阳光玫瑰葡萄WH树形枝条垂化处理对叶片光合特性及果实品质的影响

罗家坤,高 磊,郑 焕,陶建敏*

(南京农业大学园艺学院,南京 210095)

摘 要目的】确定阳光玫瑰葡萄WH树形枝条下垂的合理方案,为其优质栽培奠定基础。【方法】以避雨栽培的阳光玫瑰葡萄为试材,对采取WH形树形栽培的葡萄枝条进行5种处理:距离主蔓30、60、90、120 cm拉枝下垂和水平生长(对照处理,CK),研究不同处理对枝条副梢生长速度、卷须生长速度、叶幕光合能力、叶片绿素含量、果实品质等指标的影响。【结果】与对照相比,不同垂化处理枝条的副梢和卷须生长量下降,叶绿素含量减少,叶幕不同节位的光合特性发生变化,光合能力有所下降,果实的纵、横径增大,可溶性固形物含量增加,着色程度有所提高。其中距离主蔓90 cm 拉枝下垂结果最好,减少副梢和卷须18%~30%的生长量,叶片净光合效率可达13.2 μmol·m-2·s-1,单果质量13.95 g,可溶性固形物含量(w)达18.36%。【结论】距离主蔓90 cm拉枝下垂的改良WH形树形,能够保证阳光玫瑰葡萄果实品质和光合能力,并且方便省力化管理,更适合阳光玫瑰葡萄的生产。

关键词阳光玫瑰葡萄;树形;垂化处理;光合特性;果实品质

阳光玫瑰葡萄(Shine Muscat)是二倍体欧美杂交品种,由日本机构以安芸津21号和白南为亲本通过杂交选育而成的中晚熟葡萄品种[1]。阳光玫瑰葡萄成熟后果粒呈黄绿色,果肉硬脆多汁,有玫瑰香味,鲜食品质好,抗逆性较强,在市场上备受消费者喜爱[2]。在葡萄栽培过程中,树体的整形修剪是必不可少的部分,葡萄是藤本植物,树体可塑性强,可以通过支架形成各种树形进行生产管理。整形能平衡树体的营养生长和生殖生长、调节树势和改善通风透光条件。不同树形会影响叶幕形态,从而改变光照条件,影响葡萄果实品质[3]。合理的树形不但能满足植物正常生长发育的需求,还能使果树提早进入结果期,提高果树的产量和品质,促进着色[4-6]

阳光玫瑰在南方地区多选择避雨栽培,较为普遍推广的葡萄棚架树形有T 形、H 形、王字形等树形[7]。不同树形会影响阳光玫瑰葡萄当年的营养状况,同时也会影响修剪、施肥、灌溉、病虫害防治和采收贮运等各种管理方式及其管理效率,而且对次年葡萄的产量和品质都有很大影响[8]。树形改造实则是改变葡萄植株地上部的分级结构、空间布局、叶幕密度和负载量,可在一定程度上影响设施栽培中的叶幕微环境,如光照、温度、湿度、空气等,直接或间接作用于葡萄的光合过程[9]。现代农业的发展对葡萄树形也提出了更高的要求,在满足产量、品质、易管理的基础上,也要具观赏性、多元化、轻简化等特点。WH 形树形就是棚架架式条件下一种高产量、高空间利用率的葡萄树形,但是由于空间限制,WH形树形枝条杂乱、葡萄生产过程难于管理。笔者在本研究中以避雨栽培条件下的阳光玫瑰葡萄为试验材料,研究枝条垂化改良的WH形树形对营养生长、叶幕光合特性和成熟期果实品质的影响。通过枝条距主蔓的不同距离的下垂处理,筛选出有利于省力化管理并保证果实品质的最佳枝条垂化方案,以期为阳光玫瑰葡萄省力化栽培提供理论依据。

1 材料和方法

1.1 试验材料与设计

本试验于2021 年4—9 月在江苏省南京市江宁区侯家塘葡萄实验基地(东经119.00°,北纬32.03°)进行。试验材料为6 年生阳光玫瑰葡萄植株,树形为WH 形,避雨栽培,株行距为8.0 m×8.0 m。每个枝条都保证有2穗葡萄果实,经过统一标准化修果,每一穗保留40 粒左右果实。所有枝条在6 月20 日后保留主梢18 片叶摘心,去除副梢与卷须。肥、水及病虫害等按照常规措施进行管理。

选择长势相近的阳光玫瑰葡萄植株的不同主蔓,同一个主蔓上做统一处理,对阳光玫瑰葡萄枝条进行5 种处理:距离主蔓30 cm 拉枝下垂、距离主蔓60 cm 拉枝下垂、距离主蔓90 cm 拉枝下垂、距离主蔓120 cm拉枝下垂和水平生长(对照,CK),每种处理选择同一主蔓上30 根枝条。如图1 所示,分别简单记为30 cm、60 cm、90 cm、120 cm 和CK,并对不同处理的枝条副梢生长速度、卷须生长速度、叶幕光合能力、叶片绿素含量、生长期的果实纵横径、果实单果质量的动态变化及果实成熟期的品质和色差等指标进行测量。

图1 枝条距离主蔓不同距离下垂处理
Fig.1 Treatments of branches drooping at different distances from the cordon

1.2 测定指标及方法

1.2.1 副梢和卷须生长量的测定 5 月14 日,用游标卡尺量取不同处理各10个枝条的第7个节位的副梢长度并做标记,3 d后重新量取标记的副梢长度。5 月29 日,用游标卡尺量取不同处理各10个枝条的第11个节位的卷须并做标记,3 d后重新量取标记的卷须长度。

1.2.2 叶绿素含量的测定 7月20日,选择每个处理第7 个节位的功能叶进行采样,每个处理选择3 个枝条,每个叶片使用打孔器切取3个1 cm2的小块,采用乙醇丙酮溶液对阳光玫瑰葡萄叶片进行浸提,使用分光光度计测量663 nm 和645 nm 的吸光值,按公式计算提取液的叶绿素浓度[10],Chl a=12.7 OD663-2.69 OD645;Chl b=22.9 OD645-4.86 OD663;CV=Chl a+Chl b,再按下式计算单位叶面积表示的叶绿素含量:CA=0.5CV/S,CV是提取液的叶绿素质量浓度(mg·mL-1),S为用于提取叶绿素的叶片面积(cm2)。

1.2.3 光合指标测量 7月15日,天气晴朗,在上午9:00—10:00 使用Li-6400 光合测定仪对阳光玫瑰枝条不同处理的第3、7、9 节位叶片的净光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)、蒸腾速率(Tr)等光合生理指标进行测定,每个节位3 次重复,其中有果穗第3、7、10节位叶片分别记作j3、j7、j10;同时在7 月21 日(天气晴朗)使用光合仪对j7 功能叶片的光合指标进行日动态变化的测定,在8:00—16:00对阳光玫瑰叶片的生理指标PnTrGsCi进行测量,时间间隔为2 h。

1.2.4 果实纵横径及果形指数的测定 8 月29 日,从每个处理中选取10 串果穗外观基本相同且具有代表性的葡萄果粒进行测定,每穗葡萄上、中、下层各剪取1粒,用游标卡尺对其纵、横径进行测量。果实纵径与横径的比值为果形指数。

1.2.5 果实单粒质量的测定 8月29日从5种枝条垂化处理中各随机采取20粒有代表性的葡萄,用电子天平(精度0.01 g)进行称质量。

1.2.6 果实色差的测定 采用CR-400便携式色差仪对果皮颜色进行测定。各处理随机选取5串葡萄,每串葡萄选取上中下3粒,测定果实赤道部位,每粒葡萄旋转120°测定1次,3次重复,每组处理10次重复。其中L值代表果皮亮度,a值代表果皮红绿色差,b值代表果皮黄蓝色差,h值代表果皮色调,C代表彩度[11]

1.2.7 果实可溶性固形物和可滴定酸含量的测定

将10个不同处理的果实剥皮放入打浆机中磨浆,用离心机在4 ℃、8000 r·min-1下离心10 min。取上清液用PAL-1糖度计测定可溶性固形物含量。用酸碱滴定法进行可滴定酸含量测定。每个样品分成3组,3次重复,取平均值。

1.3 数据统计与分析

用Excel 软件进行数据整理和图表制作,用SPSS 25 软件进行数据显著性分析,采用Duncan’s法进行多重比较。

2 结果与分析

2.1 不同处理对阳光玫瑰葡萄枝条副梢生长和卷须生长的影响

由表1可知,30 cm下垂处理和60 cm下垂处理对副梢的生长有明显的抑制作用,生长量下降了50%左右,90 cm 下垂处理也减少了副梢生长量18.2%,120 cm下垂处理和CK差异不大。副梢生长量大小为CK>120 cm下垂>90 cm下垂>60 cm下垂>30 cm下垂。

表1 不同处理对阳光玫瑰葡萄枝条副梢生长的影响
Table 1 Effect of different treatments on the growth of secondary shoots of Shine Muscat grape branches

注:不同小写字母表示相同日期不同处理间差异显著(p<0.05)。下同。
Note:Different small letters indicate significant differences among treatments on the same date(p<0.05).The same below.

生长量Growth length/cm 2.36±1.78 b 2.66±1.40 b 4.45±3.29 ab 5.25±1.39 a 5.45±2.89 a处理Treatment 30 cm 60 cm 90 cm 120 cm CK 5月14日副梢长度Secondary tip length on May 14/cm 2.87±1.62 c 3.15±1.61 c 5.85±3.31 b 9.32±1.41 a 10.41±4.68 a 5月17日副梢长度Secondary tip length on May 17/cm 5.22±3.13 c 5.91±2.40 c 10.76±5.90 b 14.57±2.21 ab 15.86±6.39 a

如表2 所示,不同处理对卷须生长的影响与副梢相似,与对照相比,生长量都降低,30 cm 下垂和60 cm 下垂处理的卷须生长量都降低了60%左右。90 cm下垂的卷须生长量也下降了30%。卷须生长量大小为CK>120 cm下垂>90 cm下垂>60 cm下垂>30 cm下垂。

表2 不同处理对阳光玫瑰葡萄枝条卷须生长的影响
Table 2 Effect of different treatments on the growth of tendrils of Shine Muscat grape branches

处理Treatment 30 cm 60 cm 90 cm 120 cm CK 5月29日卷须长度Tendril length on May 29/cm 2.24±0.84 b 4.84±2.31 a 5.69±2.01 a 5.46±1.45 a 5.25±3.30 a 6月2日卷须长度Tendril length on June 2/cm 3.22±0.96 c 6.01±2.07 b 7.92±2.13 ab 8.42±1.72 ab 8.51±4.58 a生长量Growth length/cm 1.08±1.05 b 1.22±0.94 b 2.22±0.66 ab 2.90±0.31 a 3.26±2.45 a

2.2 不同处理对阳光玫瑰葡萄功能叶片叶绿素含量的影响

如表3 所示,120 cm 下垂的叶片叶绿素a、叶绿素b以及叶绿素总含量最高,90 cm下垂的叶片叶绿素a、叶绿素b 以及叶绿素总含量最低。叶绿素a 含量大小依次为120 cm下垂>CK>60 cm下垂>30 cm下垂,90 cm 下垂和30 cm 下垂叶绿素a 含量差距不大;叶绿素b 含量大小依次为120 cm 下垂>60 cm下垂>CK>30 cm 下垂>90 cm 下垂;叶绿素总含量大小依次为120 cm下垂>CK>60 cm下垂>30 cm下垂>90 cm下垂,但是总体差异性并不显著。

表3 不同处理对阳光玫瑰葡萄功能叶片叶绿素含量的影响
Table 3 Effect of different treatments on leaf chlorophyll content of functional leaves of Shine Muscat grapevines

注:不同小写字母表示经Duncan’s 测验差异显著(p<0.05)。下同。
Note:Different small letters in the table indicate significant differences by Duncan's test(p<0.05).The same below.

叶绿素总含量Total chlorophyll content/(mg·dm-2)2.66±0.64 a 3.09±0.59 a 2.50±0.14 a 3.30±0.80 a 3.12±0.33 a处理Treatment 30 cm 60 cm 90 cm 120 cm CK叶绿素a含量Chlorophyll-a content/(mg·dm-2)1.70±0.44 a 2.01±0.38 a 1.70±0.03 a 2.20±0.60 a 2.05±0.23 a叶绿素b含量Chlorophyll-b content/(mg·dm-2)0.96±0.21 a 1.08±0.20 a 0.80±0.15 a 1.09±0.21 a 1.07±0.11 a

2.3 不同处理对阳光玫瑰葡萄不同节位光合生理指标的影响

净光合速率是影响作物生长的主要因素,叶片的净光合速率在很大程度上反映了叶片的光合能力强弱。由图2 所示,j3 处净光合速率大小依次为90 cm>120 cm>60 cm>30 cm>CK,而j7 处的光合速率大小依次为90 cm>CK>120 cm>30 cm>60 cm,j10处净光合速率大小依次为CK>120 cm>90 cm>30 cm>60 cm。比较30 cm、60 cm、90 cm下垂的不同节位光合效率大小依次为j3>j7>j10;CK的不同节位净光合效率大小依次为j3>j7>j10;120 cm 下垂叶片不同节位净光合效率大小依次为j3>j10>j7;90 cm、120 cm、CK的这3个处理的净光合效率在3 个节位平均值都较大,而30 cm和60 cm的净光合效率较低(图2-A)。

图2 不同处理对不同节位功能叶片光合特性的影响
Fig.2 Photosynthetic characteristics of functional leaves at different nodes in different treatments

气孔导度可以很好地反映叶片与外部环境进行气体交换能力的强弱。由图2-B 可知,j3 处气孔导度大小依次为90 cm>120 cm>CK>60 cm>30 cm;j7 处气孔导度大小依次为CK>120 cm>90 cm>60 cm>30 cm,j10处气孔导度大小依次为120 cm>CK>90 cm>60 cm>30 cm。30 cm、60 cm、90 cm不同节位气孔导度大小依次为j3>j7>j10,120 cm的气孔导度大小依次为j3>j10>j7,水平生长的不同节位气孔导度大小依次为j3>j7>j10。CK 的气孔导度在节位间平均值比较高,30 cm和60 cm下垂气孔导度平均值比较低。

由图2-C可知,j3处胞间CO2浓度大小为30 cm>CK>120 cm>60 cm>90 cm;j7 处胞间CO2浓度大小依次为120 cm>CK>60 cm>90 cm>30 cm;j10处胞间CO2浓度大小依次为60 cm>120 cm>CK>90 cm>30 cm。胞间CO2浓度除了30 cm 下垂大小依次是j3>j7>j10,其他处理胞间CO2浓度大小依次为j7>j10>j3。120 cm 胞间CO2浓度平均值最高,90 cm胞间CO2浓度平均值最低。

蒸腾速率是指植物在一定时间内单位叶面积蒸腾的水量,总体来看,蒸腾速率受叶片和光照影响较大,因为叶片选择的不同或萎蔫程度不同都会导致蒸腾速率出现较大差别。由图2-D 可知,j3 处蒸腾速率大小依次为30 cm>CK>120 cm>60 cm>90 cm;j7 处蒸腾速率大小依次为30 cm>120 cm>CK>90 cm>60 cm;而j10 处的蒸腾速率依次为CK>120 cm>90 cm>60 cm>30 cm。所有处理的第3节位的蒸腾速率最小,除了CK的蒸腾速率大小为j3>j7>j10,其他处理蒸腾速率大小都为j7>j10>j3。CK 枝条的叶幕整体蒸腾速率最大,60 cm下垂处理蒸腾速率最小。

2.4 不同处理对阳光玫瑰葡萄光合日动态变化的影响

净光合速率受光照度的影响很大,所以在一天中随光照度而发生动态变化。如图3所示,所有处理都在10:00时达到峰值;其中30 cm和60 cm处理有明显的双峰曲线,第二个峰在14:00出现,而其他处理达到峰值后逐渐降低;CK则是在8:00时净光合效率最高,之后逐渐下降;一天中,120 cm下垂处理、90 cm下垂处理、CK 的净光合速率平均值较高,净光合速率都显著高于其他处理,并且90 cm下垂处理净光合速率变化幅度较小。由于光照度很高,叶片出现光合午休和光抑制,并且下午也无法恢复到最高值(图3-A)。

图3 不同处理功能叶光合日动态变化
Fig.3 Daily dynamics of photosynthesis of functional leaves in different treatments

如图3-B 所示,所有处理气孔导度都是双峰曲线,10:00 和14:00 有峰值,10:00 时最高峰,这是由于光合午休现象,气孔由于温度光照过强而关闭引起的,气孔导度很好地反映了气孔开放程度[12]。90 cm下垂的气孔导度整体最高,显著高于其他处理,30 cm下垂的气孔导度整体则最低。

胞间CO2浓度与外界环境CO2浓度变化、气孔导度、叶片叶龄等有关。如图3-C所示,所有处理的气孔导度先逐渐降低,到12:00时最小,这与气孔关闭有关,然后逐渐上升,早晚的胞间CO2浓度都较高,这是因为外界CO2浓度较高。90 cm、120 cm、CK这3个处理在一天中胞间CO2浓度显著升高。

如图3-D所示,30 cm、60 cm、90 cm处理蒸腾速率是双峰曲线,在10:00 和14:00 出现峰值,10:00为最高峰;而120 cm 和CK 是单峰曲线,CK 10:00为最高峰,120 cm 在12:00 达到最高峰。CK 10:00的蒸腾速率是所有处理所有时间段中最高的,120 cm、90 cm、CK 的蒸腾速率显著高于30 cm 和60 cm。

2.5 不同处理对阳光玫瑰葡萄成熟期果实大小的影响

单果质量和纵横径大小都能很直观地反映果实大小。如表4所示,30 cm下垂的单果质量最大,CK的单果质量最小,单果质量大小依次为30 cm 下垂>90 cm 下垂>120 cm 下垂>60 cm 下垂>CK;30 cm下垂的果实纵径最大,其次是90 cm下垂的果实,最小的是60 cm 下垂的果实,纵径大小依次为30 cm下垂>90 cm下垂>120 cm下垂>CK>60 cm下垂;30 cm 下垂的果实横径最大,其次是90 cm 下垂,CK 的果实横径最小,横径大小依次为30 cm 下垂>90 cm 下垂>120 cm 下垂>60 cm 下垂>CK;果形差距不大,60 cm 下垂的最偏向圆形,CK 偏向于椭圆形。如图4 所示,不同处理的成熟期果实外观存在差异。

表4 不同处理对阳光玫瑰葡萄果实大小的影响
Table 4 Effect of different treatments on fruit size of Shine Muscat grapevines

处理Treatment 30 cm 60 cm 90 cm 120 cm CK单果质量Single fruit weight/g 14.34±0.23 a 13.37±0.36 b 13.95±0.18 a 13.41±0.05 b 11.93±0.33 c纵径Longitudinal diameter/mm 31.11±0.41 a 28.71±0.25 b 31.05±0.23 a 29.36±0.30 b 28.99±0.41 b横径Transverse diameter/mm 27.34±0.28 a 25.92±0.32 b 26.96±0.18 a 26.10±0.28 b 24.83±0.36 c果形指数Fruit shape index 1.13±0.02 abc 1.10±0.01 c 1.15±0.01 ab 1.12±0.02 bc 1.16±0.01 a

图4 不同处理成熟期果实形态
Fig.4 Fruit morphology at maturity in different treatments

2.6 不同处理对阳光玫瑰葡萄成熟期果实内在品质的影响

果实的可溶性固形物与可滴定酸含量都是果实品质的重要指标。如表5所示,90 cm下垂处理的可溶性固形物含量最高,60 cm下垂处理的最低,可溶性固形物含量大小依次为90 cm 下垂>30 cm 下垂>CK>120 cm 下垂>60 cm 下垂;可滴定酸含量在不同处理间差异不大;固酸比90 cm 下垂处理的最高,与其他3种处理相比,差异不显著。

表5 不同处理对阳光玫瑰葡萄成熟期果实内在品质的影响
Table 5 Effect of different treatments on fruit inner quality of Shine Muscat grapevines at maturity

处理Treatment 30 cm 60 cm 90 cm 120 cm CK w(可溶性固形物)Soluble solids content/%17.83±1.16 ab 16.30±0.70 b 18.36±0.65 a 17.13±0.91 ab 17.4±0.78 ab w(可滴定酸)Titratable acidity/%0.25±0.01 a 0.23±0.02 b 0.22±0.01 b 0.22±0.01 b 0.25±0.01 a固酸比Soluble solids to acidity ratio 70.82±6.12 b 72.73±7.07 ab 84.51±6.41 a 77.04±7.61 ab 68.51±4.70 b

2.7 不同处理对阳光玫瑰葡萄成熟期果实着色的影响

通过果实色差能够发现果实着色的差异,如表6 所示,CK 的L 值最大,说明CK 的果实亮度最高,30 cm 的L 值最低,表明30 cm 下垂处理的亮度最低;CK的a值最小,说明CK最偏绿,60 cm 的a值最大,表明60 cm下垂处理绿色程度最低;CK的b值最高,说明CK 果皮黄色程度最高;30 cm的h值最大,说明30 cm下垂处理果皮着色最为一致,90 cm、120 cm 及CK 差距不大;CK 的CIRG 值最小,说明下垂处理的果皮着色程度比CK的好。

表6 不同处理对阳光玫瑰葡萄果实着色的影响
Table 6 Effect of different treatments on fruit coloration of Shine Muscat

处理Treatment 30 cm 60 cm 90 cm 120 cm CK色差值Chromatic aberration L 47.74±0.16 e 48.23±0.12 d 48.77±0.23 c 49.52±0.18 b 50.41±0.28 a a b C h-12.21±1.13 ab-10.09±9.14 a-12.04±1.12 ab-12.34±1.07 ab-12.91±0.59 b 21.48±2.14 b 22.91±4.82 a 22.29±1.69 ab 23.06±1.38 a 23.64±1.22 a 24.73±2.23 b 26.43±5.64 a 25.36±1.76 ab 26.16±1.56 ab 26.94±1.33 a 119.62±2.13 a 115.81±15.4 a 118.44±2.29 a 118.15±1.75 a 118.65±0.57 a CIRG 0.83±0.03 ab 0.85±0.12 a 0.83±0.03 ab 0.81±0.03 bc 0.79±0.01 c

3 讨 论

果树树形受到多方面因素影响,如基因调控、立地环境和人工整形等,葡萄自然生长树形无法满足葡萄标准化生产,所以都由人工进行整形修剪,以达到生产需求[13]。有研究发现拉枝下垂可以很好地抑制营养生长,使树体的生长势得以缓和,致使营养物质回流,促使营养生长向生殖生长转化[14]。另外,下垂处理有利于花芽形成和果实的生长,故结果早,产量高,树体结构合理[15],笔者在本研究中发现阳光玫瑰葡萄WH形树形枝条的垂化改良可以明显抑制副梢卷须的徒长,从而控制树体的营养生长,缓和生长势。树形的变化能够影响树体的叶幕形态,叶片质量也会发生变化,不同树形叶绿素含量不同[16],本研究中不同垂化处理的叶片总叶绿素含量变化趋势不同,90 cm 的总叶绿素含量最多下降19.8%,但不显著,而120 cm 的总叶绿素含量轻微增加,这说明拉枝下垂并不会对叶片叶绿素含量产生较大影响。不同树形会影响到叶幕的高度、倾斜度、厚度、张开度和叶面积系数等,这些会与果树内部因素一起影响光合作用[17]。同一树体冠层的不同层次的净光合速率不同[18],本研究中葡萄枝条不同节位的光合指标也存在一定差异,第7节位的光合指标都较高,说明葡萄枝条的主要光合活动集中在枝条中部。树形改造直接改变了树体的冠层结构,会改变叶幕微环境,从而影响叶片的光合特性[19],本研究中不同下垂处理的叶片净光合速率都有不同程度的降低,净光合速率和下垂距离呈正相关,光合速率与叶片叶绿素含量的相关性不显著[20],说明光合速率的影响因素更为复杂。有研究发现气孔导度大小能够影响净光合速率和胞间CO2浓度[21],本研究中GsPn呈正相关,但与Ci相关性不显著。本研究中叶片净光合速率在光合午休后无法恢复到较高水平,这与前人的研究结果相同[22],尤其是120 cm 与CK 的净光合速率在下午都下降至6 μmol·m-2·s-1以下,低于其他处理,树形的光抑制后恢复能力也不同,这应该是由于树形光破坏防御机制的差异[23],说明拉枝下垂一定程度上提高了光抑制的恢复能力。

果树树形改造对果实品质的影响也被多位学者研究,葡萄[24]、桃[25]、梨[26]、苹果[27]等果树树形研究中都发现树形能够对果实品质产生影响,本研究表明枝条的下垂处理对葡萄果实的单果质量、果实纵横径、可溶性固形物含量、果实色差等指标都有影响,这与树形的通风透光条件以及营养条件有关[28]。不同树形的叶幕结构对葡萄的品质和产量影响不同,叶幕光照条件的改变影响葡萄果实初生与次生代谢产物的积累[29-30]。与郝燕等[31]的研究结果不同,本研究中光合作用强度与糖酸比不呈正相关,90 cm 下垂处理的净光合速率稍微下降但糖酸比最高,光合作用强度与果实品质关系有待进一步研究。与任俊鹏等[32]的研究结果相同,树形的改变影响了果实的着色程度,说明树形与果皮着色关系较大。葡萄树形叶幕与葡萄生理以及品质能够形成密切关系,在此基础上结合地理环境与品种要求,设计方便生产的栽培方式,促进葡萄生产现代化。本研究中改良WH形树形,通过枝条下垂改变了树体结构,影响叶片的光合能力,通风透光条件改善,影响果实品质,对阳光玫瑰葡萄生产具有一定的指导意义,符合设施葡萄栽培省工节本、提质增效的发展方向。

4 结 论

阳光玫瑰WH树形栽培距离主蔓90 cm下垂处理,副梢和卷须减少18%~30%的生长量,叶片净光合效率最高达13.2 μmol·m-2·s-1,并且光抑制后恢复能力强,单果质量13.95 g,可溶性固形物含量18.36%,能够同时保证光合能力和果实品质良好,并缓和树势,满足葡萄种植轻简化要求,所以建议生产中采取距离主蔓90 cm下垂处理。

参考文献References:

[1] 李秀杰,许祥涛,韩真,李勃,翟衡.阳光玫瑰葡萄在山东泰安的表现及栽培技术[J].落叶果树,2014,46(5):23-25.LI Xiujie,XU Xiangtao,HAN Zhen,LI Bo,ZHAI Heng.Performance and cultivation technology of Shine Muscat in Tai’an,Shandong Province[J].Deciduous Fruits,2014,46(5):23-25.

[2] 肖文光.福安‘阳光玫瑰’葡萄省力化栽培技术要点[J].南方农业,2021,15(25):61-64.XIAO Wenguang.Techical essential of labor-saving cultivation of Shine-Muscat in Fu’an[J].South China Agriculture,2021,15(25):61-64.

[3] GAO X T,SUN D,WU M H,LI H Q,LIU F Q,HE F,PAN Q H,WANG J.Influence of cluster positions in the canopy and row orientation on the flavonoid and volatile compound profiles in Vitis vinifera L.Cabernet Franc and Chardonnay berries[J/OL].Food Research International,2021,143:110306.https://doi.org/10.1016/j.foodres.2021.110306.

[4] WRIGHT A H,EMBREE C G,NICHOLS D S,PRANGE R K,HARRISON P A,DELONG J M.Fruit mass,color and yield of‘Honeycrisp’™apples are influenced by manually-adjusted fruit population and tree form[J].The Journal of Horticultural Science and Biotechnology,2006,81(3):397-401.

[5] 王明洁,宋鹏慧,鲁会玲,梁文卫,吕云波.树形和叶幕形及花穗整形方式对无核白鸡心葡萄果实品质的影响[J].经济林研究,2021,39(2):188-195.WANG Mingjie,SONG Penghui,LU Huiling,LIANG Wenwei,LÜ Yunbo.Effects of different tree types,leaf canopy shapes and flower cluster shaping methods on fruit quality of‘Centennial Seedless’grape[J].Non-wood Forest Research,2021,39(2):188-195.

[6] LAWES G S ,SPENCE C B,TUSTIN D S,MAX S M.Tree quality and canopy management effects on the growth and floral precocity of young‘Doyenne du Cornice’pear trees[J].New Zealand Journal of Crop and Horticultural Science,1997,25(2):177-184.

[7] 郑婷,吴江,刘凡启,许瀛之,李生保,房经贵.葡萄种植架式及其应用[J].中外葡萄与葡萄酒,2021(2):40-45.ZHENG Ting,WU Jiang,LIU Fanqi,XU Yingzhi,LI Shengbao,FANG Jinggui.Introduction and application of training system ongrapevine[J].Sino-OverseasGrapevine&Wine,2021(2):40-45.

[8] 张超博.三种葡萄新树形的设计、试验和推广[D].南京:南京农业大学,2017.Zhang Chaobo.Project,trial and extension of three new grape tree forms[D].Nanjing:Nanjing Agricultural University,2017.

[9] 郑秋玲,刘珅坤,崔万锁,曹志毅,王婷,肖慧琳,唐美玲.不同树形及花穗整形长度对夏黑葡萄果实品质的影响[J].中国农学通报,2019,35(2):53-56.ZHENG Qiuling,LIU Shenkun,CUI Wansuo,CAO Zhiyi,WANG Ting,XIAO Huilin,TANG Meiling.Tree Forms and lengths of flower thinning: Effect on fruit qualities of Summer Black grape[J].Chinese Agricultural Science Bulletin,2019,35(2):53-56.

[10] 朱潇婷.避雨设施条件下不同材质与颜色套袋对‘巨峰’葡萄成熟期及品质的影响[J].现代园艺,2021,44(17):6-8.ZHU Xiaoting.Effect of different materials and colors of sleeve bags on the ripening period and quality of‘Kyoho’grapes under rain-sheltered facilities[J].Contemporary Horticulture,2021,44(17):6-8.

[11] 舒展,张晓素,陈娟,陈根云,许大全.叶绿素含量测定的简化[J].植物生理学通讯,2010,46(4):399-402.SHU Zhan,ZHANG Xiaosu,CHEN Juan,CHEN Genyun,XU Daquan.The simplification of chlorophyll content measurement[J].Plant Physiology Journal,2010,46(4):399-402.

[12] 郭春燕,李晋川,岳建英,杨生权,卢宁,王翔.两种高质牧草不同生育期光合生理日变化及光响应特征[J].生态学报,2013,33(6):1751-1761.GUO Chunyan,LI Jinchuan,YUE Jianying,YANG Shengquan,LU Ning,WANG Xiang.Diurnal changes in the photosynthetic characteristics of two high yield and high quality grasses during different stages of growth and their response to changes in light intensity[J].Acta Ecologica Sinica,2013,33(6):1751-1761.

[13] 张抗萍,李荣飞,常耀栋,梁国鲁,陆智明,易佑文,胡涛,鲁振华,郭启高.果树树形的形成机制与调控技术研究进展[J].果树学报,2017,34(4):495-506.ZHANG Kangping,LI Rongfei,CHANG Yaodong,LIANG Guolu,LU Zhiming,YI Youwen,HU Tao,LU Zhenhua,GUO Qigao.A review of the canopy architecture formation mechanism and regulation technology in fruit trees[J].Journal of Fruit Science,2017,34(4):495-506.

[14] 熊正葵,洪香娇,高旭春,徐宝庆,龚明辉,黄芳,胡晓文,桂卫星.拉枝下垂对双季葡萄秋冬茬成花的影响[J].安徽农业科学,2016,44(35):60-61.XIONG Zhengkui,HONG Xiangjiao,GAO Xuchun,XU Baoqing,GONG Minghui,HUANG Fang,HU Xiaowen,GUI Weixing.Effects of pull branches hanging down on flower formation of double season grape in autumn and winter[J].Journal of Anhui Agricultural Sciences,2016,44(35):60-61.

[15] 吴鲜亮,何志爱,杨勇.拉枝对苹果梨幼树生长发育的影响[J].内蒙古农业科技,2008(1):54-55.WU Xianliang,HE Zhiai,YANG Yong.Effect of branch pulling on the growth and development of young‘Pingguoli’pear trees[J].Inner Mongolia Agricultural science and technology,2008(1):54-55.

[16] 史祥宾,刘凤之,程存刚,王孝娣,王宝亮,郑晓翠,王海波.不同叶幕形对设施葡萄叶幕微环境、叶片质量及果实品质的影响[J].应用生态学报,2015,26(12):3730-3736.SHI Xiangbin,LIU Fengzhi,CHENG Cunang,WANG Xiaodi,WANG Baoliang,ZHENG Xiaocui,WANG Haibo.Effects of canopy shapes of grape on canopy microenvironment,leaf and fruit quality in greenhouse[J].Chinese Journal of Applied Ecology,2015,26(12):3730-3736.

[17] TAN L P,CHEN ZH F,YANG Y T,ZHANG Q,QIU X,WANG T,DENG H H,LIAO L,SUN G CH ,WANG ZH H.Study on the fruit quality of different canopy and tree shapes of Huangguogan citrus[J/OL].E3S Web of Conferences,2020,206(10):02019.DOI:10.1051/e3sconf/202020602019.

[18] 黄国嫣,唐宗福,彭雅婷,王艳,李文祥.不同树形对‘丽江雪桃’光合作用强度及果实品质的影响[J].天津农业科学,2015,21(4):103-106.HUANG Guoyan,TANG Zongfu,PENG Yating,WANG Yan,LI Wenxiang.Effects of different tree shapes on photosynthesis and fruit quality of‘Lijiang Snow Peach’[J].Tianjin Agricultural Sciences,2015,21(4):103-106.

[19] 刘帅.阳光玫瑰葡萄光合特性研究[D].南京:南京农业大学,2015.LIU Shuai.The study of photosynthetic characteristics of Shine Muscat[D].Nanjing:Nanjing Agricultural University,2015.

[20] 王建新,牛自勉.叶幕结构与光合作用的关系研究[J].中国农学通报,2008,24(11):302-306.WANG Jianxin,NIU Zimian.The study of relationships between canopy structure and photosynthesis[J].Chinese Agricultural Science Bulletin,2008,24(11):302-306.

[21] 蔚露,牛自勉,林琭,姜闯道,王红宁,谢鹏,李志强,郭晋鸣.小冠开心形和细型主干形‘玉露香’梨光能截获与光合作用差异[J].园艺学报,2020,47(1):11-22.WEI Lu,NIU Zimian,LIN Lu,JIANG Chuangdao,WANG Hongning,XIE Peng,LI Zhiqiang,GUO Jinming.Effect of tree-shape of‘Yuluxiang’pear on light energy interception and photosynthetic characteristics[J].Acta Horticulturae Sinica,2020,47(1):11-22.

[22] 张大鹏,黄丛林,王学臣,娄成后.葡萄叶片光合速率与量子效率日变化的研究及利用[J].植物学报,1995,37(1):25-33.ZHANG Dapeng,HUANG Jungle,WANG Xuechen,LOU Chenghou.Study of diurnal changes in photosynthetic rate and quantum efficiency of grapevine leaves and their utilization in canopy management[J].Acta Botanica Sinica,1995,37(1):25-33.

[23] 林琭,李志强,蔚露,王红宁,牛自勉.苹果两种树形叶片对光强和CO2 浓度互作的光合响应及光抑制特性[J].园艺学报,2020,47(11):2073-2085.LIN Lu,LI Zhiqiang,WEI Lu,WANG Hongning,NIU Zimian.Photosynthetic responses to interaction of light intensity and CO2 concentration and photoinhibition characteristics of two apple canopy shapes[J].Acta Horticulturae Sinica,2020,47(11):2073-2085.

[24] 江莉,陈清西,陈婷,刘鑫铭,谢倩,雷龑.树形改造对‘巨峰’葡萄叶片光合特性和果实品质的影响[J].北方园艺,2020(17):16-22.JIANG Li,CHEN Qingxi,CHEN Ting,LIU Xinming,XIE Qian,LEI Yan.Effects of tree shape modification on photosynthetic characteristics and fruit quality of‘Kyoho’grape leaves[J].Northern Horticulture,2020(17):16-22.

[25] 牛茹萱,赵秀梅,王晨冰,张帆,张雪冰,王发林.桃不同树形的冠层特征及对果实产量、品质的影响[J].果树学报,2019,36(12):1667-1674.NIU Ruxuan,ZHAO Xiumei,WANG Chenbing,ZHANG Fan,ZHANG Xuebing,WANG Falin.Effects of canopy characteristics on fruit yield and quality with different training systems in nectarines[J].Journal of Fruit Science,2019,36(12):1667-1674.

[26] 赵明新,张江红,孙文泰,曹刚,王玮,曹素芳,李红旭.不同树形冠层结构对‘早酥’梨产量和品质的影响[J].果树学报,2016,33(9):1076-1083.ZHAO Mingxin,ZHANG Jianghong,SUN Wentai,CAO Gang,WANG Wei,CAO Sufang,LI Hongxu.Effects of different tree training systems and canopy structures on yield and fruit quality of‘Zaosu’pear[J].Journal of Fruit Science,2016,33(9):1076-1083.

[27] 张晶楠.三种苹果树形的冠层结构与果实品质的相关性研究[D].泰安;山东农业大学,2010.ZHANG Jingnan.Studies on relationship between canopy structure and fruit quality for three tapes of apple tree shape[D].Tai’an:Shandong Agricultural University,2010.

[28] 刘迎雪,王振兴,许培磊,张宝香,赵滢,杨义明,范书田,秦红艳,沈育杰,艾军.不同整形方式及负载量对‘北冰红’葡萄光合及果实品质的影响[J].中外葡萄与葡萄酒,2018(4):81-83.LIU Yingxue,WANG Zhenxing,XU Peilei,ZHANG Baoxiang,ZHAO Ying,YANG Yiming,FAN Shutian,QIN Hongyan,SHEN Yujie,AI Jun.The effects of different shaping methods and loading on the photosynthetic characteristics and fruit quality of‘Beibinghong’grape[J].Sino- Overseas Grapevine &Wine,2018(4):81-83.

[29] 赵新节,孙玉霞,刘波,王晓,束怀瑞.不同架式栽培的玫瑰香葡萄成熟期挥发性物质的变化[J].园艺学报,2005,32(1):87-90.ZHAO Xinjie,SUN Yuxia,LIU Bo,WANG Xiao,SHU Huairui.Changes of volatile compounds in‘Muscat Hambourg’for various trellies systems during maturity[J].Acta Horticulturae Sinica,2005,32(1):87-90.

[30] 成果,陈立业,王军,陈武,张振文.2 种整形方式对‘赤霞珠’葡萄光合特性及果实品质的影响[J].果树学报,2015,32(2):215-224.CHENG Guo,CHEN Liye,WANG Jun,CHEN Wu,ZHANG Zhenwen.Effect of training system on photosynthesis and fruit characteristics of Cabernet Sauvignon[J].Journal of Fruit Science,2015,32(2):215-224.

[31] 郝燕,张坤,何英霞,马麒龙,白耀栋,杨瑞.不同树形对贵人香葡萄生长和果实品质的影响[J].干旱地区农业研究,2018,36(5):76-81.HAO Yan,ZHANG Kun,HE Yingxia,MA Qilong,BAI Yaodong,YANG Rui.Effects of trainning systems on growth and fruit quality of Italian Riesling grape[J].Agricultural Research in the Arid Areas,2018,36(5):76-81.

[32] 任俊鹏,陶建敏.不同树形对夏黑葡萄生长及果实品质的影响[J].中国南方果树,2012,41(4):94-96.REN Junpeng,TAO Jianmin.Effects of different tree shapes on the growth and fruit quality of Summer Black grape[J].South China Fruits,2012,41(4):94-96.

Effect of branch drooping treatment on photosynthetic characteristics and fruit quality in Shine Muscat grapevines with WH-shaped tree shape

LUO Jiakun,GAO Lei,ZHENG Huan,TAO Jianmin*

(College of Horticulture,Nanjing Agricultural University,Nanjing 210095,Jiangsu,China)

Abstract:【Objective】In protected cultivation of grape, training and pruning are essential practices.Canes of grapevines are of high plasticity and can form various shapes through these practices.A reasonable canopy shape is essential for the balance between vegetative and reproductive growth of vines and for yield and quality formation.Modern agriculture has a higher requirement for canopy shape,which needs to be ornamental and diversified as well as productive,high-quality and convenient in management.The WH shape is a high-yield,high-space-utilization vine shape under scaffolding cultivation.However, due to the space constraints, the WH shape is disorganized and difficult to management during grape production.In this paper, we study the branch drooping treatment at different distances from the cordon to identify the best branch drooping treatment that enables labor-saving management and maximizes fruit quality.【Methods】Six-year-old WH-shaped Shine Muscat grapevines grown under rain shelter were used as materials.The grapevines were planted at an 8.0 m×8.0 m spacing.Each branch was allowed to bear two clusters of grapes, and the fruit was thinned in a standardized manner with standardized fertilization, watering and pest control management.The cordon of Shine Muscat grapevines with similar growth states were selected for treatments.The shoot growth rate, tendril growth rate, leaf photosynthetic indexes such as photosynthetic rate, stomatal conductance, transpiration rate and intercellular carbon dioxide concentration, leaf chlorophyll content, and fruit quality parameters at maturity such as fruit weight, longitudinal and transverse diameter, soluble solids and color were measured.【Results】The branches of the horizontal growth treatment (control treatment) had excessive vegetative growth with faster growth of the secondary tendrils and greater photosynthetic rate but with poorer fruit quality, smaller fruit weight compared with the branching drooping treatment.Compared with the control,the treatment of pulling down branches 30 cm from the cordon reduced the growth of the secondary tendrils by 50%-60% and chlorophyll content of the leaves by 12%.The foliage photosynthetic rate in this treatment decreased greatly compared with the control, and maintained lower than the other treatment on the same day; stomatal conductance was significantly decreased,while the intercellular CO2 concentration and the transpiration rate slightly decreased.Among all the treatments, the longitudinal and transverse fruit diameters and single fruit weight in branch dropping at 30 cm were the largest, with soluble solid content increased and acid fixation decreased at the same time.The fruit skin coloration was more uniform than the other treatments.However, in this treatment,the distance of branch drooping from the cordon was small,which was not convenient for management.The treatment of pulling down the branch at 60 cm from the cordon also had a significant inhibitory effect on the growth of secondary tendrils, which was reduced by 40%-50% compared with the control,and the chlorophyll content in the leaves and photosynthetic rate were also reduced.The treatment of pulling down the branch at 90 cm from the cordon also significantly inhibited the growth of secondary tips and tendrils by 18%-30%, which led to a more beautiful tree shape, which enables labor-saving management.The treatment slight reduced chlorophyll content, stomatal conductance, intercellular carbon dioxide concentration, and transpiration rate of leaves, but net photosynthetic rate was high and above 13 μmol·m-2·s-1 and fruit quality indexes such as longitudinal and transverse diameter, soluble solids content,fruit weight,and coloration was improved.The treatment at 120 cm from the cordon did not cause significant inhibition of the growth of the secondary tendrils; chlorophyll content and photosynthetic rate did not change much; stomatal conductance decreased; fruit quality was lower with decreased soluble solids content.【Conclusion】The selection of the modified WH shaped tree with branch drooping at 90 cm from the cordon improved fruit quality and photosynthetic capacity of Shine Muscat grapevines, without significant decrease in photosynthetic rate and on the vegetative growth.The tree shape formed from the treatment was aesthetically pleasing and easy to manage.

Key words: Shine Muscat grapevines; Tree shape; Branch drooping treatment; Photosynthetic characteristics;Fruit quality

中图分类号S663.1

文献标志码:A

文章编号:1009-9980(2022)11-2064-10

DOI:10.13925/j.cnki.gsxb.20220158

收稿日期2022-03-24

接受日期:2022-06-04

基金项目国家重点研发计划(2020YFD1000204);国家现代农业产业技术体系(CARS-29);江苏农业产业技术体系(JATS[2021]450)

作者简介罗家坤,男,在读硕士研究生,主要从事果树生理与栽培技术研究。E-mail:zyakira@163.com

*通信作者Author for correspondence.E-mail:taojianmin@njau.edu.cn