,YIN Li,ZHANG Fuxing,ZHANG Xu,LI Fangdong,SUN Qingtian. A comprehensive evaluation of the quality of two-year-old sweet cherry seedlings[J]. Journal of Fruit Science,2018,35(12):1500-1508.
[28]HAYAT F,IQBAL S,COULIBALY D,RAZZAQ M K,NAWAZ M A,JIANG W B ,SHI T,GAO Z H.An insight into dwarfing mechanism:contribution of scion-rootstock interactions toward fruit crop improvement[J]. Fruit Research,2021,1(1):1-11.
[29]XU H,EDIGER D,SINGH A,PAGLIOCCHINI C.Rootstockscion hydraulic balance influenced scion vigor and yield efficien-cy of Malus domestica cv. Honeycrisp on eight rootstocks[J].Horticulturae,2021,7(5):99.
[30]RABI F,RAB A,BOSTAN N,SAJID M,RAHMAN K U.Growth behaviour of apple cultivars on different apple rootstock[J].Pure and Applied Biology,2021,5(2):339-344.
[31]MARINI R P,BARRITT B H,BARDEN J A,CLINE J,GRANGER R L,KUSHAD M M,PARKER M,PERRY R L,ROBINSON T,KHANIZADEH S,UNRATH C R.Performance of‘Gala’apple on eight dwarf rootstocks:ten-year summary of the 1990 NC-140 rootstock trial[J].Journal American Pomological Society,2001,55(4):197-204.
[32]GJAMOVSKI V,KIPRIJANOVSKI M.Influence of nine dwarfing apple rootstocks on vigour and productivity of apple cultivar‘Granny Smith’[J]. Scientia Horticulturae,2011,129(4):742-746.
[33]TIETEL Z,SRIVASTAVA S,FAIT A,TEL-ZUR N,CARMI N,RAVEH E. Impact of scion/rootstock reciprocal effects on metabolomics of fruit juice and phloem sap in grafted Citrus reticulata[J/OL]. PLoS ONE,2020,15(1):e0227192. DOI:10.1371/journal.pone.0227192.
[34]李民吉,张强,李兴亮,周贝贝,杨雨璋,周佳,张军科,魏钦平.SH 系矮化中间砧对‘富士’苹果树体生长、产量和果实品质的影响[J].园艺学报,2018,45(10):1999-2007.LI Minji,ZHANG Qiang,LI Xingliang,ZHOU Beibei,YANG Yuzhang,ZHOU Jia,ZHANG Junke,WEI Qinping. Effects of five different dwarfing interstocks of sh on growth,light distribution,yield and fruit quality in‘Fuji’apple trees[J].Acta Horticulturae Sinica,2018,45(10):1999-2007.
[35]GORA J S,KUMAR R,SHARMA B D,RAM C,BERWAL M K,SINGH D,BANA R S,KUMAR P. Performance evaluation of fremont mandarin on different rootstocks under the hot arid environment of India[J].South African Journal of Botany,2022,144:124-133.
[36]高琛稀,刘航空,韩明玉,张东,杨杰.矮化自根砧苹果苗木生长动态及其根系分布特征[J].西北农林科技大学学报(自然科学版),2016,44(5):170-176.GAO Chenxi,LIU Hangkong,HAN Mingyu,ZHANG Dong,YANG Jie. Growth dynamic and characteristics of root distribution of dwarfing self-rooted rootstock apple nursery[J]. Journal of Northwest A& F University(Natural Science Edition),2016,44(5):170-176.
[37]TAHIR M M,ZHANG X Y,SHAH K,HAYAT F,LI S H,MAO J P,LI K,LIU Y,SHAO Y,ZHANG D. Nitrate application affects root morphology by altering hormonal status and gene expression patterns in B9 apple rootstock nursery plants[J]. Fruit Research,2021,1:14.
[38]ZHANG Z F,LI M K,YAO J J,ZHOU Y M,WANG Y,ZHANG X Z,LI W,WU T,HAN Z H,XU X F,QIU C P.Root architecture characteristics of differing size- controlling rootstocks and the influence on the growth of‘Red Fuji’apple trees[J/OL]. Scientia Horticulturae,2021,281:109959. https://doi.org/10.1016/j.scienta.2021.109959.
[39]罗国涛,刘晓纳,张曼曼,余洪,胡洲,王福生,朱世平,赵晓春.柑橘砧木根系形态特征与植株耐旱性评价[J]. 果树学报,2020,37(9):1314-1325.LUO Guotao,LIU Xiaona,ZHANG Manman,YU Hong,HU Zhou,WANG Fusheng,ZHU Shiping,ZHAO Xiaochun. Root morphology of citrus rootstocks and drought tolerance evaluation of their grafted plants[J]. Journal of Fruit Science,2020,37(9):1314-1325.
[40]LI G F,MA J J,TAN M. MAO J P,AN N,SHA G L,ZHANG D,ZHAO C P,HAN M Y.Transcriptome analysis reveals the effects of sugar metabolism and auxin and cytokinin signaling pathways on root growth and development of grafted apple[J].BMC Genomics,2016,17(1):1-17.
[41]曹宝慧.不同外源光对三个树种幼苗生长以及碳水化合物和养分积累的影响[D].沈阳:沈阳农业大学,2020.CAO Baohui.Effects of different exogenous light on the growth,nutrient accumulation and non-structural carbohydrate of three tree species[D]. Shenyang:Shenyang Agriculture University,2020.
[42]李婷婷,薛璟祺,王顺利,薛玉前,胡凤荣,张秀新.植物非结构性碳水化合物代谢及体内转运研究进展[J].植物生理学报,2018,54(1):25-35.LI Tingting,XUE Jingqi,WANG Shunli,XUE Yuqian,HU Fengrong,ZHANG Xiuxin. Research advances in the metabolism and transport of non-structural carbohydrates in plants[J].Plant Physiology Journal,2018,54(1):25-35.
[43]ZHOU Y M,TIAN X,YAO J J,ZHANG Z F,WANG Y,ZHANG X Z,LI W,WU T,HAN Z H,XU X F,QIU C P.Morphological and photosynthetic responses differ among eight apple scionrootstock combinations[J/OL]. Scientia Horticulturae,2020,261:108981.https://doi.org/10.1016/j.scienta.2019.108981.
[44]HAYAT F,QIU C P,XU X F ,WANG Y,WU T,ZHANG X Z,NAWAZ M A,HAN Z H. Rootstocks influence morphological and biochemical changes in young‘Red Fuji’apple plants[J].International Journal of Agriculture and Biology,2019,21:1097-1105.
[45]FOSTER T M,MCATEE P A,WAITE C N,BOLDINGH H L,MCGHIE T K.Apple dwarfing rootstocks exhibit an imbalance in carbohydrate allocation and reduced cell growth and metabolism[J].Horticulture Research,2017,4(1):311-323.
[46]韩振海,曾骧,王福钧.晚秋叶施尿素和生长调节剂对富士苹果幼树贮藏氮素的影响[J].园艺学报,1992,19(1):15-21.HAN Zhenhai,ZENG Xiang,WANG Fujun. Effects of autumn foliar application of15N-urea and several PGR on N storage and reuse in apple[J].Acta Horticulturae Sinica,1992,19(1):15-21.
[47]VALVERDI NA,CHENG L,KALCSITS L.Apple scion and rootstock contribute to nutrient uptake and partitioning under different belowground environments[J].Agronomy,2019,9(8):415.
[48]TROMP J. Nutrient reserves in roots of fruit trees,in particular carbohydrates and nitrogen[J].Plant Soil,1983,71:401-413.
Effects of dwarfing interstocks on morphology and carbohydrates and nitrogen nutrition of Yanfu No.3 apple nursery trees