梨矮化砧木致矮机制研究进展

叶 宇,欧春青a,王 斐,张艳杰,马 力,姜淑苓*

(中国农业科学院果树研究所·农业农村部园艺作物种质资源利用重点实验室,辽宁兴城 125100)

摘 要梨是中国第三大果树,栽培面积、产量和出口量均居世界首位。利用矮化砧木是实现梨矮化密植集约栽培的主要途径,然而其致矮机制尚不清楚,探究梨矮化砧木致矮机制对改进矮砧栽培技术和加快梨矮砧育种进程具有重要的理论和实践意义。从组织解剖结构、物质运输、代谢组学、激素水平和致矮基因等5个方面对梨矮化砧木致矮机制的研究作以综述,发现梨矮化砧木的解剖结构、物质运输、代谢产物、内源激素之间存在相互交叉的关联,共同影响砧木的矮化性状,此外,酚酸及其衍生物和类黄酮被证实是参与矮化调控的2类重要代谢物。同时,对今后的研究方向提出一些建议,以期为梨矮化砧木致矮机制的系统研究提供理论支撑和参考。

关键词梨;矮化砧木;致矮机制;内源激素;致矮基因

随着我国农业步入高质量发展的新时代,梨产业的生产重心正逐渐由“产量”向“品质”、“安全”转变,生产方式从劳动密集型逐步向标准化、轻简化、机械化和现代化迈进[1]。矮化密植作为一种新的栽培模式,具有早果丰产、品质优良、管理方便、品种更新快等优点,能够弥补传统乔化稀植模式的不足[2]。实现果树矮化栽培的主要措施有2种,一是利用矮化砧木;二是利用矮生型品种。目前,可利用的梨矮生型品种尚不多,因此,利用矮化砧木是实现梨矮化密植集约栽培的主要途径。然而矮化砧木的致矮机制尚不清楚,探究其致矮机制对改进梨矮砧栽培技术和加快梨矮砧育种进程具有重要的理论和实践意义。

近年来,国内外梨矮化砧木的选育工作已取得了不少成果,如Fox 系列、OHF 系列、K 系列和中矮系列等[3-6]。在梨矮化砧木选育工作有序进行的同时,矮化机制的研究也逐步深入并取得了很大的进展[7]。笔者从组织解剖结构、物质运输、代谢组学、激素水平和致矮基因等5个方面对梨矮化砧木致矮机制的研究作以综述,以期为梨矮化砧木致矮机制的系统研究提供理论支撑和参考。

1 梨矮化砧木的解剖结构特点

关于矮化砧木的矮化机制,早期的研究主要集中于组织结构等方面,国内外学者[8-10]通过对各种砧木的解剖结构观察,发现根皮比、枝皮比、叶结构、木质部导管结构和韧皮部筛管结构都与植株的高矮密切相关。

1.1 根皮率、枝皮率

根(枝)皮率是指砧木根(枝)的皮层厚度与根(枝)直径的比值。一般情况下,根皮率、枝皮率与嫁接树树高、茎干横截面积呈负相关,即砧木的根皮率、枝皮率越大,则树体生长势越弱,趋于矮化[11-13]。但因根系的采集困难,大多数的研究方向由地下转向地上枝条的解剖。然而最近有研究表明,枝条受外界环境的影响比根系所受影响大,相比于枝皮率,根皮率更适合作为砧木矮化性的早期评价指标[14]

1.2 叶片结构

对砧木叶片的研究表明,矮生型梨砧木和普通型梨砧木的叶片结构存在显著差异。矮生型梨砧木的叶片较厚,栅栏组织也较厚,由3~5层细长细胞组成;而普通型梨砧木叶片的栅栏组织较薄,由2~3层短而粗壮的细胞组成[15]。与普通型梨砧木相比,矮生型梨砧木叶片的叶绿素含量较高,从而光能利用率高,更有利于光合作用[16]。叶片气孔密度越小,砧木生长势越弱,越趋于矮化[17-18]。此外,矮生型梨砧木的栅海比(栅栏组织与海绵组织的比值)要远大于普通型梨砧木[15]

1.3 木质部导管结构

木质部导管是植物体内主要输导水分和无机盐的管状结构,导管分子的形态特征对木质部水分和无机盐的输导具有重要影响[19]。王秀娟等[20]对14个主要梨属砧木枝条导管结构的研究显示,矮生型梨砧木的导管分子长度和直径均小于普通型梨砧木。梨矮化砧木导管分子具有短且窄的特性,在一定程度上限制水分和无机盐类的运输,从而影响了树体的生长势。此外,由于这种特性使细胞伸长受限,导致梨砧木茎节间缩短,树势减弱,表现出矮化现象[12,21]。

1.4 韧皮部筛管结构

韧皮部筛管是植物体内同化产物运输的主要通道。陈长兰[10]早期对梨矮化砧木的研究认为,砧木筛管分子在树干生长过程中受外围较厚木栓层的束缚,使筛管变形或消失,从而阻碍了同化产物从地上部向地下部运输,影响了根系的生长发育,导致树体矮化。目前,关于韧皮部筛管与矮化关系的研究较少,有待进一步验证。

2 梨矮化砧木的物质运输特点

植物体内的物质运输包括水分、矿质元素和同化产物的运输,砧木通过影响接穗对水分和养分的吸收利用特性,从而影响树体的生长发育,达到矮化的效果[22]。叶片在整个树体中对土壤矿质元素的反应是最敏感的,其含量水平能够表示树体对土壤矿质元素的吸收利用情况[23]。因此,通过研究接穗叶片中的矿质元素含量水平可以反映出梨矮化砧木的物质运输特点。

赵静等[23]通过探讨5 个不同类型的梨砧木对接穗品种生长发育的影响,发现中矮1 号中间砧上接穗叶片的N、P 元素含量要高于其他砧穗组合,其产量也较高;而OHF51中间砧上接穗叶片的N、P和K元素含量却要低于其他砧穗组合,其单果质量和产量也较低。这与在苹果上的研究结果一致,接穗叶片N、P等元素含量与矮化效应呈正相关[24]。K11和中矮1号中间砧上接穗叶片的Fe元素含量随着新梢的生长而增加,并且一直处于较高水平[23]。有研究发现,与嫁接在巴梨实生苗上的梨树品种相比,榅桲砧木嫁接品种的叶片中K、B 元素含量较高,而Fe、Mn 和Cu 元素含量较低。以上研究结果表明,不同砧穗组合对矿质元素的吸收能力不同,中间砧的不同也会造成树体内同化产物的分配和运转存在显著差异,这种差异会在嫁接复合体的接穗品种上表现出来[25]

砧木可以通过调控相关离子吸收和向地上部运输,从而改变地上部的矿质营养水平及抗逆性[26];而接穗的同化产物运输及分配直接影响砧木根系的生长,同时根系的发育状况也会对接穗产生反馈作用[27]。此外,不同的梨矮化砧木品种嫁接树叶片中矿质元素含量变化的趋势存在差异,这除了与环境及栽培方法的差异有关之外,还与它们的亲本来源不同有关[28]。砧木对矿质营养吸收运输有不同的偏好性,在不同的砧穗组合中均有所体现[29-30]。由此可见,梨矮化砧木的物质运输与致矮性间的关系仍需要进一步研究。

3 梨矮化砧木的代谢组学研究

代谢组学(metabolomics)是对特定时期某一细胞、组织或生物体中所有低分子质量代谢产物同时进行定性和定量分析的一门学科[31]。相较于其他组学,代谢组学能够利用先进的检测技术和统计方法[32],高通量地分析植物的代谢产物,最容易反映表型的差异。目前,代谢组学已被应用于梨矮化砧木的致矮机制研究中,并取得了一定的进展。

Cui等[33]以矮化砧OHF51和乔化砧豆梨为中间砧,研究其对地上部和根部代谢产物的影响,通过代谢组学分析,发现OHF51和豆梨具有不同的代谢谱并且不同中间砧对接穗和根部的代谢物浓度有不同的影响,表明酚酸及其衍生物和类黄酮是参与梨砧木矮化调控的2类重要代谢物。任婷婷等[34]利用高效液相色谱技术测定6个梨砧木新梢韧皮部酚类物质含量及其动态变化,发现酚类物质含量与树体矮化性状相关。在苹果的研究中[35],也已经证实叶片中的酚类物质含量与树体生长势有关。木质素生物合成基因羟基肉桂酰辅酶A 莽草酸/奎宁酸羟基肉桂酰基转移酶(HCT)的沉默将导致代谢流重定向类黄酮途径[36]。在OHF51砧穗组合中,接穗和中间砧中原花青素B2 和原花青素B3 的含量显著升高[33],类黄酮的积累会引起植物生长严重减慢,从而达到矮化的效果。此外,D-山梨醇和D-甘露醇2 种单糖在OHF51砧穗组合根中的含量显著降低[33],这也是树体矮化的原因之一。

目前,关于梨矮化砧木的代谢组学研究相对较少,仅仅停留在矮化砧和乔化砧的代谢产物谱差异分析鉴定上,未来的研究方向应该集中于酚酸和类黄酮在梨砧木生长发育中是如何发挥作用的,重点是它们对梨砧木生长素(IAA)水平如何直接影响。

4 梨矮化砧木的激素水平分析

植物激素与致矮性的关系是目前的研究热点之一。多数学者认为植株矮化是由于细胞分裂或伸长减少导致的结果,这些过程通常由植物激素进行调控。研究表明,赤霉素(GAs)、脱落酸(ABA)、IAA、细胞分裂素(CKs)、油菜素内脂(BR)等激素均与砧木致矮性存在一定的相关性[37-38]

GAs 具有促进细胞分裂、加速细胞伸长等生理作用,在植物体内运输没有极性,茎顶端合成的GAs通过韧皮部向下运输,根系合成的GAs通过木质部向上运输[39]。陈长兰[40]研究认为中矮1 号的矮化是由于其GAs含量低。姜淑苓等[12]通过比较不同紧凑型和普通型梨嫩枝中内源激素水平,发现紧凑型梨嫩枝中GAs含量显著低于普通型,认为梨树紧凑型新梢节间缩短的主要原因是顶端嫩梢中GAs 含量减少。程飞飞等[41]也证实了梨矮化砧新梢叶片中GAs含量显著低于乔化砧。

ABA是一种抑制植物生长的激素。研究表明,苹果和柑橘的矮化砧中的ABA 含量显著高于乔化砧,外源ABA 处理能够使其节间缩短和生长减缓[42-43]。然而,在梨砧木的研究中,姜淑苓等[12]发现紧凑型梨新梢ABA 含量显著低于普通型。Ou 等[44]分析了多个梨矮化砧与乔化砧的内源激素含量趋势,得出矮化砧的ABA 含量显著低于乔化砧。目前,研究人员对于ABA调控植物矮化的机制仍然存在不同的观点,还需要进一步分析研究。

IAA 在顶端分生组织中合成,并通过形成层和韧皮部向下运输到根尖,当IAA 含量较低或很高时都会抑制细胞和茎的伸长[12,45-46]。在苹果的研究中,通常认为砧木的矮化是由于茎间限制了IAA向根系的运输[47]。Zheng 等[48]通过测定矮生型和标准型梨的茎尖、茎中的IAA含量,发现矮生型梨茎尖中IAA含量显著高于标准型梨,而茎中IAA 含量显著低于标准型梨,与苹果中的研究结果一致。这种生长素极性运输能力的降低与PIN运载蛋白的不均匀分布有关[49-50]。此外,由于IAA 的极性运输受到阻碍,抑制了根系的生长以及CKs 的合成,而CKs 向上运输的减少限制了接穗的生长,导致了矮化的循环[47,49,51]

此外,BR在植株营养生长方面同样也扮演着重要的角色,包括细胞分裂、伸长以及茎、根的生长[52]。有研究发现,BR生物合成或信号转导缺陷的植株往往表现出典型的矮化表型[53]。Zheng 等[54]对梨矮化砧外施0.2 mg·L-1 BR,发现其节间从1.40 cm增加至2.13 cm,比未处理的伸长率高52%。郝宁宁等[55]以中矮3 号和早酥为材料,研究其幼叶内源激素含量与枝条生长状态关系的年变化规律,证实了高含量BR可以促进枝条的生长。

目前,主流的观点认为植物激素是调控砧木致矮性的根源,矮生表型是编码这些植物激素的合成、代谢、信号转导或运输的基因中断或差异表达导致的结果。不同种类激素的含量差异和分配不平衡与致矮性密切相关,各个激素间相互协同、整合形成复杂的互作网络,通过相互协作共同调控植物的矮生特性[56]。这也揭示了植物的生长过程是非常复杂的,不同基因型的矮生机制可能是不同的,即使在同一基因型上,矮生性状也可能受到许多因素的调控。

5 梨矮化砧木的致矮基因分析

随着分子生物技术的快速发展,梨砧木的致矮基因研究也取得了很大的进展。根据目前的研究结果,可以将导致梨砧木致矮性的基因划分为2类:一类是矮化基因,即矮化基因直接调控植株性状使其矮化,起直接作用;另一类包括植物激素合成及信号转导相关酶基因和微管蛋白基因,起间接作用。

研究表明,梨的矮化表型是由一个显性基因PcDw控制的[57]。为了揭示PcDw的序列信息、结构和功能调控,Wang 等[58]利用SSR 和SNPs 标记进行精细定位,缩小了包含该基因的区域并推测了几个候选基因。Xiao等[59]通过矮生梨和普通梨之间的比较转录组分析,确定了PcDw基因座最有可能的2个候选基因,转录本号为PCP021014和PCP021015,并系统地概述了矮化表型的复杂调控网络。此外,在苹果砧木M9中检测到2个QTL,即Dw1Dw2,它们对接穗的矮化效应起主要作用[60]。Knäbel等[61]利用SNP 遗传图谱将1 个影响梨接穗生长势的QTL定位在M9 的Dw1 基因座的共生位置上,该基因座位于LG5的上端。因此,基于梨和苹果的高度同源性,有必要进行比较转录组分析以探明梨砧木诱导矮化的遗传和分子机制。

植物激素与矮化性的相关性研究多集中于植物激素合成、代谢及信号转导相关酶基因的表达或沉默上。内根-贝壳杉烯合酶(KS)、贝壳杉烯酸氧化酶(KAO)和GA20-氧化酶是GAs 合成的关键酶,有学者通过RT-PCR 技术发现PcKSPcKAO1Pc-GA20ox1 基因的表达与梨砧木生长势呈负相关的趋势,但其是如何调控的还有待进一步研究[41,62-63]。Pang等[64]对杜梨突变株系的内源激素检测和基因表达分析表明,PbPAT14 基因敲除后导致ABA 积累,从而使梨突变系呈现矮化的表型;Liu等[65]也证实了ABA 的积累会抑制植株的生长并导致矮化表型。汤常永等[66]通过转录组测序(RNA-Seq),认为中矮1号PcAHS基因启动子P-box转录因子结合元件和特有的片段缺失是其表达量低的原因,并通过影响IAA 的运输最终引起植株矮化。Zheng 等[48]发现PcPIN-L基因在矮生型梨中的表达量显著低于标准型,这是由于矮生型梨的启动子中存在CT 重复缺失。另外,Jiang等[67]研究miR171-SCL模块在中矮3号和早酥茎尖中的表达模式,发现其对IAA 具有响应作用,并负向调节PyrSCL6PyrSCL22基因的表达,揭示了miR171-SCL途径在中矮3号致矮性中的作用。此外,有研究表明PcAGP7-1 基因高表达的梨砧木表现出明显的矮化表型,并且会降低BR 含量,从而通过负反馈环抑制BR信号,导致植株进一步的矮化[54]

微管蛋白不仅对细胞形态起到支撑作用,还会影响纤维素和木质素的合成,从而直接影响到细胞的生长与分裂,成为梨砧木矮化的原因之一[68]。侯董亮等[69]通过对梨β-微管蛋白基因的荧光定量表达分析,表明定位于chr16 上的基因(转录本号为PCP044487.1)在矮生型和普通型梨茎尖中的转录水平存在极显著的差异,认为该基因与梨矮生性状形成的分子调控有重要关系,但具体的作用机制尚未探明。另外,郝宁宁等[70]认为PcLUE1基因的表达可能受激素信号调控,即低含量GAs和高含量IAA均促进PcLUE1基因的高表达,而高表达的PcLUE1基因通过作用于细胞微管骨架,从而导致植株生长缓慢,表现出矮生性状。

梨树童期长、基因高度杂合、遗传背景复杂,因此,梨矮化砧致矮的分子机制研究发展较为缓慢。目前的研究大多都是单个基因调控对梨树体的矮化作用,关于多个基因共同对致矮性调控关系的研究较少,还需要结合基因组学、转录组学、蛋白组学以及代谢组学等高通量大数据进行深入系统的研究。

6 总结与展望

研究表明,梨矮化砧木的解剖结构、物质运输、代谢产物、内源激素之间存在相互交叉的关联,共同影响砧木的矮化性状。砧木的根皮率、枝皮率、栅海比越大,砧木的矮化程度也会随之提高。梨矮化砧木导管分子具有短且窄的特性,会限制水分和无机盐类的运输,从而影响激素代谢水平。另外,随着砧段长度的增加,矮化中间砧的矮化效果会更加明显,嫁接的矮化砧段是致矮的主要部位[28,34,71]。酚酸及其衍生物和类黄酮被证实是参与梨砧木矮化调控的两类重要代谢物。目前,主流的观点认为激素代谢的差异性是砧木致矮性的主要原因,但是仍然存在一些相互矛盾的结论需要进一步讨论。

因此,对于梨砧木致矮机制的研究,未来的工作应重点关注各激素代谢通路之间对致矮性的调控关系。同时结合系统生物学技术,利用BSA或GWAS关联分析方法对矮化性状进一步进行精细QTL 定位,并对关键的QTL 位点进行综合分析研究,以明确各个基因间上下游调控网络与致矮性的关系。

参考文献References:

[1] 张绍铃,谢智华.我国梨产业发展现状、趋势、存在问题与对策建议[J].果树学报,2019,36(8):1067-1072.ZHANG Shaoling,XIE Zhihua.Current status,trends,main problems and the suggestions on development of pear industry in China[J].Journal of Fruit Science,2019,36(8):1067-1072.

[2] 姜淑苓,欧春青,王斐,张艳杰,马力,赵亚楠.我国梨矮化砧木的发展与应用[J].北方果树,2018(2):1-3.JIANG Shuling,OU Chunqing,WANG Fei,ZHANG Yanjie,MA Li,ZHAO Ya’nan.Development and application of pear dwarf stock in China[J].Northern Fruits,2018(2):1-3.

[3] 欧春青,姜淑苓,王斐,马力,李连文,汤常永.国内外选育的梨矮化砧木简介及其应用现状[J].浙江农业科学,2014(10):1543-1547.OU Chunqing,JIANG Shuling,WANG Fei,MA Li,LI Lianwen,TANG Changyong.Introduction of selected pear dwarf rootstocks at home and abroad and their application status[J].Journal of Zhejiang Agricultural Science,2014(10):1543-1547.

[4] 李登科,邵嘉鸣,张忠仁,邵开基,郜晓梦.梨K 系矮化自根砧木的选育[J].中国果树,1997(3):20-21.LI Dengke,SHAO Jiaming,ZHANG Zhongren,SHAO Kaiji,GAO Xiaomeng.Selection and breeding of dwarf self-rooting rootstocks of pear line K[J].China Fruits,1997(3):20-21.

[5] 姜淑苓,贾敬贤,纪宝生,马力.梨矮化砧木:中矮1 号[J].中国果树,2000(3):4-6.JIANG Shuling,JIA Jingxian,JI Baosheng,MA Li.Pear dwarf rootstock:Zhongai 1[J].China Fruits,2000(3):4-6.

[6] 姜淑苓,陈长兰,贾敬贤,李振茹,方成泉,马力,吕宝和.梨矮化砧木新品种‘中矮2 号’[J].园艺学报,2006,33(6):1402.JIANG Shuling,CHEN Changlan,JIA Jingxian,LI Zhengru,FANG Chengquan,MA Li,LÜ Baohe.A new dwarf rootstock of pear‘Zhongai 2’[J].Acta Horticulturae Sinica,2006,33(6):1402.

[7] HILL JR J L,HOLLENDER C A.Branching out:New insights into the genetic regulation of shoot architecture in trees[J].Current Opinion in Plant Biology,2019,47:73-80.

[8] BEAKBANE A B,THOMPON E C.Anatomical studies of stems and roots of hardy fruit treesⅡ.The internal structure of the roots of some vigorous and some dwarfing apple rootstocks,and the correlation of structure with vigour[J].Journal of Pomology and Horticultural Science,1940,17(2):141-149.

[9] 贾敬贤,陈长兰,龚欣.梨中间砧PDR54 的矮化效应及其矮化机制的探讨[J].中国果树,1991(1):13-15.JIA Jingxian,CHEN Changlan,GONG Xin.Exploration of the dwarfing effect of pear intermediate rootstock PDR54 and its dwarfing mechanism[J].China Fruits,1991(1):13-15.

[10] 陈长兰.果树矮化砧和矮化中间砧的致矮机制研究[J].中国农学通报,2000,16(3):31-32.CHEN Changlan.Study on the dwarfing mechanism of dwarf rootstock and dwarf intermediate rootstock of fruit trees[J].Chinese Agricultural Science Bulletin,2000,16(3):31-32.

[11] 刘延杰.秋子梨不同类型生长势与枝叶解剖构造的研究[J].北方园艺,2000(5):29-30.LIU Yanjie.Study on the growth potential and anatomical structure of branches and leaves of different types of Pyrus ussuriensis[J].Northern Horticulture,2000(5):29-30.

[12] 姜淑苓,陈长兰,王斐,欧春青,王西成,贾敬贤,马力.紧凑型梨解剖结构及内源激素变化[J].果树学报,2010,27(2):203-206.JIANG Shuling,CHEN Changlan,WANG Fei,OU Chunqing,WANG Xicheng,JIA Jingxian,MA Li.Study on the changes of anatomical structure and endogenous hormones in the pear trees of compact type[J].Journal of Fruit Science,2010,27(2):203-206.

[13] 徐颖,曹后男,宗成文,巩艳明,朴永虎.不同生长势梨种质矮化预选指标的比较研究[J].安徽农业科学,2010,38(3):1256-1257.XU Ying,CAO Hounan,ZONG Chengwen,GONG Yanming,PU Yonghu.Comparative study on the dwarfing preselected indices of germplasm with different growth potential[J].Journal of Anhui Agricultural Sciences,2010,38(3):1256-1257.

[14] 赵国栋,贾林光,杨凤秋,陈东玫,张新生,赵同生.十二种砧木根皮率、枝皮率与嫁接树生长势的相关性[J].北方园艺,2020(18):13-17.ZHAO Guodong,JIA Linguang,YANG Fengqiu,CHEN Dongmei,ZHANG Xinsheng,ZHAO Tongsheng.Correlation between root bark ratio,branch cortex ratio and growth vigor of grafted trees of twelve apple rootstocks[J].Northern Horticulture,2020(18):13-17.

[15] CHEN B Y,WANG C H,TIAN Y K,CHU Q G,HU C H.Anatomical characteristics of young stems and mature leaves of dwarf pear[J].Scientia Horticulturae,2015,186:172-179.

[16] TALWARA S,GROUT B,TOLDAM-ANDERSEN T B.Modification of leaf morphology and anatomy as a consequence of columnar architecture in domestic apple (Malus × domestica Borkh.)trees[J].Scientia Horticulturae,2013,164:310-315.

[17] 贾敬贤,陈长兰.紧凑型梨的生长、解剖和生化特性研究[J].园艺学报,1985,12(4):228-232.JIA Jingxian,CHEN Changlan.Growth,anatomical and biochemical characterization of compact pears[J].Acta Horticulturae Sinica,1985,12(4):228-232.

[18] 贾旭梅,王延秀,党兆霞,朱燕芳,胡亚,陈佰鸿.八棱海棠上11 个矮化砧木生长及其叶片解剖特性的研究[J].西北植物学报,2017,37(6):1126-1136.JIA Xumei,WANG Yanxiu,DANG Zhaoxia,ZHU Yanfang,HU Ya,CHEN Baihong.Growth and leaf anatomical structure of 11 dwarf rootstocks on Malus robusta Rehd.[J].Acta Botanica Boreali-Occidentalia Sinica,2017,37(6):1126-1136.

[19] 董星光,曹玉芬,王昆,田路明,张莹,齐丹.中国3 个主要梨砧木资源木质部导管分子结构及分布比较[J].植物学报,2015,50(2):227-233.DONG Xingguang,CAO Yufeng,WANG Kun,TIAN Luming,ZHANG Ying,QI Dan.Comparison of the characters and distribution of vessel elements in xylem among three main pear rootstocks in China[J].Chinese Bulletin of Botany,2015,50(2):227-233.

[20] 王秀娟,马春晖,王然,宋健坤,李鼎立,杨英杰.主要梨属砧木枝条导管分子结构比较分析[J].北方园艺,2016(8):24-28.WANG Xiujuan,MA Chunhui,WANG Ran,SONG Jiankun,LI Dingli,YANG Yingjie.Comparative analysis on vessel elements in branch of pear rootstocks (Pyrus spp.)[J].Northern Horticulture,2016(8):24-28.

[21] DEJONG T M,TOMBESP S,BASILE B,SILVA D D.Beakbane and Thompson (1939,East Malling) had it right:Scion vigour is physiologically linked to the xylem anatomy of the rootstock[J].Aspects of Applied Biology,2013,119:51-58.

[22] HAYAT F,IQBAL S,COULIBALY D,RAZZAQ M K,NAWAZ M A,JIANG W B,SHI T,GAO Z H.An insight into dwarfing mechanism:Contribution of scion-rootstock interactions toward fruit crop improvement[J].Fruit Research,2021,1(3):1-11.

[23] 赵静,赵娜娜,宋健坤,孙华丽,王然.5 个中间砧对‘黄金梨’生长、结果及叶片矿质元素积累的影响[J].园艺学报,2016,43(7):1367-1376.ZHAO Jing,ZHAO Nana,SONG Jiankun,SUN Huali,WANG Ran.Effects of five interstocks on shoot growth,fruiting and accumulation of mineral elements in leaves of‘Whangkeumbae’pear[J].Acta Horticulturae Sinica,2016,43(7):1367-1376.

[24] 冯轶,许雪峰,张新忠,吴婷,王忆,韩振海.苹果矮化砧木致矮机制的研究进展[J].园艺学报,2018,45(9):1633-1641.FENG Yi,XU Xuefeng,ZHANG Xinzhong,WU Ting,WANG Yi,HAN Zhenghai.Progress of dwarfing mechanism of apple rootstock[J].Acta Horticulturae Sinica,2018,45(9):1633-1641.

[25] SMITH E,WHITING M.Effect of ethephon on sweet cherry pedicel-fruit retention force and quality is cultivar dependent[J].Plant Growth Regulation,2010,60(3):213-223.

[26] 何文,潘鹤立,潘腾飞,汤浩茹,王小蓉,潘东明.果树砧穗互作研究进展[J].园艺学报,2017,44(9):1645-1657.HE Wen,PAN Heli,PAN Tengfei,TANG Haoru,WANG Xiaorong,PAN Dongming.Research progress on the interaction between scion and rootstock in fruit trees[J].Acta Horticulturae Sinica,2017,44(9):1645-1657.

[27] WARSCHEFSKY E J,KLENIN L L,FRANK M H,CHITWOOD D H,LONDO J P,WETTBERG E J,MILLER A J.Rootstocks:Diversity,domestication,and impacts on shoot phenotypes[J].Trends in Plant Science,2016,21(5):418-437.

[28] 姜淑苓,贾敬贤,王斐,欧春青,王志刚,宣利利,程飞飞,马力.三个梨树中间砧木对嫁接树的矮化效应[J].中国农业科学,2010,43(23):4886-4892.JIANG Shuling,JIA Jingxian,WANG Fei,OU Chunqing,WANG Zhigang,XUAN Lili,CHEN Feifei,MA Li.The dwarfing effect of three pear dwarfing intermediate stocks on grafting trees[J].Scientia Agricultura Sinica,2010,43(23):4886-4892.

[29] 张玉良,宗宇,宋建坤,李鼎立,王新慧,王然.4 种梨砧木实生苗生长及其叶片、新梢和根中的矿质元素含量的变化[J].果树学报,2017,34(12):1545-1555.ZHANG Yuliang,ZONG Yu,SONG Jiankun,LI Dingli,WANG Xinhui,WANG Ran.Seedling growth of four pear rootstocks and changes in mineral elements in their leaves,shoots and roots during growing season[J].Journal of Fruit Science,2017,34(12):1545-1555.

[30] 纪开燕,吴慧,韦军,林生鸾.梨砧木与接穗叶片中主要矿质营养元素含量差异研究[J].湖北农业科学,2016,55(4):924-927.JI Kaiyan,WU Hui,WEI Jun,LIN Shengluan.Study on differences of main mineral nutrient material contents in leaves of scoin and rootstocks of pear[J].Hubei Agricultural Sciences,2016,55(4):924-927.

[31] MALETIĆ-SAVATIĆ M,VINGARA L K,MANGANAS L N,LI Y,ZHANG S,SIERRA A,HAZEL R,SMITH D,WAGSHUL M E,HENN F,KRUPP L,ENIKOLOPOV G,BENVENISTE H,DJURIĆ P M,PELCZER I.Metabolomics of neural progenitor cells:A novel approach to biomarker discovery[J].Cold Spring Harbor Symposia on Quantitative Biology,2008,73:389-401.

[32] WANG L,HOU E T,WANG L J,WANG Y J,YANG L J,ZHENG X H,XIE G Q,SUN Q,LIANG M Y,TIAN Z M.Reconstruction and analysis of correlation networks based on GCMS metabolomics data for young hypertensive men[J].Analytica Chimica Acta,2015,854:95-105.

[33] CUI Z H,ZHANG H,GALARNEAU E R A,YANG Y J,LI D L,SONG J K,MA C H,ZHANG S L,WANG R.Metabolome analysis reveals important compounds related to dwarfing effect of interstock on scion in pear[J].Annals of Applied Biology,2021,179(1):108-122.

[34] 任婷婷,杨英杰,宋健坤,李鼎立,马春晖,张欢,王然.梨砧木新梢韧皮部酚类物质含量与植株生长特性的关系[J].青岛农业大学学报(自然科学版),2015,32(2):101-107 REN Tingting,YANG Yingjie,SONG Jiankun,LI Dingli,MA Chunhui,ZHANG Huan,WANG Ran.Relationship between phenolic compounds content in the shoot phloem and different pear rootstocks growth characteristtics[J].Journal of Qingdao Agricultural University(Natural Science),2015,32(2):101-107.

[35] YILDIRIM F,YILDIRIM A,SAN B,ERCIŞLI S.The relationship between growth vigour of rootstock and phenolic contents in apple (Malus×domestica)[J].Erwerbs-Obstbau,2016,58(1):25-29.

[36] BESSEAY S,HOFFMANN L,GEOFFROY P,LAPIERRE C,LEGRAND M.Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth[J].The Plant Cell,2007,19(1):148-162.

[37] GRAY W M.Hormonal regulation of plant growth and development[J].PLoS Biology,2004,2(9):E311.

[38] HABETS M E J,OFFRINGA R.PIN-driven polar auxin transport in plant developmental plasticity:A key target for environmental and endogenous signals[J].New Phytologist,2014,203(2):362-377.

[39] HOOLEY R.Gibberellins:Perception,transduction and responses[J].Plant Molecular Biology,1994,26(5):1529-1555.

[40] 陈长兰.梨树矮型的生物学特性及其致矮机制的研究[D].沈阳:沈阳农业大学,1996.CHEN Changlan.Study on the biological characteristics of pear dwarf type and its dwarfing mechanism[D].Shenyang:Shenyang Agricultural University,1996.

[41] 程飞飞,欧春青,姜淑苓,王斐,马力,李连文.梨内根-贝壳杉烯合酶基因克隆及表达分析[J].沈阳农业大学学报,2011,42(6):677-682.CHEN Feifei,OU Chunqing,JIANG Shuling,WANG Fei,MA Li,LI Lianwen.Cloning and expression analysis of Ent-Kaurence synthase gene in pear[J].Journal of Shenyang Agricultural University,2011,42(6):677-682.

[42] NODA K,OKUDA H,IWAGAKI I.Indole acetic acid and abscisic acid levels in new shoots and fibrous roots of citrus scionrootstock combinations[J].Scientia Horticulturae,2000,84(3/4):245-254.

[43] 姜志昂,彭建营,孙建设.苹果MdKSMdKOA1 基因克隆与表达分析[J].植物遗传资源学报,2014,15(2):362-368.JIANG Zhiang,PENG Jianying,SUN Jianshe.Isolation and expression of MdKs and MdKOA1 gene in apple[J].Journal of Plant Genetic Resources,2014,15(2):362-368.

[44] OU C Q,JIANG S L,WANG F,TANG C Y,HAO N N.An RNA-Seq analysis of the pear (Pyrus communis L.) transcriptome,with a focus on genes associated with dwarf[J].Plant Gene,2015,4:69-77.

[45] HEISLER M G,OHNO C,DAS P,SIEBER P,REDDY G V,LONG J A,MEYEROWITZ E M.Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem[J].Current Biology,2005,15(21):1899-1911.

[46] PERROT-RECHENMANN C.Cellular responses to auxin:Division versus expansion[J/OL].Cold Spring Harbor Perspectives in Biology,2010,2(5):a001446.DOI:10.1101/cshperspect.aoo1446.

[47] GAN Z Y,WANG Y,WU T,XU X F,ZHANG X H,HAN Z H.MdPIN1b encodes a putative auxin efflux carrier and has different expression patterns in BC and M9 apple rootstocks[J].Plant Molecular Biology,2018,96(4/5):353-365.

[48] ZHENG X D,ZHANG H Y,XIAO Y X,WANG C H,TIAN Y K.Deletion in the promoter of PcPIN-L affects the polar auxin transport in dwarf pear (Pyrus communis L.)[J].Scientific Reports,2019,9(1):1-12.

[49] BENJAMINS R,QUINT A,WEIJERS D,HOOYKAAS P,OFFRINGA R.The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport[J].Development,2001,128(20):4057-4067.

[50] QI L Y,CHEN L,WANG C S,ZHANG S L,YANG Y J,LIU J L,LI D L,SONG J K,WANG R.Characterization of the auxin efflux transporter PIN proteins in pear[J].Plants,2020,9(3):349.

[51] VAN BERKEL K,DE BOER RJ,SCHERES B,TEN TUSSCHER K.Polar auxin transport:Models and mechanisms[J].Development,2013,140(11):2253-2268.

[52] SUN Y,KIM T W,WANG Z Y,GUAN S H,SUN Y,BURLINGAME A L,TANG W Q,DENG Z P,SHANG J X.Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors[J].Nature Cell Biology,2009,11(10):1254-1260.

[53] HUANG S H,ZHENG C Y,ZHAO Y,LI Q,LIU J W,DENG R,LEI T T,WANG S F,WANG X F.RNA interference knockdown of the brassinosteroid receptor BRI1 in potato (Solanum tuberosum L.)reveals novel functions for brassinosteroid signaling in controlling tuberization[J].Scientia Horticulturae,2021,290:110516.

[54] ZHENG X D,LI Y C,MA C Q,CHEN B Y,SUN Z J,TIAN Y K,WANG C H.A mutation in the promoter of the arabinogalactan protein 7-like gene PcAGP7-1 affects cell morphogenesis and brassinolide content in pear (Pyrus communis L.) stems[J].The Plant Journal,2022,109(1):47-63.

[55] 郝宁宁,欧春青,陈秋菊,王斐,姜淑苓,马力.梨树幼叶内源激素含量与枝条生长的关系分析[J].中国果树,2017(6):34-36.HAO Ningning,OU Chunqing,CHEN Qiuju,WANG Fei,JIANG Shuling,MA Li.Analysis of the relationship between endogenous hormone content and branch growth in young leaves of pear trees[J].China Fruits,2017(6):34-36.

[56] SUN T P.The molecular mechanism and evolution of the GAGID1-DELLA signaling module in plants[J].Current Biology,2011,21(9):338-345.

[57] WANG C H,TIAN Y K,BUCK E J,GARDINER S E,DAI H Y,JIA Y L.Genetic mapping of PcDw determining pear dwarf trait[J].Journal of the American Society for Horticultural Science,2011,136(1):48-53.

[58] WANG C H,LI W,TIAN Y K,HOU D L,BAI M D.Development of molecular markers for genetic and physical mapping of the PcDw locus in pear(Pyrus communis L.)[J].The Journal of Horticultural Science and Biotechnology,2016,91(3):299-307.

[59] XIAO Y X,WANG C H,TIAN Y K,YANG S L,SHEN J L,LIU Q Q,ZHANG H Y.Candidates responsible for dwarf pear phenotype as revealed by comparative transcriptome analysis[J].Molecular Breeding,2019,39(1):1-10.

[60] FOSTER T M,CELTON J M,CHAGNÉ D,TUSTIN D S,GARDINER S E.Two quantitative trait loci,Dw1 and Dw2,are primarily responsible for rootstock-induced dwarfing in apple[J].Horticulture Research,2015,2(1):15001.

[61] KNÄBEL M,FRIEND A P,PALMER J W,DIACK R,WIEDOW C,AISPACH P,DENG C,GARDINER S E,TUSTIN D S,SCHAFFER R,FOSTER T,CHAGNÉ D.Genetic control of pear rootstock-induced dwarfing and precocity is linked to a chromosomal region syntenic to the apple Dw1 loci[J].BMC Plant Biology,2015,15(1):230.

[62] 欧春青,姜淑苓,王斐,王志刚,马力,李连文.梨贝壳杉烯酸氧化酶基因PcKAO1 的克隆与表达分析[J].园艺学报,2013,40(5):849-858.OU Chunqing,JIANG Shuling,WANG Fei,WANG Zhigang,MA Li,LI Lianwen.Cloning and expression analysis of entkaurenoic acid oxidase gene (PcKAO1) in pear[J].Acta Horticulturae Sinica,2013,40(5):849-858.

[63] 宣利利,欧春青,王斐,王志刚,程飞飞,李振茹,姜淑苓.梨矮化砧木中矮1 号GA20-氧化酶基因克隆与表达分析[J].果树学报,2011,28(5):883-887.XUAN Lili,OU Chunqing,WANG Fei,WANG Zhigang,CHEN Feifei,LI Zhengru,JIANG Shuling.Isolation and expression analysis of gibberellin 20-oxidase gene from pear dwarfing Zhongai 1[J].Journal of Fruit Science,2011,28(5):883-887.

[64] PANG H G,YAN Q,ZHAO S L,HE F,XU J F,QI B X,ZHANG Y X.Knockout of the S-acyltransferase gene,Pb-PAT14,confers the dwarf yellowing phenotype in first generation pear by ABA accumulation[J].International Journal of Molecular Sciences,2019,20(24):6347.

[65] LIU J L,ZHANG C X,LI T T,LIANG C L,YANG Y J,LI D L,CUI Z H,WANG R,SONG J K.Phenotype and mechanism analysis of plant dwarfing in pear regulated by abscisic acid[J].Journal of Integrative Agriculture,2022,21(5):1346-1356.

[66] 汤常永,段续伟,欧春青,王斐,姜淑苓.梨矮化砧木‘中矮1号’生长素氢转运体基因PcAHS 及其启动子的克隆与表达分析[J].园艺学报,2015,42(4):613-622.TANG Changyong,DUAN Xuwei,OU Chunqing,WANG Fei,JIANG Shuling.Isolation and analysis of PcAHS gene and its promoter from dwarfing rootstock‘Zhongai 1’pear[J].Acta Horticulturae Sinica,2015,42(4):613-622.

[67] JIANG S L,CHEN Q J,ZHANG Q L,ZHANG Y,HAO N N,OU C Q,WANG F,LI T Z.Pyr-miR171f-targeted PyrSCL6 and PyrSCL22 genes regulate shoot growth by responding to IAA signaling in pear[J].Tree Genetics & Genomes,2018,14(2):1-12.

[68] 时兰春,王益川,王伯初.植物细胞骨架与细胞生长[J].植物生理学通讯,2007(6):1175-1181.SHI Lanchun,WANG Yichuan,WANG Bochu.Plant cytoskeleton and cell growth[J].Plant Physiology Journal,2007(6):1175-1181.

[69] 侯董亮,王彩虹,田义轲,肖玉雄,张蓓.梨β-微管蛋白基因及其在矮生型与普通型梨茎尖中的表达差异[J].园艺学报,2016,43(2):320-328.HOU Dongliang,WANG Caihong,TIAN Yike,XIAO Yuxiong,ZHANG Bei.A group of β-tubulin genes and their expression difference in stem tips between the dwarf and standard type pears[J].Acta Horticulturae Sinica,2016,43(2):320-328.

[70] 郝宁宁,段续伟,欧春青,陈秋菊,王斐,姜淑苓,马力.梨‘中矮1 号’LUE1 基因的克隆及功能分析[J].园艺学报,2017,44(5):839-849.HAO Ningning,DUAN Xuwei,OU Chunqing,CHEN Qiuju,WANG Fei,JIANG Shuling,MA Li.Cloning and functional analysis of LUE1 gene from‘Zhongai 1’pear[J].Acta Horticulturae Sinica,2017,44(5):839-849.

[71] 欧春青,姜淑苓,王斐,马力,李连文.不同中间砧木对早酥梨的矮化效应研究[J].中国果树,2015(5):39-42.OU Chunqing,JIANG Shuling,WANG Fei,MA Li,LI Lianwen.Study on the dwarfing effect of different intermediate rootstocks on early crisp pear[J].China Fruits,2015(5):39-42.

Progress in research on the dwarfing mechanism of pear dwarfing rootstocks

YE Yu,OU Chunqinga,WANG Fei,ZHANG Yanjie,MA Li,JIANG Shuling*

(Research Institute of Pomology,Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops,Germplasm Resources Utilization,Ministry of Agriculture and Rural Affairs,Xingcheng 125100,Liaoning,China)

Abstract: Pear, belonging to the genus Pyrus, is the third-largest fruit crop in China, and its cultivated area, yield, and export volume rank first in the world.Most pear varieties in China have tall trees, exuberant growth and long life.Vigorous rootstock cultivation techniques are widely used in production,which has resulted in some problems,such as too large tree canopy,bearing fruit late,difficult management, or excessive tree vigor, poor orchard ventilation and light transmission, poor fruit quality and so on.As a new cultivation mode, the dwarfing and dense planting has the advantages of early-bearing fruit and high yield, good quality, convenient management and rapid variety renewal, which can make up for the shortcomings of the traditional vigorous growing mode.There are two main measures to achieve dwarfing cultivation of fruit trees, one is to use the dwarfing rootstock, and the other is to use the dwarfing varieties.At present, there are not many pear dwarfing varieties available, so the use of dwarfing rootstocks is the main way to realize the dwarfing and intensive cultivation of pear.However,the dwarfing mechanism of pear dwarfing rootstocks has not been revealed,and it is of great theoretical and practical significance to investigate the dwarfing mechanism of pear dwarfing rootstock to improve the cultivation technology and accelerate the breeding process of pear dwarfing rootstock.In recent years,while the selection and breeding of pear dwarf rootstocks are carried out in order,the research on dwarfing mechanisms is also gradually deepened and has been made a great progress.About the dwarfing mechanism of dwarfing rootstock,the early research was mainly focused on the tissue structure and other aspects.Through the observation of the anatomical structure of different kinds of rootstocks,scholars at home and abroad found that the root/skin ratio, branch/skin ratio, leaf structure, xylem vessel structure, and phloem sieve tube structure were closely related to the height of the plant.Besides,with the increase in the length of the interstock segment,the dwarfing effect will be more obvious.The material transport in plants includes the transport of water,mineral elements,and assimilation products.The rootstock affects the growth and development of the tree and achieves the dwarfing efficacy by influencing the absorption and utilization of water and nutrients by the scions.The response of leaves to soil mineral elements in the whole tree is the most sensitive, and the content level can indicate the absorption and utilization of soil mineral elements.Therefore,the material transport characteristics of pear dwarfing rootstocks can be reflected by the content of mineral elements in scion leaves.At the same time,phenolic acids/derivatives and flavonoids have been proved to be two important categories of metabolites involved in the regulation of dwarfing of pear rootstock.Silencing of the gene for hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT), a lignin biosynthesis enzyme,was previously shown to redirect the metabolic flux from the lignin biosynthesis pathway to the flavonoid pathways.The accumulation of flavonoids will seriously slow down plant growth and achieve the dwarfing effect.In addition,the concentrations of two monosaccharides,D-sorbitol and D-mannitol are drastically reduced in the roots with“OHF51”interstock present, which is also one of the reasons for tree dwarfing.The relationship between plant hormones and dwarfing is one of the current research hotspots.Most scholars believe that plant dwarfing is the result of cell division or reduced elongation,which is usually regulated by plant hormones.Studies have shown that gibberellins(GAs),abscisic acid(ABA), auxin (IAA), cytokinin (CKs), brassinolide (BR), and other hormones are related to the dwarfing ability of rootstocks.With the rapid development of molecular biotechnology, great progress has been made in the study on dwarfing genes in pear rootstocks.According to the current research results,the genes leading to the dwarfing of pear rootstock can be divided into two types: one is the dwarfing gene,that is,the dwarfing gene directly controls the plant characteristic to make it dwarf,and plays a direct role; the other includes plant hormone synthesis and signal transduction related enzyme genes and microtubulin genes, which play an indirect role.At present, most of the current studies focus on single gene regulation of dwarfism in pear trees, and there are few studies on the regulatory relationship of multiple genes on dwarfism, which need to be combined with genomics, transcriptomics, proteomics and metabolomics,and other high-throughput data for in-depth and systematic studies.Therefore,as for the research on the dwarfing mechanism of pear rootstock, future work should focus on the common regulatory relationship among various hormone metabolic pathways on dwarfing.Meanwhile, combined with the technology of system biology, the dwarfing traits are further helpful to fine QTL mapping by Bulked Segregant Analysis (BSA) or Genome Wide Association Study (GWAS), and key QTL loci are comprehensively analyzed to clarify the upstream and downstream regulatory relationship between each gene.

Key words:Pear;Dwarfing rootstock;Dwarfing mechanism;Hormones;Dwarfing gene

中图分类号S661.2

文献标志码:A

文章编号:1009-9980(2022)11-2163-09

DOI:10.13925/j.cnki.gsxb.20220249

收稿日期2022-05-07

接受日期:2022-06-24

基金项目国家自然科学基金项目(32072531);中央级公益性科研院所基本科研业务费专项项目(Y2022XK10);中国农业科学院科技创新工程项目(CAAS-ASTIP-2016-RIP)

作者简介叶宇,男,在读硕士研究生,研究方向为梨遗传育种。Tel:15607026377,E-mail:yeyu970901@163.com。a为共同第一作者。欧春青,男,副研究员,研究方向为梨遗传育种。Tel:15042929049,E-mail:ouchunqing@caas.cn

*通信作者Author for correspondence.Tel:0429-3598123,E-mail:Jshuling@163.com