气象因子和施肥对赤霞珠植株矿质元素和果实品质的影响

王小龙1,2,3,张正文4,邵学东4,钟晓敏4,王福成5,史祥宾1,2,3,张艺灿1,2,3,王海波1,2,3*

1中国农业科学院果树研究所,辽宁兴城 125100;2农业农村部园艺作物种质资源利用重点实验室,辽宁兴城 125100;3辽宁省落叶果树矿质营养与肥料高效利用重点实验室,辽宁兴城 125100;4君顶酒庄有限公司,山东蓬莱 265600;5烟台市蓬莱区葡萄与葡萄酒产业发展服务中心,山东蓬莱 265600)

摘 要目的】探明赤霞珠植株矿质元素与果实品质的关系,筛选影响赤霞珠品质的主要矿质元素,为实现赤霞珠的合理营养施肥和优质生产提供参考。【方法】以赤霞珠为试材,连续3 a(年)进行5416配方施肥处理,研究16个配方肥处理的赤霞珠不同生育期/组织部位矿质元素含量及果实基本理化指标和多酚物质含量等变化。基于Topsis分析对各品质指标进行综合评价,形成品质指数。依据各矿质元素含量分布特性,对高优品质指数的果园进行划分,对低优果园进行营养诊断,并初步制定施肥方案及注意事项。【结果】各酚类物质含量和品质指数的极值在年际间具有明显的组织特异性。有效积温(T)与降雨量(P)是造成相同施肥条件下品质年际差异的主要因素之一,各处理赤霞珠皮/籽黄烷醇、皮/籽总黄酮、皮单宁含量平均累积量均与T/P值呈正比。以相关性最强为原则,选择盛花期叶片N元素、转色期叶柄P元素、盛花期花序K、Ca和Mg元素可作为蓬莱产区赤霞珠品质指数的植株营养诊断因子。依据高优园植株矿质元素含量范围确定上述营养诊断因子的适宜值分别为N(12.9~31.3)mg·g-1、P(4.0~11.6)mg·g-1、K(6.4~35.9)mg·g-1、Ca(15.7~69.9)mg·g-1、Mg(3.3~18.7)mg·g-1。赤霞珠低优园的需肥顺序为Mg>K>Ca>P>N,其中Mg、K、Ca元素表现偏低。为获得高优品质指数的赤霞珠,建议每公顷施肥量分别为N 186.8 kg、P2O5 70.0 kg、K2O 112.5 kg、CaO 112.5 kg、MgO 0 kg。【结论】加强果园水肥管理,提高树体对Mg元素的吸收。其他肥料的施用应采取少量多次原则,避开降雨量较大的季节。

关键词赤霞珠葡萄;配方施肥;气象因子;果实品质;品质指数

赤霞珠葡萄(Vitis vinifera L.‘Cabernet Sauvignon’)酿制的葡萄酒具有口感醇厚、香气浓郁的特点,是最受欢迎的酿酒葡萄之一。该品种因容易生长,适合多种不同气候,已于各地普遍种植。单穗质量、可溶性固形物含量、籽果比、皮果比、籽粒数、多酚物质含量是被广泛用于评价酿酒葡萄品质高低的重要指标[1-3],葡萄的品质形成与生态因子和栽培管理措施有关,生态因子如光照[4]、水分[5]、土壤[6]、海拔梯度[7-8]和微气候[9]等,栽培管理措施如套袋[10]、架式[11]、整形修剪[12]、负载量[13]、根域限制与施肥[14]等均影响葡萄品质的形成。

降雨量和有效积温的差异是导致葡萄品质差异的重要因素之一。研究表明,适当的水分胁迫可明显提高葡萄果实中可溶性固形物含量,并促进花色苷等酚类物质的积累,从而影响葡萄的果实品质[15-16]。在一定范围内,决定葡萄果实含糖量的主要气象因素是≥10 ℃的有效积温,温度对含糖量的升高和含酸量的降低均有促进作用[17-18]。幼果发育期,高温会抑制葡萄的生长发育,不利于果实增大[19];同时,会促进苹果酸的降解[20],抑制花青素[21]和芳香物质[22]的积累。自然降雨具有时空分布不均的特点,常不能满足葡萄各物候期对水分的要求,对不同年际间的果实品质形成有较大的影响。因此,研究不同年际间降雨量和有效积温的变化规律对葡萄果实品质的影响,可解释3 a(年)连续相同施肥处理之间赤霞珠果实品质出现差异性的原因。

科学合理的化肥施用可以避免葡萄树体单一或多种营养缺乏症,是实现葡萄园优质高产的重要保证。N 肥可有效增大叶面积及提高光合效率[23],光合作用是葡萄树体累积养分的基础[24]。P肥可促进植物碳水化合物的合成,促进多种酶的激活[25]及对N、K等元素的吸收利用[26]。K肥在促进果实生长发育,增强果实抗逆性,以及提高果实中含糖量、风味、色泽等方面起着重要作用[27]。Ca 肥施用量对果实的硬度和品质有重要影响[28]。Mg 肥的施用会影响植株多种酶活性、碳水化合物累积、果实色泽和可溶性固形物含量[29]。因此,研究不同施肥处理对赤霞珠果实品质和各组织部位矿质元素含量的影响,有利于在生产实践中指导科学施肥。

笔者通过连续3 a对赤霞珠进行5416配方施肥试验,测定分析了果实单穗质量、可溶性固形物含量、皮果比、籽果比、籽粒数、皮/籽总酚、花色苷、皮/籽总黄酮、皮/籽黄烷醇、皮/籽单宁含量等品质指标。首先,通过监测葡萄园的降雨量和有效积温年际变化动态,探索气象因子是否能够造成相同施肥处理条件下果实品质的年际差异。其次,利用Topsis分析法对上述各品质进行综合评价,形成品质指数;通过比较分析各生育期(盛花期、转色期、成熟期)、各组织部位(花序/果实、叶片、叶柄)不同矿质元素(氮、磷、钾、钙、镁)含量与各果实品质和品质指数的相关性,筛选影响各指标的主要矿质元素。最后,制定获得高优品质指数赤霞珠植株的营养诊断标准,以期为蓬莱产区优质赤霞珠葡萄的生产提供参考,为进一步酿制优质葡萄酒提供理论基础。

1 材料和方法

1.1 试验地概况

试验于2018—2020年进行,选取山东省烟台市蓬莱区酿酒葡萄赤霞珠代表性产地(君顶酒庄有限公司)的植株为试材,树龄10~13 a,砧木为SO4,株行距为1 m×2 m。试验地赤霞珠葡萄根系的富集深度为0~40 cm,0~40 cm土层基础理化性质为土壤容重为1.3 g·cm-3,pH 值为6.4、碱解氮含量(w,后同)69.0 mg·kg-1、速效钾含量288.1 mg·kg-1、速效磷含量104.2 mg·kg-1、可交换性钙含量2.7 mg·g-1、可交换性镁含量329.6 mg·kg-1

1.2 施肥处理

选择16 个树体健康、长势中庸、产量较稳定的园区作为固定试验区,进行5416 配方肥施用试验[30]。5416 配方肥是指5 因素(N、P、K、Ca、Mg)、4水平(每公顷各肥料原料的基础用量的倍数,即0倍、0.5倍、1倍、1.5倍),共计16个处理(表1)。配方肥是基于每公顷7500 kg 果实的产量目标,设定5416 试验每公顷各肥料原料的基础用量分别为N 124.5 kg、P2O5 46.5 kg、K2O 112.5 kg、CaO 112.5 kg、MgO 46.5 kg[31]。各肥料在萌芽期、初花期、末花期、转色期和成熟期的施用量参考王小龙等[32]的研究。

表1 5416 试验处理
Table 1 Treatments of 5416

注:表中的1、2、3、4 水平分别对应每hm2 各肥料原料的基础用量的倍数,即0、0.5、1、1.5 倍。
Note:The levels 1, 2, 3, and 4 in the table correspond to multiples of the basic dosage of each fertilizer raw material per hectare, namely 0 time,0.5 time,1 time,and 1.5 time.

处理Treatment T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16因素N1111222233334444 P2O5 K2O CaO MgO 1234123412341234 1234214334124321 1234341243212143 1234432121433412

1.3 样品采集及项目测定

2018—2020 年的降雨量和有效积温由君顶酒庄有限公司试验园气象站提供。于成熟期取样,每处理随机选取30个果穗,从果实的上中下各部位随机采集果粒720粒,用于测定单穗质量、可溶性固形物含量、皮果比、籽果比、籽粒数、皮/籽总酚、花色苷、皮/籽总黄酮、皮/籽黄烷醇、皮/籽单宁含量。单穗质量利用电子秤称质量,可溶性固形物含量采用手持测糖量计测定。皮果比、籽果比分别是果皮与果实质量比和籽粒与果实质量比,以30粒为1组,剥离果皮和种子并称质量,按照定义进行计算;同时计算每组果实种子数量的平均值,即为籽粒数。葡萄果皮和葡萄籽总酚、花色苷、总黄酮、黄烷醇、单宁物质的提取和含量测定参照苏鹏飞[33]的方法。于盛花期、转色期和成熟期采集花序/果穗上或对生的叶片、叶柄及花序/果实,带回实验室,冲洗干净,105 ℃下杀酶20 min,85 ℃下烘干,粉碎混匀,待测其矿质元素含量。结合H2SO4-H2O2消解法,用流动分析仪测定植株N含量,用电感耦合等离子发射光谱仪测定植株P、K、Ca、Mg全量。以上所有测定指标均进行3次生物学重复。同时,基于各年上述所有品质的Topsis分析结果(果实品质指数,CI),利用SAS软件计算土壤肥力因子对各品质指标的影响力排序和理论最佳配比。根据品质指数和各生育期矿质元素含量的相关性,确定营养诊断因子。基于品质指数,利用CND法制定赤霞珠高优品质指数的营养诊断标准[34]

1.4 数据处理

采用Excel 2016 和SPSS 20.0 软件对3 a 数据进行统计分析。

2 结果与分析

2.1 降雨量和有效积温的年际变化规律

由图1可知,赤霞珠生长季的降雨量和有效积温年际变化存在相似性和特异性。2018年和2020年降雨量总体趋势相似,在5—6月和8月呈现2个降雨高峰(图1-A)。2018和2020年的5—6月降雨量分别为195.7 mm和191.9 mm,2018和2020年的8月降雨量分别为217.0 mm 和142.4 mm。2019 年,自4 月到7月,降雨量逐渐降低;在8 月达到降雨量峰值,为87.6 mm,较2018 和2020 年 分 别 降 低59.6%和38.5%。8月至落叶前(11月),2019和2020年的降雨量在10月达到最低值,分别为6.2 mm和4.4 mm,2018年在11月达到最低值,为9.2 mm。总体上看,2018—2020年的总降雨量分别为515.2、238.4和488.8 mm。

图1 2018—2020 年降雨量和有效积温的年变化
Fig.1 Annual variation of rainfall and effective accumulated temperature from 2018 to 2020

2018—2020 年的有效积温的年际变化总体表现相似,在7 或8 月达到最高值(图1-B)。2018 和2020 年8 月的有效积温最高,分别为533.5 和458.4 ℃;2020 年7 月有效积温最高,为523.3 ℃。2018和2020年总体表现为“升温慢,降温快”,8月前的有效积温逐月平均增幅分别为50.3%和81.6%,8月后平均降幅分别为75.1%和46.6%。2019 年总体表现为“升温快,降温慢”,7 月前的平均增幅为113.2%,7 月后平均降幅为31.2%。总体上看,2018—2020年的总有效积温分别为2 338.5、2 291.0和2 092.9 ℃。

2.2 不同施肥处理对赤霞珠果实基本理化指标的影响

由表2 可知,2018 和2019 年各处理的单穗质量平均值无显著差异,分别为417.8 g 和430.6 g。2020年各处理的单穗质量平均值较2018和2019年分别显著降低58.1%和59.3%。2018—2020年的最大单穗质量施肥处理分别为T9、T8 和T10,其中2018 和2019 年的最小单穗质量施肥处理均为T4。2019 年各处理的可溶性固形物含量平均值较2018和2020年显著提高19.9%和12.9%。2018—2020年的可溶性固形物含量最高的施肥处理分别为T14、T2和T2,其含量(w)分别为22.7%、26.5%和24.3%。

表2 2018—2020 年各施肥处理的赤霞珠果实基本理化指标
Table 2 The basic physical and chemical indexes of Cabernet Sauvignon fruits of various fertilization treatments from 2018 to 2020

注:不同小写字母表示在p<0.05 差异显著。下同。
Note:Different small letters indicate significant difference at p<0.05.The same below.

年份Year 2018 2019 2020数据指标Data index最大值Max最小值Min平均值Mean变异系数CV/%最大值Max最小值Min平均值Mean变异系数CV/%最大值Max最小值Min平均值Mean变异系数CV/%单穗质量Single grain weight/g 540.2(T9)319.8(T4)417.8±58.9 a 14.1 575.0(T8)302.2(T4)430.6±65.7 a 15.2 206.1(T10)147.0(T7)175.2±14.9 b 8.5 w(可溶性固形物)Total soluble solids content/%22.7(T14)19.5(T12)21.1±0.9 c 4.4 26.5(T2)22.6(T14)25.3±1.1 a 4.3 24.3(T2)21.6(T5)22.4±0.6 b 2.9籽粒数Number of seeds 59.0(T7)47.0(T4)54.0±3.2 b 6.1 64.0(T12)50.0(T16)55.9±3.6 a 6.4 66.0(T6)51.0(T1)57.4±4.4 a 7.6皮果比Weight ratio of skin to fruit/%18.7(T8)11.4(T3)13.9±2.0 a 14.7 13.6(T16)10.4(T3)12.2±0.91 b 7.4 17.0(T12)11.6(T13)14.2±1.4 a 9.8籽果比Weight ratio of seed to fruit/%7.6(T6)5.7(T4)6.7±0.5 b 8.1 8.4(T6)6.4(T3)7.4±0.5 a 6.7 0.073 5(T6)0.051 9(T5)6.1±0.5 c 8.6

2018 和2020 年各处理的皮果比平均值无显著差异,分别为13.9%和14.2%,较2019年分别显著提高了12.3%和15.9%。2018—2020年皮果比最高值的施肥处理分别为T8、T16 和T12,其中2018 和2019 年的最低值施肥处理均为T3。与可溶性固形物含量相似,2019年各处理籽果比平均值显著高于2018 和2020 年,分别显著提高10.4%和21.1%。2018—2020 年籽果比最高值的施肥处理均为T6,最低值的施肥处理分别为T4、T3 和T5。2019 和2020 年的各处理籽粒数平均值较2018 年分别显著提高3.7%和5.6%。2018—2020年籽粒数分布范围分别为47.0(T7)~59.0(T4)、50.0(T12)~64.0(T16)、51.0(T6)~66.0(T1)。各年不同处理单穗质量和可溶性固形物含量的变异系数最高值均在2020年,分别为11.8%和34.9%。各年不同处理可溶性固形物含量和皮果比的变异系数最高值均在2018年,分别为4.4%和14.7%;籽果比和籽粒数的变异系数最高值均在2020年,分别为8.6%和7.6%。

2.3 不同施肥处理对赤霞珠果实酚类物质的影响

由表3可知,不同施肥处理对各酚类物质含量和品质指数的极值在年际间具有明显的组织特异性。2018年,皮总酚/皮花色苷/皮总黄酮/皮黄烷醇/单宁、籽总酚/籽黄烷醇、籽总黄酮/籽单宁含量最大值的施肥处理分别为T14、T8、T12;皮总酚/皮总黄酮、皮花色苷/皮单宁、籽总酚/籽总黄酮/籽黄烷醇/籽单宁/品质指数含量最小值的施肥处理分别为T8、T12、T1。2019 年,皮总酚/皮总黄酮/皮黄烷醇/皮单宁含量最大值的施肥处理均为T13,皮总酚/皮花色苷/皮总黄酮/皮黄烷醇含量最小值的施肥处理均为T6。2020 年,皮总酚/皮黄烷醇/品质指数、皮总黄酮/皮单宁、籽总酚/籽单宁含量最大值的施肥处理分别为T7、T10、T14;皮总黄酮/皮单宁、籽总酚/籽黄烷醇/品质指数最小值施肥处理组分别为T5、T4。

表3 2018—2020 年各施肥处理的果实酚类物质含量
Table 3 The content of phenolic substances in fruits of each fertilization treatment from 2018 to 2020

品CI 0.604 3(T10)数指质0.157 9(T1)0.403 5±0.1482b 36.70.7115(T9)0.3222(T16)0.521 1±0.1134a 29.40.6274(T7)0.1509(T4)0.430 5±0.1531ab 35.6宁)单w(籽Seedtannin content/(mg·g-1)7.9(T12)1.8(T1)4.3±2.10b 48.9 12.9(T11)7.1(T3)10.7±1.50 a 14.1 10.8(T14)0.9(T11)5.6±2.92b 52.1 w(皮宁)Skintannin content/(mg·g-1)单3.6(T14)1.1(T12)2.0±0.69b 34.13.3(T13)1.5(T10)2.5±0.49a 19.82.4(T10)0.7(T5)1.6±0.46c 29.1烷醇)黄w(籽Seedflavanols content/(mg·g-1)976.9(T8)236.0(T1)493.0±248.34b 50.4 994.0(T9)587.7(T16)769.5±92.36 a 12.0 357.7(T13)81.3(T4)232.5±92.87 c 40.0醇)烷黄85.2(T14)40.1(T12)61.8±15.65b 25.3 68.4(T6)89.5±12.00a 13.4 41.6(T7)19.0(T3)31.0±7.05 c 22.7 w(皮Skinflavanols content/(mg·g-1)110.5(T13)酮)黄总6.9(T1)3.3(T2)w(籽Seedtotal flavonoids content/(mg·g-1)38.2(T12)18.7±10.06b 53.9 58.3(T6)17.2(T1)38.8±9.47 a 24.5 22.5(T6)12.4±5.97 c 48.1酮)黄总w(皮Skintotal flavonoids content/(mg·g-1)8.1(T14)3.0(T8)5.1±1.60b 31.29.5(T13)6.3(T6)7.9±1.13a 14.35.5(T10)2.7(T5)3.9±0.88c 22.8苷)色w(花Anthocyanins content/(mg·g-1)2.4(T14)0.8(T12)1.4±0.48c 35.15.7(T9)3.8(T6)4.8±0.59a 12.32.6(T16)1.4(T4)1.9±0.31b 16.5酚)总w(籽Seedtotal phenols content/(mg·g-1)21.8(T8)7.4(T1)13.7±4.79 b 34.9 33.9(T12)22.5(T11)29.0±3.23 a 11.1 19.9(T14)6.1(T4)13.6±4.47 b 32.8酚)总w(皮Skintotalphenols content/(mg·g-1)8.8(T14)4.2(T8)6.1±1.41b 23.0 13.4(T13)8.9(T6)11.3±1.28 a 11.4 19.0(T7)4.7(T11)7.1±3.41b 48.2数Dataindex CV/%CV/%CV/%标Max Min Mean数Max Min Mean数Max Min Mean数指值值值系值值值系值值值系据大小均异大小均异大小均异最最平变最最平变最最平变年Year份2018 2019 2020

不同施肥处理各酚类物质的平均含量在不同年际间存在显著差异。2019年各处理的皮总酚、籽总酚和籽单宁含量平均值显著高于2018和2020年,且2018和2020年无显著差异。2018、2019和2020年各处理的皮/籽黄烷醇、皮/籽总黄酮和皮单宁平均值在各年际间差异显著,均表现为2019 年>2018 年>2020年。与之相似,不同年际各处理花色苷含量呈显著差异,表现为2019年>2020年>2018年。不同年际各处理皮总酚和籽单宁的变异系数均表现为2020 年>2018 年>2019 年,籽总酚、花色苷、皮/籽总黄酮、皮/籽黄烷醇和皮单宁均表现为2018 年>2020年>2019年。

2.4 各组织部位矿质元素含量年际变化规律

由表4 可知,赤霞珠各组织部位矿质元素在各年际不同生育期的变化规律存在相似性和特异性。花序、果实、叶片和叶柄N元素除在2020年外,在各生育期间均表现为盛花期>转色期>成熟期,且彼此间存在显著差异(p<0.05)。与之相似,2019年花序、果实和2018 年叶片P 元素均表现为盛花期>转色期>成熟期,且彼此间存在显著差异。2020年花序/果实和2019 年叶柄P 元素均表现为转色期和成熟期无显著差异,且均显著低于盛花期。2018 和2019 年花序、果实、叶片K 元素与同时期N 元素表现相同。2020花序/果实、2020年叶片、2019/2020年叶柄K元素含量均在转色期最高,其中仅有2020花序/果实和2019 年叶柄K 元素含量与其他两个生育期均呈显著差异。Ca 和Mg 元素的变化规律相似,2018年花序/果实和2018—2020 年叶柄Ca 和Mg 元素含量均呈现成熟期>转色期>盛花期,且彼此相互差异显著。与之相反,2020 年花序/果实和2018年叶片Ca和Mg元素含量均呈现盛花期>转色期>成熟期,且彼此间存在显著差异。2019年叶片Ca和Mg 元素含量在转色期和成熟期无显著差异,均显著高于盛花期。

表4 各组织部位矿质元素年际含量
Table 4 Interannual content of mineral element in various tissues (mg·g-1

注:不同小写字母代表相同组织部位同一个矿质元素在不同生育期差异显著(p<0.05)。
Note:Different small letters represent the same element in the same tissue with significant differences in different stages(p<0.05).

元素Element N时期Stage P K Ca Mg花序/果实Inflorescence/Fruit 2018 23.6±1.3 a 15.0±1.1 b 11.4±0.5 c 6.3±0.3 b 6.5±0.7 b 8.4±1.4 a 7.0±0.6 a 6.3±0.5 b 5.1±0.5 c 19.7±1.9 c 32.4±1.5 b 36.2±2.3 a 3.8±0.4 c 4.9±0.3 b 5.3±0.5 a叶片Leaf 2018 21.6±1.3 a 7.3±1.1 b 3.7±0.9 c 6.2±0.8 a 4.5±0.3 b 4.0±0.3 c 18.9±1.1 a 18.0±1.1 b 14.4±0.9 c 11.4±1.4 a 7.7±1.7 b 5.4±1.4 c 2.7±0.4 a 1.9±0.5 b 1.4±0.5 c叶柄Petiole 2018 9.1±1.4 a 3.1±0.4 b 1.1±0.4 c 7.0±0.8 a 4.9±0.7 c 5.7±0.6 b 11.0±2.3 c 18.4±3.2 a 13.5±2.0 b 35.8±4.8 c 50.6±11.0 b 62.6±8.3 a 10.1±1.1 c 17.9±3.2 b 22.5±2.6 a 2020 15.1±1.6 a 8.5±0.5 b 6.3±0.8 c 7.8±1.4 a 7.2±1.2 a 7.6±2.0 a 11.3±5.7 ab 15.1±9.1 a 9.6±3.0 c 13.5±1.6 c 27.7±5.8 b 46.6±15.2 a 4.6±0.7 c 18.0±4.8 b 21.9±4.9 a盛花期Full-bloom stage转色期Veraison stage成熟期Maturation stage盛花期Full-bloom stage转色期Veraison stage成熟期Maturation stage盛花期Full-bloom stage转色期Veraison stage成熟期Maturation stage盛花期Full-bloom stage转色期Veraison stage成熟期Maturation stage盛花期Full-bloom stage转色期Veraison stage成熟期Maturation stage 2019 26.4±3.3 a 14.4±0.9 b 9.1±0.8 c 7.4±0.4 a 5.3±0.7 b 4.8±0.6 c 25.4±3.0 a 18.8±1.2 b 14.1±1.6 c 42.0±14.9 a 30.8±7.7 b 37.2±11.4 ab 11.2±4.1 a 7.9±2.6 b 8.7±2.5 b 2020 28.1±2.8 a 12.3±0.9 b 6.7±1.3 c 11.2±4.4 a 5.7±1.7 b 5.2±1.2 b 21.7±5.1 a 19.1±3.9 a 13.7±3.8 b 25.5±12.9 a 12.1±7.7 b 4.3±1.6 c 7.5±2.9 a 3.7±2.4 b 1.2±0.6 c 2019 28.2±3.4 a 20.4±2.2 b 16.6±0.9 c 7.5±1.3 a 5.7±2.5 ab 3.6±4.8 b 9.4±2.0 a 7.7±1.3 b 5.0±0.8 c 49.2±11.2 b 74.3±16.2 a 78.8±10.2 a 10.9±2.3 b 15.7±6.1 a 14.6±2.8 a 2020 20.1±6.1 ab 21.7±1.6 a 17.9±0.9 b 8.7±0.8 a 5.2±0.8 b 9.0±1.8 a 6.6±0.8 b 8.2±1.6 a 7.0±2.7 ab 22.1±5.4 c 48.2±6.3 a 42.4±9.6 b 6.1±2.1 b 8.2±2.1 a 7.2±2.0 ab 2019 14.4±2.0 a 8.1±0.9 b 6.8±0.7 c 9.9±0.9 a 9.5±1.2 b 4.4±0.8 b 14.6±1.9 b 17.2±3.7 a 7.8±2.3 c 48.6±10.4 c 56.6±8.9 b 65.9±10.9 a 17.2±2.9 c 24.9±2.6 b 28.6±5.2 a

2.5 各组织部位矿质元素含量与果实品质和品质指数的相关性

由表5 可知,各组织部位矿质元素含量与果实品质和品质指数密切相关。在花序/果实中,盛花期Ca 元素含量和盛花期/转色期/成熟期Mg 元素含量均与所有酚类物质(皮/籽总酚、花色苷、皮/籽总黄酮、皮/籽黄烷醇、皮/籽单宁)含量呈显著或极显著正相关。在叶片中,盛花期N/Ca元素、盛花期/成熟期Mg 元素含量均与所有酚类物质含量呈显著或极显著正相关。在叶柄中,盛花期P/Ca/Mg元素、转色期P/Ca元素、成熟期Mg元素含量与所有酚类物质含量呈显著或极显著正相关。

表5各组织部位矿质元素含量与果实品质和品质指数的相关系数
Table 5 Correlation coefficients of mineral element content in various tissues and fruit quality and CI

注:FBS.盛花期;VS.转色期;MS.成熟期。*表示显著相关,**表示极显著相关。
Note:FBS.Full-bloom stage;VS.Veraison stage;MS.Maturation stage.*indicates significant correlation,**indicates extremely significant correlation.

数C I 指质品-0.060 0.118-0.148 0.234-0.223-0.150 0.387**0.147 0.145 0.501**0.066 0.090 0.450**0.102 0.201 0.482**0.225 0.243-0.031 0.113 0.005-0.176-0.252-0.285*0.313*0.275 0.375**0.307*0.224 0.388**0.147 0.253 0.279单量Seed tannin content宁单量Skin tannin content籽含0.097 0.156-0.161 0.181-0.306*-0.424**0.657**0.442**0.365*0.663**0.154 0.211 0.642**0.423**0.469**0.673**0.466**0.473**0.124 0.190-0.202-0.358*-0.557**-0.596**0.700**0.644**0.739**0.680**0.608**0.753**0.357*0.500**0.562**宁烷量Seed flavanols c ontent皮含-0.292*0.370**0.242-0.120-0.182 0.016 0.149-0.036 0.043 0.389**0.397**0.529**0.312*0.334*0.560**0.361*-0.081-0.035-0.307*0.036-0.136 0.110-0.020-0.111 0.408**0.189 0.281 0.358*0.193 0.314*-0.038-0.041 0.046黄含烷量Skin flavanols c ontent籽醇-0.241 0.537**0.344*-0.302*-0.139-0.054 0.192-0.027-0.004 0.487**0.555**0.617**0.369**0.482**0.688**0.607**-0.042-0.039-0.345*0.150-0.486**0.140-0.070-0.170 0.507**0.274 0.423**0.413**0.356*0.465**-0.109-0.012 0.086黄含-0.267 0.537**0.444**-0.402**-0.163-0.060 0.148-0.063 0.006 0.477**0.618**0.769**0.368*0.531**0.828**0.536**-0.098-0.105-0.363*0.154-0.463**0.217-0.003-0.142 0.585**0.302*0.410**0.485**0.377**0.449**-0.094-0.067 MS-0.333*0.692**-0.2230.1280.418**0.460**0.476**0.633**0.2290.298*0.041总含黄量Seed total f lavo-noids c ontent皮醇-0.040 0.385**0.145-0.215-0.189-0.241 0.369**0.164 0.168 0.522**0.472**0.482**0.470**0.552**0.650**0.733**0.161 0.179-0.088 0.192-0.393**-0.067-0.288*-0.352*0.582**0.469**0.577**0.498**0.509**0.594**0.117 0.211黄量总含0.416**0.243 0.320*0.115 0.163 0.584**0.465**0.622**0.518**0.478**0.743**0.543**0.099 0.114 0.259 0.015 0.662**0.413**0.528**0.592**0.455**0.543**0.091 0.138 Skin total f lavonoids content籽酮-0.196-0.248-0.205-0.212-0.244-0.349*-0.188-0.294*色量Anthocyanins content皮酮苷0.146 0.138 0.684**0.525**0.521**0.689**0.220 0.350*0.702**0.527**0.636**0.636**0.520**0.525**0.082 0.277 0.875**0.793**0.867**0.823**0.761**0.868**0.436**0.542**-0.121-0.077-0.337*-0.541**-0.223-0.405**-0.595**-0.673**酚总量Seed total phenols content花含0.014 0.281-0.004-0.034-0.304*-0.387**0.557**0.364*0.322*0.640**0.347*0.389**0.592**0.567**0.621**0.682**0.347*0.371**-0.011 0.153-0.282-0.257-0.476**-0.551**0.751**0.635**0.733**0.693**0.646**0.759**0.270 0.386**Skin total phenols content籽含酚总量0.055 0.098-0.123-0.035-0.324*-0.466**0.549**0.386**0.490**0.530**0.101 0.262 0.589**0.320*0.472**0.419**0.408**0.409**0.059 0.249-0.029-0.326*-0.436**-0.442**0.680**0.624**0.730**0.639**0.589**0.650**0.359*0.449**粒数Number o f seeds皮含籽0.340*-0.356*-0.453**0.229-0.038-0.235 0.316*0.405**0.397**0.121-0.281-0.334*0.159 0.011-0.205 0.073 0.459**0.436**0.298*-0.114 0.281-0.416**-0.326*-0.306*-0.008 0.311*0.267 0.040 0.182 0.275 0.448**0.429**比Weight ratio of seed to fruit果籽-0.048 0.351*0.306*-0.377**0.030-0.031 0.136 0.046 0.128 0.370**0.453**0.627**0.280 0.463**0.705**0.444**-0.003-0.021-0.205 0.091-0.461**0.141-0.037-0.149 0.443**0.291*0.347*0.359*0.301*0.386**-0.009 0.008比Weight ratio of skin to fruit果0.131-0.144-0.042-0.021 0.130 0.215-0.294*-0.164-0.200-0.453**-0.250-0.293*-0.330*-0.333*-0.405**-0.431**-0.170-0.175 0.107-0.251 0.234 0.060 0.196 0.296*-0.422**-0.306*-0.403**-0.394**-0.291*-0.417**-0.226-0.192固量性含溶物Total soluble solids content皮单Ear weight可形0.160-0.045-0.204-0.028-0.341*-0.634**0.692**0.573**0.572**0.688**0.119 0.229 0.749**0.500**0.546**0.540**0.588**0.608**0.200 0.389**-0.262-0.481**-0.677**-0.692**0.822**0.743**0.856**0.786**0.640**0.834**0.509**0.622**量质穗-0.380**0.669**0.725**-0.556**0.073 0.287*-0.199-0.407**-0.360*0.310*0.801**0.797**0.138 0.494**0.716**0.427**-0.453**-0.474**-0.639**0.048-0.656**0.574**0.390**0.243 0.223-0.068 0.054 0.099 0.067 0.147-0.447**-0.446**育期Stage位T issue生FBS VS MS FBS VS MS FBS VS MS FBS VS MS FBS VS MS FBS VS MS FBS VS MS FBS VS MS FBS VS MS FBS VS MS FBS VS部Inflorescence Fruit Inflorescence Fruit Inflorescence Fruit Inflorescence Fruit Inflorescence Fruit Leaf Leaf Leaf Leaf Leaf Petioles织序实序实序实序实序实片片片片片柄素Element组花果花果花果花果花果叶叶叶叶叶叶元N P K C a Mg N P K Ca Mg N

续表Continued Table

数指质品CI 0.362*0.430**-0.214 0.033-0.220 0.011 0.183 0.250 0.161 0.215 0.243 0.140单量Seed tannincontent宁单量Skin tannincontent籽含0.666**0.699**-0.430**0.221-0.197-0.426**0.443**0.373**0.223 0.581**0.544**0.372**宁烷量Seedflavanols content皮含0.412**0.356*-0.468**0.182 0.015 0.025 0.419**0.456**0.500**0.442**0.265 0.425**黄含烷量Skinflavanols content籽醇0.475**0.426**-0.573**0.188 0.046-0.161 0.742**0.729**0.390**0.782**0.548**0.332*黄含黄量Seed total flavo-noids content皮醇0.519**0.399**-0.678**0.287*0.164-0.116 0.787**0.713**0.543**0.819**0.475**0.481**总含黄量Skin total flavo-noidscontent籽酮0.534**0.572**-0.460**0.227 0.015-0.245 0.686**0.594**0.266 0.739**0.575**0.322*总含色量Anthocyaninscontent皮酮0.591**0.545**-0.593**0.287*0.069-0.178 0.692**0.620**0.494**0.744**0.501**0.516**苷总量Seed totalphenolscontent花含0.772**0.797**-0.519**0.376**-0.027-0.510**0.571**0.431**0.298*0.723**0.609**0.529**酚总量Skin totalphenolscontent籽含0.701**0.730**-0.506**0.287*-0.111-0.428**0.595**0.531**0.286*0.728**0.618**0.416**酚数Number of seeds皮含0.614**0.667**-0.283 0.181-0.009-0.291*0.412**0.403**0.339*0.527**0.606**0.474**粒籽0.081 0.142 0.013-0.101-0.029-0.322*-0.276-0.400**-0.261-0.228-0.063-0.066比果Weightratio ofseedto fruit Weightratioof skinto fruit籽0.321*0.250-0.598**0.346*0.157-0.168 0.722**0.432**0.361*0.699**0.326*0.396**比果-0.357*-0.421**0.351*-0.224-0.109 0.082-0.381**-0.304*-0.254-0.420**-0.200-0.243固量性含溶物Totalsolublesolidscontent皮量Earweight可形0.652**0.792**-0.417**0.306*-0.052-0.530**0.476**0.275 0.226 0.619**0.560**0.552**质穗单0.185 0.009-0.644**0.171 0.173 0.113 0.809**0.762**0.544**0.746**0.343*0.347*育期Stage位Tissue生FBS VSMSFBS VSMSFBS VSMSFBS VSMS部Petioles Petioles Petioles Petioles织柄柄柄柄素Element组叶叶叶叶元P K Ca Mg

在各品质中,皮果比、品质指数均与盛花期花序Ca 元素含量呈极显著相关,且相关系数最大,分别为-0.453 和0.501。皮黄烷醇、皮单宁含量与成熟期果实Mg元素含量相关性最强,均为极显著正相关。可溶性固形物含量、皮总酚含量与成熟期叶片Ca元素含量相关系数最大,分别为0.856和0.730,均为极显著正相关。籽总酚、籽单宁含量与成熟期Mg含量呈极显著正相关,且相关性最强。单穗质量、籽果比与盛花期叶柄Ca元素含量相关系数最大,均为极显著正相关。皮总黄酮、籽总黄酮、籽黄烷醇含量与盛花期叶柄Mg含量呈极显著正相关,且相关性最强。以相关性最强为原则,选择盛花期叶片N元素、转色期叶柄P 元素、盛花期花序K、Ca 和Mg 元素含量为蓬莱产区赤霞珠植株营养诊断因子。

2.6 品质指数的CND法营养诊断

依据CND营养诊断分析原则,建立上述植株营养诊断因子元素含量累积方差与品质指数的三次函数关系(图2)。对各函数两次求导,由此确定高低优果园临界值应选择0.540 0,其中高优果园有14 个,占总体采样园的29.2%。依据高优果园矿质元素含量特征确定各营养诊断因子的适宜范围:N(12.9~31.3)mg·g-1、P(4.0~11.6)mg·g-1、K(6.4~35.9)mg·g-1、Ca(15.7~69.9)mg·g-1、Mg(3.3~18.7)mg·g-1。根据低优园各矿质元素的诊断指数:IN=0.280,IP=0.123,IK=-0.433,ICa=-0.205,IMg=-0.451,确定低优园的需肥顺序为Mg>K>Ca>P>N。由5416 试验方差分析可得出土壤肥力因子对品质指数的影响力大小及理论最佳配比。以获得最高的果实品质指数为目标,其影响力排序为K>N>Mg>Ca>P,肥力因子最佳配比为N4P4K3Ca3Mg1。因此,建议增施N 肥、P肥,平衡K 肥和Ca 肥,不施Mg 肥,即N 186.8 kg、P2O5 70.0 kg、K2O 112.5 kg、CaO 112.5 kg。

图2 植株矿质元素含量累积方差函数与品质指数之间的关系
Fig.2 Relationship between cumulative variance function and CI

3 讨 论

3.1 气象因子导致果实品质的年际差异

气象条件是影响葡萄生长发育主要因素之一,对树体的生长发育、产量与品质的影响是全面的,温度、降水量、光照对树体相互影响,又有不同的作用。有研究表明,有效积温与长白山野生软枣猕猴桃单果质量存在一定的相关性,单果质量随着有效积温的增加而增加[35]。与本研究相似,2018和2019年的有效积温分别为2 338.5 ℃和2 291.0 ℃,2020 年分别较其降低了10.5%和8.6%,2020 年赤霞珠各处理单穗质量平均值较2018 和2019 年分别显著降低58.1%和59.3%。轮胎小白杏除果皮的颜色Lb值外,其他都与有效积温有着很强的相关性[36]。与之相似,2019年总体表现为“升温快,降温慢”,高温持久,2018和2020年各处理花色苷含量平均值较2019年分别显著降低了70.8%和60.4%。糖分积累时期需要较高的热量、充足的日照和较少的水分,气温高、日照时间长、空气干燥有利于糖分积累[19]。较高的降雨量可明显降低兰溪地区杨梅商品率和可溶性固形物含量等指标[37]。同赤霞珠2019 年花色苷变化规律相似,温度较高,且2019 年降雨量较2018 和2020 年分别降低53.7%和51.2%,其可溶性固形物含量较2018 和2020年分别显著提高了19.9%和12.9%。

酿酒葡萄成熟度的确定多以糖酸比为主,指标单一,忽视了葡萄中酚类物质累积对综合品质的关键影响。本研究中,2019 年春季来临时迅速升温,为树体根系提供较好的生存环境,且早春降雨量最大,为47.1 mm,增加了供给地上部水分,为后续加速新梢生长、增强光合作用和促进酚类物质的积累奠定基础。在2019年,赤霞珠作为晚熟品种在其成熟前温度平缓下降,高温持久,其2019 年酚类物质(皮/籽总酚、皮/籽黄烷醇、花色苷、皮/籽总黄酮、皮/籽单宁含量)的各处理平均累积量均显著高于2018和2020年。在葡萄生长发育过程中,其有效积温与降雨量的比值(T/P)能够代表光照、温度、水分对葡萄的综合影响,因而成为影响葡萄成熟度的最重要的气象指标[38]。与之相似,2018—2020年的T/P值分别为4.5、9.6、4.3,赤霞珠皮/籽黄烷醇、皮/籽总黄酮、皮单宁各处理平均累积量均与T/P 值呈正比,表现为2019 年>2018 年>2020 年,且彼此间呈显著差异。因此,气象因子是引起相同施肥处理赤霞珠果实品质年际差异的主要因子之一。

3.2 赤霞珠植株营养诊断指导科学施肥

不同矿质元素对果实品质的影响不同,且同一种矿质元素在不同组织和品质指标中所起的作用也不相同。盛花期和转色期叶片K含量与单穗质量呈极显著正相关,盛花期/转色期/成熟期果实K 含量与花色苷和可溶性固形物含量呈极显著正相关,与Fallahi等[39]和张立新等[40]关于K可以提高苹果的大小、色泽和可溶性固形物含量的研究结果一致。贵会平等[41]研究认为,花P、Ca、B含量与蜜柑可溶性固形物含量呈极显著或显著负相关。与之相似,转色期和成熟期赤霞珠果实P含量与可溶性固形物含量呈极显著或显著负相关;而盛花期花序Ca含量与可溶性固形物含量呈极显著正相关,可能是由气象因子和果树种类的差异所引起的[42]。鲍民胡[43]研究表明,赤霞珠葡萄单宁含量与果实中N、K含量呈极显著正相关,与果实中P、Ca含量呈显著负相关。与本研究结果一致,皮单宁含量与转色期果实N 含量呈极显著正相关,籽单宁含量与盛花期/转色期K含量呈极显著正相关。张强等[44]研究认为,果实N 对果实品质综合性状影响较大,其次是果实中的P、K、Ca。各元素中,盛花期叶片N、转色期叶柄P、盛花期果实K 和Ca、Mg 对赤霞珠综合品质影响最大。因此,上述各因子被选作为赤霞珠植株营养诊断因子。

由CND法可知,蓬莱产区赤霞珠葡萄低优园的需肥顺序为Mg>K>Ca>P>N,表现为Mg、K、Ca元素含量偏低。5416试验结果表明,以获得最高的果实品质指数为目标,其肥力因子最佳配比为N4P4K3Ca3Mg1,即建议增施N 肥、P 肥,平衡K 肥和Ca 肥,不施Mg 肥。N、P、Mg 元素植株营养诊断结果与5416 试验结果不一致,其中植株N 和P 元素表现为丰富,土壤缺乏的原因可能是树体储备N 和P营养较多,土壤中N和P淋溶损失严重;土壤中Mg元素表现为丰富,说明植株Mg 元素缺乏可能是水肥搭配不合理,影响了树体营养的吸收。K和Ca元素植株营养诊断结果与5416试验结果一致,因此K和Ca肥施用应遵循少量多次的原则,避开降雨量较大的季节。

4 结 论

各酚类物质含量和品质指数的极值在年际间具有明显的组织特异性。有效积温(T)与降雨量(P)的比值是造成相同施肥条件下品质年际差异的主要因素之一。在本试验条件下,为获得高优品质指数的赤霞珠,建议每公顷施肥量分别为:N 186.8 kg、P2O5 70.0 kg、K2O 112.5 kg、CaO 112.5 kg、MgO 0 kg。建议加强果园水肥管理,提高树体对Mg 元素的吸收。其他肥料的施用应遵循少量多次原则,避开降雨量较大的季节。

参考文献References:

[1] 王小龙,张正文,钟晓敏,王记侠,卞凤娥,王坤,刘凤之,王海波.不同施肥对酿酒葡萄果实产量和品质的影响[J].中国南方果树,2020,49(2):107-113.WANG Xiaolong,ZHANG Zhengwen,ZHONG Xiaomin,WANG Jixia,BIAN Feng’e,WANG Kun,LIU Fengzhi,WANG Haibo.Effects of different fertilization on the yield and quality of wine grapes[J].South China Fruits,2020,49(2):107-113.

[2] 史红梅,张正文,王哲,韩晓梅,王咏梅,任凤山,宫磊.‘品丽珠’葡萄不同营养系酚类物质差异分析[J].园艺学报,2020,47(8):1541-1551.SHI Hongmei,ZHANG Zhengwen,WANG Zhe,HAN Xiaomei,WANG Yongmei,REN Fengshan,GONG Lei.Comparative analysis on phenolic compounds among different clones of Vitis vinifera‘Cabernet Franc’[J].Acta Horticulturae Sinica,2020,47(8):1541-1551.

[3] 张雯,王敏,韩守安,钟海霞,谢辉,雍菲,张付春,周晓明,潘明启.植物源营养液及叶幕整形方式对梅鹿辄叶幕环境和果实品质的影响[J].新疆农业科学,2019,56(5):808-816.ZHANG Wen,WANG Min,HAN Shouan,ZHONG Haixia,XIE Hui,YONG Fei,ZHANG Fuchun,ZHOU Xiaoming,PAN Mingqi.Effects of canopy types and plant-derived nutrient solution on canopy microclimate and berry quality of Merlot [J].Xinjiang Agricultural Sciences,2019,56(5):808-816.

[4] 魁小花,杨宏娟,李敏,邱志鹏,邱栋梁.补光对设施葡萄生长发育及果实品质的影响[J].北方园艺,2021(8):57-63.KUI Xiaohua,YANG Hongjuan,LI Min,QIU Zhipeng,QIU Dongliang.Effects of supplementary light on growth and development and fruit quality of greenhouse grapes[J].Northern Horticulture,2021(8):57-63.

[5] 张钥,王呈阳,周嘉玲,李有梅,谢兆森,冷锋.不同水分调亏处理对葡萄果皮酚类物质的影响[J].果树学报,2021,38(8):1296-1307.ZHANG Yao,WANG Chengyang,ZHOU Jialing,LI Youmei,XIE Zhaosen,LENG Feng.Effects of different regulated deficit irrigation treatments on phenols in grape berries [J].Journal of Fruit Science,2021,38(8):1296-1307.

[6] 杨贵川,陈品文,吴小平,冉晶,韩文斌,周泽弘,梁琴.测土配方施肥对葡萄土壤肥力及果实品质的影响[J].中国南方果树,2019,48(6):125-130.YANG Guichuan,CHEN Pinwen,WU Xiaoping,RAN Jing,HAN Wenbin,ZHOU Zehong,LIANG Qin.Effects of soil testing and formula fertilization on grape soil fertility and fruit quality[J].South China Fruits,2019,48(6):125-130.

[7] 毛如志,张国涛,杜飞,邓维萍,邵建辉,赵新节,何霞红,朱书生.大香格里拉河谷区海拔梯度变化与玫瑰蜜葡萄品质形成的关系[J].果树学报,2016,33(3):283-297.MAO Ruzhi,ZHANG Guotao,DU Fei,DENG Weiping,SHAO Jianhui,ZHAO Xinjie,HE Xiahong,ZHU Shusheng.Study on the relationship between the berry quality composition and altitude gradient for‘Rose Honey’in the Widely Shangri-La Valley[J].Journal of Fruit Science,2016,33(3):283-297.

[8] 毛如志,张国涛,王家逵,杜飞,邓维萍,邵建辉,赵新节,朱书生,何霞红.西拉葡萄浆果代谢物对低海拔和高海拔气象因子的响应[J].现代农业科技,2015(20):240-246.MAO Ruzhi,ZHANG Guotao,WANG Jiakui,DU Fei,DENG Weiping,SHAO Jianhui,ZHAO Xinjie,ZHU Shusheng,HE Xiahong.Shiraz/Syrah grape metabolites response to low/high altitudes[J].Modern Agricultural Science and Technology,2015(20):240-246.

[9] 段卫朋,杨伟明,毛雪,韩舜愈.行内生草和覆布对葡萄园微气候及果实品质的影响[J].中国果树,2018(4):9-14.DUAN Weipeng,YANG Weiming,MAO Xue,HAN Shunyu.Effects of grass and film cover on microclimate and quality of grape in vineyard[J].China Fruits,2018(4):9-14.

[10] 俞波,郑鹏华,李火良.不同类型果袋对浙北地区‘阳光玫瑰’葡萄的影响[J].中国南方果树,2021,50(3):114-117.YU Bo,ZHENG Penghua,LI Huoliang.The influence of different types of fruit bags on‘Sunshine Muscat’grapes in northern Zhejiang[J].South China Fruits,2021,50(3):114-117.

[11] 王明洁,宋鹏慧,鲁会玲,梁文卫,吕云波.树形和叶幕形及花穗整形方式对无核白鸡心葡萄果实品质的影响[J].经济林研究,2021,39(2):188-195.WANG Mingjie,SONG Penghui,LU Huiling,LIANG Wenwei,LÜ Yunbo.Effects of different tree types, leaf canopy shapes and flower cluster shaping methods on fruit quality of‘Centennial Seedless’grape [J].Non-wood Forest Research,2021,39(2):188-195.

[12] 王明洁,宋鹏慧,鲁会玲,梁文卫,吕云波,肖丽珍,胡禧熙.花穗整形修剪方式对87-1 葡萄果实品质的影响[J].经济林研究,2021,39(3):205-214.WANG Mingjie,SONG Penghui,LU Huiling,LIANG Wenwei,LÜ Yunbo,XIAO Lizhen,HU Xixi.Effect of pruning floral cluster on fruit quality of‘87-1’grape [J].Non-wood Forest Research,2021,39(3):205-214.

[13] 张小月,戚金生,刘晓燕,蔡军社,吕玥昕,李学文.不同单株负载量对赤霞珠葡萄果实生长及品质指标的影响[J].中国酿造,2021,40(10):70-75.ZHANG Xiaoyue,QI Jinsheng,LIU Xiaoyan,CAI Junshe,LÜ Yuexin,LI Xuewen.Effects of different single plant loading capacity on fruit growth and quality indexes of Cabernet Sauvignon[J].China Brewing,2021,40(10):70-75.

[14] 张拥兵,黄军保,李卓,吕英忠.限根栽培下不同施肥方式对葡萄果实品质的影响[J].山西农业科学,2021,49(9):1110-1113.ZHANG Yongbing,HUANG Junbao,LI Zhuo,LÜ Yingzhong.Effects of different fertilizer treatments on grape fruit quality under root restriction cultivation[J].Journal of Shanxi Agricultural Sciences,2021,49(9):1110-1113.

[15] JU Y L,YANG B H,HE SH,TU T Y,MINA ZH,FANG Y L,SUN X Y.Anthocyanin accumulation and biosynthesis are modulated by regulated deficit irrigation in Cabernet Sauvignon (Vitis vinifera L.) grapes and wines[J].Plant Physiology and Biochemistry,2019,135:469-479.

[16] 张梅花,刘静霞,张芮,成自勇.不同生育期调亏灌溉对酿酒葡萄耗水及产量和品质的影响[J].甘肃农业大学学报,2019,54(4):53-59.ZHANG Meihua,LIU Jingxia,ZHANG Rui,CHENG Ziyong.Effect of deficit irrigation on water consumption,yield and quality of wine grape at different growth stages[J].Journal of Gansu Agricultural University,2019,54(4):53-59.

[17] 张洁薇,杨凯,林晶,郑曦希.建阳巨峰葡萄含糖量与气象因子的相关性研究[J].福建热作科技,2018,43(4):5-8.ZHANG Jiewei,YANG Kai,LIN Jing,ZHENG Xixi.Research on the correlation between the sugar content of Jianyang Kyoho grape and meteorological factors[J].Fujian Science and Technology of Tropical Crops,2018,43(4):5-8.

[18] 谢兆森,曹红梅,王世平.影响葡萄果实品质的因素分析及栽培管理[J].河南农业科学,2011,40(3):125-128.XIE Zhaosen,CAO Hongmei,WANG Shiping.Analysis of effect factors on grape berry quality and discussion on mechanism[J].Journal of Henan Agricultural Sciences,2011,40(3):125-128.

[19] 刘明春,张旭东,蒋菊芳.河西走廊干红干白酒用葡萄种植气候区划[J].干旱地区农业研究,2006,24(6):133-137.LIU Mingchun,ZHANG Xudong,JIANG Jufang.Red wine and dry white wine brewing grape planting climatic division in Hexi Corridor[J].Agricultural Research in Arid Areas,2006,24(6):133-137.

[20] MARKUS R,LAURENT T,GAUTIER S,ARDISSON M,BRILLOUET J M,ROMIEU C.Temperature desynchronizes sugar and organic acid metabolism in ripening grapevine fruits and remodels their transcriptome[J].BMC Plant Biology,2016,16:164.

[21] MOVAHED N,PASTORE C,CELLINI A,ALLRGRO G,VALENTINI G,ZENONI S,CAVALLINI E,D’INCÀ E,TORNIELLI G B,FILIPPETTI I.The grapevine VviPrx31 peroxidase as a candidate gene involved in anthocyanin degradation in ripening berries under high temperature[J].Journal of Plant Research,2016,129(3):513-526.

[22] MJAJOG K.Managing grapevines to optimize fruit development in a challenging environment:A climate change primer for viticulturists[J].Australian Journal of Grape and Wine Research,2009,16(S1):56-69.

[23] 陈丽楠,刘秀春,荣传胜,张成,刘晶.交替根区灌溉和施氮量对葡萄幼树生长特性的影响[J].北方果树,2020(3):14-16.CHEN Linan,LIU Xiuchun,RONG Chuansheng,ZHANG Cheng,LIU Jing.Effects of alternate root-zone irrigation and nitrogen rates on grape growth character[J].Northern Fruits,2020(3):14-16.

[24] 杨焕焕,杨占平,吕中伟,和爱玲,杜君,薛广原.不同施氮措施对‘巨玫瑰’葡萄生长发育及品质的影响[J].江西农业学报,2021,33(4):39-45.YANG Huanhuan,YANG Zhanping,LÜ Zhongwei,HE Ailing,DU Jun,XUE Guangyuan.Effects of different nitrogen fertilizer application measures on growth, development and quality of‘Giant Rose’grape[J].Acta Agriculturae Jiangxi,2021,33(4):39-45.

[25] 于新超,王晶,朱美玉,姜晶.碳水化合物代谢参与番茄响应低磷胁迫的分子机制[J].分子植物育种,2015,13(12):2833-2842.YU Xinchao,WANG Jing,ZHU Meiyu,JIANG Jing.Molecular mechanism of carbohydrate metabolism participation in tomato response to low phosphorus stress[J].Molecular Plant Breeding,2015,13(12):2833-2842.

[26] 郑小能,王生海,柳苗苗,刘怀锋.不同磷钾肥施用量对设施葡萄果实品质和产量的影响[J].新疆农业科学,2018,55(7):1227-1235.ZHENG Xiaoneng,WANG Shenghai,LIU Miaomiao,LIU Huaifeng.Effects of different amounts of phosphate and potassium fertilizer on fruit quality and yield of frey grape under protected culture[J].Xinjiang Agricultural Sciences,2018,55(7):1227-1235.

[27] 郭傲,林绪坚,高欢欢,郑雪莲,陈默,郑国华.不同施钾水平对无花果糖积累及相关酶活性的影响[J].福建农业学报,2019,34(12):1388-1396.GUO Ao,LIN Xujian,GAO Huanhuan,ZHENG Xuelian,CHEN Mo,ZHENG Guohua.Effects of potassium fertilization on sugar metabolism and related enzymatic activities in Ficus carica[J].Fujian Journal of Agricultural Sciences,2019,34(12):1388-1396.

[28] 李宏建,王宏,刘志,于年文,宋哲,张秀美,里程辉.不同钙肥对岳冠苹果果实贮藏品质的影响[J].北方果树,2020(2):18-20.LI Hongjian,WANG Hong,LIU Zhi,YU Nianwen,SONG Zhe,ZHANG Xiumei,LI Chenghui.Effects of different calcium fertilizers on the storage quality of‘Yueguan’apple fruit[J].Northern Fruits,2020(2):18-20.

[29] 马晓丽,刘雪峰,杨梅,颜秋杨,袁项成,向苹苇.镁肥对葡萄叶片糖、淀粉和蛋白质及果实品质的影响[J].中国土壤与肥料,2018(4):114-120.MA Xiaoli,LIU Xuefeng,YANG Mei,YAN Qiuyang,YUAN Xiangcheng,XIANG Pingwei.Effects of magnesium application on the leaves sugar, starch and protein content and the fruit quality of grapes[J].Soil and Fertilizer Sciences in China,2018(4):114-120.

[30] 王海波,王孝娣,史祥宾,王小龙,王莹莹,刘凤之.果树5416测土配方施肥技术[J].落叶果树,2021,53(5):5-8.WANG Haibo,WANG Xiaodi,SHI Xiangbin,WANG Xiaolong,WANG Yingying,LIU Fengzhi.The‘5416’soil testing and formula fertilization technology of fruit trees[J].Deciduous Fruits,2021,53(5):5-8.

[31] CONRADIE W J.Seasonal uptake of nutrients by Chenin Blanc in sand culture:II.Phosphorus,potassium,calcium and magnesium[J/OL].South African Journal of Enology and Viticulture,2017,2(1).DOI:10.21548/1-1-2414.

[32] 王小龙,张正文,钟晓敏,王记侠,卞凤娥,王坤,刘凤之,王海波.不同施肥对酿酒葡萄果实产量和品质的影响[J].中国南方果树,2020,49(2):107-113.WANG Xiaolong,ZHANG Zhengwen,ZHONG Xiaomin,WANG Jixia,BIAN Feng’e,WANG Kun,LIU Fengzhi,WANG Haibo.Effects of different fertilization on the yield and quality of wine grapes[J].South China Fruits,2020,49(2):107-113.

[33] 苏鹏飞.宁夏青铜峡产区主栽红色酿酒葡萄成熟度控制指标的研究[D].杨凌:西北农林科技大学,2016.SU Pengfei.Study of maturity control indexes of major red wine grapes from Qingtongxia city in Ningxia[D].Yangling:Northwest A&F University,2016.

[34] 范元广,李壮,厉恩茂,李敏,程存刚.辽西富士苹果CND 法营养诊断研究[J].植物营养与肥料学报,2015,21(2):485-491.FAN Yuanguang,LI Zhuang,LI Enmao,LI Min,CHENG Cungang.Nutrient diagnosis of‘Fuji’apple in west Liaoning Province using compositional nutrient diagnosis (CND) method[J].Journal of Plant Nutrition and Fertilizers,2015,21(2):485-491.

[35] 刘香苏.长白山野生软枣猕猴桃生境与数量性状多样性研究[D].延吉:延边大学,2019.LIU Xiangsu.Study on the habitat and quantitative traits of wild Actinidia arguta in Changbai Mountain[D].Yanji:Yanbian University,2019.

[36] 蒋江照,毛金梅,王建友,韩宏伟,刘凤兰,王琴,李勇.基于有效积温对轮台小白杏果实品质动态影响的关联分析[J].中南林业科技大学学报,2015,35(7):22-26.JIANG Jiangzhao,MAO Jinmei,WANG Jianyou,HAN Hongwei,LIU Fenglan,WANG Qin,LI Yong.Based on the effective accumulated temperature of Luntai little white apricot fruit quality dynamic effect of correlation analysis[J].Journal of Central South University of Forestry and Technology,2015,35(7):22-26.

[37] 吴宏,童建跃,陈新炉,单中华.气象条件对兰溪杨梅生产的影响分析[J].浙江气象,2015,36(1):39-41.WU Hong,TONG Jianyue,CHEN Xinlu,SHAN Zhonghua.Analysis of the influence of meteorological conditions on the production of Lanxi bayberry[J].Journal of Zhejiang Meteorology,2015,36(1):39-41.

[38] 王华,李记明,陶士衡,李华.有效积温与降水量的比值(T/P)与酿酒葡萄成熟度关系的研究[J].葡萄栽培与酿酒,1994(2):8-9.WANG Hua,LI Jiming,TAO Shiheng,LI Hua.The relationship between the ratio of effective accumulated temperature to precipitation (T/P) and the maturity of wine grapes[J].Sino-Overseas Grapevine and Wine,1994(2):8-9.

[39] FALLAHI E,FALLAHI B,NEILSEN G H,NEILSEN D,PERYEA F J.Effects of mineral nutrition on fruit quality and nutritional disorders in apples[J].Acta Horticulturae,2010,868:49-59.

[40] 张立新,张林森,李丙智.旱地苹果矿质营养及其在生长发育中的作用[J].西北林学院学报,2007,22(3):111-115.ZHANG Lixin,ZHANG Linsen,LI Bingzhi.Mineral nutrition elements and their roles in growth and development of apple trees in arid areas[J].Journal of Northwest Forestry University,2007,22(3):111-115.

[41] 贵会平,胡承孝,郑苍松,谭启玲,费甫华,卢梦玲,谭澍.温州蜜柑花矿质元素含量与果实品质关系的研究[J].中国南方果树,2015,44(2):10-13.GUI Huiping,HU Chengxiao,ZHENG Cangsong,TAN Qiling,FEI Fuhua,LU Mengling,TAN Shu.Relationships between nutrient composition of flowers and fruit quality in Satsuma Mandarin[J].South China Fruits,2015,44(2):10-13.

[42] 袁继存,赵德英,程存刚,徐锴.中间砧GM256 对华红苹果不同部位养分含量的影响[J].中国南方果树,2016,45(1):91-94.YUAN Jicun,ZHAO Deying,CHENG Cungang,XU Kai.Effect of interstock GM256 on nutrient content of different parts of huahong apple[J].South China Fruits,2016,45(1):91-94.

[43] 鲍民胡.“厂”字整形方式下负载量对“赤霞珠”葡萄矿质营养的影响[D].银川:宁夏大学,2016.BAO Minhu.Effects of berry loading on mineral nutrition in Vitis viniferal L.Cabernet Sauvignon“厂”shape training system[D].Yinchuan:Ningxia University,2016.

[44] 张强,李兴亮,李民吉,周贝贝,孙健,魏钦平.富士苹果品质与果实矿质元素含量的关联性分析[J].果树学报,2016,33(11):1388-1395.ZHANG Qiang,LI Xingliang,LI Minji,ZHOU Beibei,SUN Jian,WEI Qinping.The correlation analysis between quality characteristics and fruit mineral element contents in‘Fuji’apples[J].Journal of Fruit Science,2016,33(11):1388-1395.

Effects of meteorological factors and fertilization on mineral element contents and berry quality in Cabernet Sauvignon

WANG Xiaolong1,2,3, ZHANG Zhengwen4, SHAO Xuedong4, ZHONG Xiaomin4, WANG Fucheng5,SHI Xiangbin1,2,3,ZHANG Yican1,2,3,WANG Haibo1,2,3*

(1Fruit Research Institute, Chinese Academy of Agricultural Sciences, Xingcheng 125100, Liaoning, China;2Key Laboratory of Germplasm Resources Utilization of Horticultural Crops,Ministry of Agriculture and Rural Affairs,Xingcheng 125100,Liaoning,China;3Key Laboratory of Mineral Nutrition and Fertilizers Efficient Utilization of Deciduous Fruit Tree, Liaoning Province, Xingcheng 125100,Liaoning, China;4Junding Winery Co., Ltd., Penglai 265600, Shandong, China;5Grape and Wine Industry Development Service Center,Penglai District,Yantai City,Penglai 265600,Shandong,China)

Abstract:【Objective】To provide reference for the realization of rational nutrient fertilization and highquality production of Cabernet Sauvignon,the relationships between mineral element contents and berry quality of Cabernet Sauvignon were investigated,and the main elements affecting the quality of Cabernet Sauvignon were screened.【Methods】With Cabernet Sauvignon as the test material, 5416 formula fertilization treatment was carried out for 3 consecutive years, and the element contents, basic physicochemical indexes and polyphenols content were studied in different growth stages/tissue parts treated with 16 formula fertilizers.The 5416 formula fertilizer refered to 5 factors(N,P,K,Ca and Mg),and 4 levels (multiples of the basic dosage of each fertilizer raw material per hectare, namely 0 times, 0.5 times,1 times and 1.5 times),totaling for 16 treatments.The formula fertilizer was based on the yield target of 7500 kg berry per hectare,and the basic dosages of each fertilizer raw material per hectare in the 5416 trial were set as follows:N 124.5 kg,P2O5 46.5 kg,K2O 112.5 kg,CaO 112.5 kg and MgO 46.5 kg.Based on Topsis analysis, each quality index was comprehensively evaluated to form a quality index(CI).According to the distribution characteristics of single element content, the orchards with high- CI were divided,and the nutritional diagnosis of low-CI orchards was carried out,and the fertilization plan and precautions were preliminarily formulated.【Results】The effects of different fertilization treatments on the quality in different years were significantly different, and the extreme values of the contents of phenolic substances and quality indexes had obvious tissue specificity between years.There was no significant difference in the average spike weight among treatments in 2018 and 2019,which were 417.8 g and 430.6 g, respectively.The average spike weight of each treatment in 2020 was significantly lower than that in 2018 and 2019 by 58.1%and 59.3%,respectively.The fertilization treatments with the highest TSS contents from 2018 to 2020 were T14,T2 and T2,which were 22.7%,26.5%and 24.3%,respectively.The fertilization treatments with the highest skin/fruit ratio in 2018-2020 were T8,T16 and T12,respectively, and the lowest fertilization treatments in 2018 and 2019 were T3.The fertilization treatments with the highest seed/fruit ratio in 2018—2020 were all T6, and the fertilization treatments with the lowest values were T4,T3, and T5, respectively.The distribution ranges of seed number in 2018—2020 were 47.0(T7)-59.0(T4),50.0(T12)-64.0(T16),51.0(T6)-66.0(T1).The rainfall from May to June in 2018 and 2020 was 195.7 mm and 191.9 mm,respectively,and the rainfall in August in 2018 and 2020 was 217.0 mm and 142.4 mm,respectively.The average monthly increase in effective accumulated temperature before August was 50.3% and 81.6%, respectively, and the average decrease after August was 75.1%and 46.6%.The overall weather tendency in 2019 was fast heating,slow cooling,with an average increase of 113.2%before July and an average decrease of 31.2%after July.In addition,the total rainfall in 2018-2020 was 515.2 mm,238.4 mm and 488.8 mm,respectively.The total effective accumulated temperature from 2018 to 2020 was 2 338.5 ℃,2 291.0 ℃and 2 092.9 ℃,respectively.The overall weather tendency in 2018 and 2020 was slow warming and fast cooling.Effective accumulated temperature (T) and rainfall (P) were one of the main factors causing interannual differences in quality under the same fertilization conditions.The amount of all phenolic substances(skin/seed total phenols,anthocyanins, peel/seed total flavonoids, peel/seed flavanols), skin/seed tannins) were significantly or extremely significantly and positively associated with the T/P value.The inflorescences/berries (_F),leaves(_L)and petioles(_P)were collected at full-bloom stage(FBS),veraison stage(VS)and maturation stage(MS)to determine the total amount of N,P,K,Ca and Mg.In leaves,N/Ca at full-bloom stage and Mg at full-bloom stage/maturation stage were significantly or extremely significantly and positively correlated with all phenolic substances.In petiole,P/Ca/Mg at full-bloom stage,P/Ca at veraison stage,and Mg at maturation stage were all significantly or extremely significantly and positively correlated.Based on the principle of the strongest correlation, FBS_L_N, VS_P_P, FBS_F_K, FBS_F_Ca,FBS_F_Mg can be selected as the plant nutrition diagnostic factors of Cabernet Sauvignon quality index in Penglai production area.The critical value of high-CI and low-CI orchards should be selected as 0.540 0,among which there were 14 high-CI orchards,accounting for 29.2% of the total sampling orchards.According to the range of element contents in high-CI plants,the appropriate values of the above nutritional diagnostic factors were determined as follows: N (12.9-31.3)mg·g-1,P(4.0-11.6)mg·g-1,K(6.4-35.9)mg·g-1,Ca(15.7-69.9)mg·g-1,and Mg(3.3-18.7)mg·g-1.The descending order of fertilizer requirements for Cabernet Sauvignon low-grade orchards is: Mg>K>Ca>P>N, among which Mg,K and Ca contents are relatively low.In order to obtain Cabernet Sauvignon with high quality index,the recommended fertilizer rates per hectare are: N 186.8 kg, P2O5 70.0 kg, K2O 112.5 kg, CaO 112.5 kg and MgO 0 kg.【Conclusion】The management of water and fertilizer in an orchard was strengthened to improve the absorption of Mg by the tree.The application of other fertilizers should adopt the principle of small amount and many times,to avoid the season with large rainfall.

Key words:Cabernet sauvignon grape;Formula fertilization;Meteorological factors;Berry quality;CI

中图分类号S663.1

文献标志码:A

文章编号:1009-9980(2022)11-2074-14

DOI:10.13925/j.cnki.gsxb.20220209

收稿日期2022-04-14

接受日期:2022-05-29

基金项目国家重点研发计划项目(2020YFD1000204);财政部和农业农村部:国家现代农业产业技术体系建设专项资金项目(nycytx-30-zp);中国农业科学院科技创新工程项目(CAAS-ASTIP-2016-RIP-04)

作者简介王小龙,男,助理研究员,博士,主要从事果树栽培与生理研究。Tel:18342920090,E-mail:wangxiaolong01@caas.cn

*通信作者Author for correspondence.Tel:13591963796,E-mail:haibo8316@163.com