不同施氮水平下库尔勒香梨园土壤微生物量与产量、品质的相关性

马泽跃1,黄 战1,陈波浪1,2,米日古丽·艾山1,柴仲平1,2*

1新疆农业大学资源与环境学院,乌鲁木齐 830052;2新疆土壤与植物生态过程实验室,乌鲁木齐 830052)

摘 要:目的】探究不同施氮水平下库尔勒香梨园土壤微生物量与香梨产量、品质间的相关性,为梨园合理施用氮肥提供理论依据。【方法】以6~7年生库尔勒香梨为试验对象,研究0、150、300和450 N kg·hm-2(分别用N0、N1、N2和N3表示)4个氮肥施用量处理下库尔勒香梨土壤微生物量与产量、品质的相关性。【结果】随着氮肥施用量的增加,产量、可溶性固形物含量、维生素(Vc)含量、糖酸比均表现为先增加后减少的态势,其中以N2处理提高效果最好;总酸含量在各施肥处理下表现为随氮肥施用量的增加而下降,N0>N1>N2>N3。产量、可溶性固形物含量、Vc含量、糖酸比均与3个时期土壤微生物量碳(soil microbial biomass carbon,SMBC)、土壤微生物量氮(soil microbial biomass nitrogen,SMBN)呈正相关,与SMBC/SMBN 呈负相关;石细胞、总酸含量均与3 个时期SMBC、SMBN 呈负相关,与SMBC/SMBN 呈正相关。在产量、品质效应模型中,通过施氮量、SMBC/SMBN 与产量、品质的拟合方程发现施氮量和SMBC/SMBN这2个因素在影响香梨产量、可溶性固形物含量、Vc含量、总酸含量以及糖酸比时交互作用更强,主要表现在膨果期。【结论】以提高库尔勒香梨产量以及改善果实品质为目的,推荐6~7年生库尔勒香梨最佳氮肥施用量范围为300~380 kg·hm-2,SMBC/SMBN范围为9~15。

关键词库尔勒香梨;施氮量;土壤微生物量;产量;品质

氮素作为作物在生长发育时所需较多的矿质元素之一[1],氮肥施用量是否合理直接关系到作物生长发育情况,并影响其产量与品质[2],氮肥施用过量会对土壤生态环境带来不良影响[3],如微生物活性降低等[4]。土壤中微生物活体的总量称为土壤微生物量,是植物营养物质的源和库,并积极参加养分循环能够反映土壤生态系统的变化[5-6]。大多研究表明[7-8],土壤中物理、化学性质经过变化后,土壤中微生物的种种生命活动在不同程度上会遭受影响,如施用氮肥后微生物量碳、氮含量增加[9],减少[4]或者变化不显著[10],以及微生物量碳含量变化为单峰曲线[11]等,从而进一步对土壤及生态环境中能量、物质的持续循环产生作用,最后对作物的生长发育产生影响[12]

库尔勒香梨(Pyrus brestschneideri Rehd.)作为新疆特色果树品种,种植面积不断扩大[13-14]。在果树生长过程中,施肥管理是果树高产稳产的重要保障,不但会影响到果实产量和品质,还会对土壤养分及状况产生影响[15]。氮肥施用量过多会引起品质变劣、土壤氮素累积等,导致资源浪费,引发环境氮负荷[16],致使库尔勒香梨产业良性发展遭受严重限制。因此,高效的氮肥管理对库尔勒香梨园可持续稳定发展尤其重要。

近年来库尔勒香梨园不同施氮处理下土壤微生物量与香梨产量、果实品质相关性方面的研究少有报道。所以,笔者以6~7 年生库尔勒香梨为试验对象,设置4个施氮水平,研究氮肥施用量对库尔勒香梨产量以及果实品质的影响,并进行氮肥施用量、土壤微生物量与果实产量、品质之间的相关性分析,提出以提高产量、改善品质为目标的最适氮肥施用量范围,优化库尔勒香梨园施肥措施,为改善库尔勒香梨品质、推进库尔勒香梨产业可持续健康发展提供理论依据。

1 材料和方法

1.1 试验区概况

该试验于新疆巴音郭楞蒙古自治州库尔勒市南郊阿瓦提农场(E 86°07′12″,N 41°40′28″,海拔902 m)进行,试验地为暖温带大陆性干旱气候。该地区年平均气温10.5~11.8 ℃,年降雨量50~55 mm,年均日照时数2800~3000 h,日照总辐射量5700~6400 MJ·m-2,有效积温4100~4400 ℃,无霜期210~239 d。试验地土壤为草甸土,有机质含量(w,后同)14.11 g·kg-1,碱解氮含量53.82 mg·kg-1,有效磷含量22.75 mg·kg-1,速效钾含量217 mg·kg-1,pH=7.84。

1.2 试验设计

试验在6~7 年生库尔勒香梨园进行,株行距为2 m×4 m,1125 株·hm-2。选取生长健康、长势相近且正常结果的36株果树。根据前期试验研究,设置4 个施氮水平处理,分别为N0—不施氮、N1—低氮量、N2—中氮量和N3—高氮量,氮肥施用量见表1,单株为1次重复,9次重复。

表1 不同氮肥施用量的试验方案
Table 1 The experiment scheme with different amount of nitrogen fertilizer

处理Treatment N0 N1 N2 N3养分用量Quantity of nutrient application N/(kg·hm-2)0 150 300 450 P2O5/(kg·hm-2)300 300 300 300 K2O/(kg·hm-2)75 75 75 75 N/(kg·plant-1)0.000 0.133 0.267 0.400 P2O5/(kg·plant-1)0.267 0.267 0.267 0.267 K2O/(kg·plant-1)0.067 0.067 0.067 0.067

除N0处理外,其余各处理施用氮肥总量(尿素:含N 46%)的60%于果树的萌芽前期基施,剩余40%在坐果期(6 月1 日)追施。磷肥(重过磷酸钙:含P2O5 46%)和钾肥(硫酸钾:含K2O 51%)在萌芽前期全部施入。基肥与追肥均采用环状沟施法(离中心干大致50 cm 位置处挖深度和宽度均为30 cm 的环状沟),4 个处理在施用肥料过后实行常规管理,不同处理的果树管理方式维持一致。

1.3 样品采集与处理

土壤样品于2020 年的香梨坐果期[(施肥前采集)6 月1 日]、膨果期(8 月1 日)、成熟期(9 月15 日)采集,果实样品于香梨成熟期(9 月15 日)采集。对各处理的果树实施整株果实采样,样品收集完后称量,运回实验室进行品质测定。在施肥沟两侧,去除地表凋落物后,采集3个土层(0~20、>20~40、>40~60 cm)土样,采样时每个处理采集3株果树的土样,每株果树随机取点,重复取土3次,初步进行捣碎混合,保存于一个封口的自封袋中,并放入盛有干冰的保鲜箱中运输至实验室。返回实验室后,将土样挑拣除去根、石块后过筛(2 mm)并均匀混合,将土样分成2份,一份于4 ℃冰箱保存,用于土壤微生物量碳、氮的测定,另一份室内风干,过1 mm筛,用于土壤理化分析。

1.4 测定方法

土壤微生物量碳(soil microbial biomass carbon,SMBC)的测定采用熏蒸提取-容量分析法;土壤微生物量氮(soil microbial biomass nitrogen,SMBN)的测定采用熏蒸提取-茚三酮比色法[17]

SMBC 的计算公式为:SMBC=Ec/kEC。式中Ec为熏蒸与未熏蒸土壤的差值,kEC为转换系数,取值0.38。

SMBN的计算公式为:SMBN=mEmin-N。式中Emin-N为熏蒸与未熏蒸土壤的差值,m为转换系数,取值5.0。

单株产量=单株果实总数×单果质量;

产量:1 hm2香梨总产量由单株产量计算得出。

可溶性固形物含量使用手持式折光仪测定;维生素C 含量采用2,6-二氯靛酚法测定[18];总酸含量参照GB/T 12456—2021《食品安全国家标准食品中总酸的测定》测定;石细胞含量采用冷冻H2SO4处理法[19-20]测定;糖酸比=可溶性固形物含量/总酸含量。

1.5 数据处理与分析

数据经Excel 2019整理后,使用SPSS 26.0进行土壤微生物量与产量、品质的相关分析,以及单因素方差分析(One-wayANOVA)。采用最小显著差异法(LSD)进行不同处理间的方差分析和多重比较,显著性水平设为0.05,结果以(平均值±标准误)表示,采用Excel 2019作图。

2 结果与分析

2.1 施氮量对库尔勒香梨产量的影响

如图1 所示,随氮肥施用量的增加,单果质量、单株产量以及总产量均表现为先增加后减少的态势,均表现为N2>N3>N1>N0,单株产量以及总产量各处理间存在显著差异(p<0.05),各施肥处理的单果质量均显著大于N0处理(p<0.05);单株产量在N2处理下最高,较N0、N1处理各增加了8.75 kg、5.57 kg,但N3处理比N2处理减少了2.45 kg;总产量表现出相同态势,在N2处理下最高,较N0、N1处理相比分别增加了162.28%、65.81%,而N3处理较N2处理相比则减少了17.30%。表明在合理的氮肥施用量范围内,产量会随着氮肥施用量的增加而增加,而过多的氮肥施用量会致使香梨产量减少。

图1 施氮对库尔勒香梨果实产量的影响
Fig.1 Effects of nitrogen application on fruit yield of Kuerlexiangli pear

N0.0 kg N·hm-2;N1.150 kg N·hm-2;N2.300 kg N·hm-2;N3.450 kg N·hm-2。不同小写字母表示同一时期处理间差异显著(p<0.05)。下同。
N0.0 kg N·hm-2;N1.150 kg N·hm-2;N2.300 kg N·hm-2;N3.450 kg N·hm-2.Different small letters indicate significant difference among treatments at the same growth stage at p<0.05.The same below.

2.2 施氮量对库尔勒香梨品质的影响

如图2所示,随氮肥施用量的增加,可溶性固形物含量、维生素C(Vc)含量、糖酸比均呈现出先增加后减少的态势,并表现为N2>N3>N1>N0。可溶性固形物含量在N2处理下显著高于N0、N1处理,较N0、N1处理分别提高31.11%、12.22%(p<0.05),而N3处理较N2处理相比则降低了5.14%(p<0.05);Vc 含量、糖酸比在N2处理下提升效果最好,较N0处理分别提高23.75%、126.67%(p<0.05)。总酸含量在各施肥处理下表现为随施氮量的增加而下降,N0>N1>N2>N3,其中N2、N3处理的总酸含量显著低于N0处理45.45%、47.47%(p<0.05);石细胞含量在各施肥处理下表现为N2处理最低,但各处理间差异不显著。说明在合理施氮范围内,品质会随着氮肥施用量的增加而改善,并表现为N2处理下改善效果最好,但过多的氮肥施用量会致使香梨品质下降。

图2 施氮对库尔勒香梨果实品质的影响
Fig.2 Effects of nitrogen application on fruit quality of Kuerlexiangli pear

2.3 土壤微生物量与香梨产量、品质的相关分析

由表2可知,产量、可溶性固形物含量、Vc含量,与3 个时期SMBC、SMBN 整体表现呈极显著正相关(p<0.01);石细胞含量与坐果期SMBC呈极显著负相关(p<0.01),与成熟期SMBC、SMBN 呈显著负相关(p<0.05);总酸含量与坐果期、成熟期SMBC及膨果期SMBN呈显著负相关(p<0.05),与坐果期SMBN呈极显著负相关(p<0.01);糖酸比与坐果期SMBC 及3 个时期SMBN 呈极显著正相关(p<0.01),与膨果期及成熟期SMBC呈显著正相关(p<0.05)。说明香梨产量、品质在整个生育期内都受到SMBC 或SMBN 的直接影响,它们之间存在着动态依存关系。

表2 土壤微生物量与库尔勒香梨果实产量、品质的相关关系
Table 2 Correlation coefficients between soil microbial biomass,fruit yield and quality of Kuerlexiangli pear

注:*.在0.05 级别(双尾),相关性显著;**.在0.01 级别(双尾),相关性极显著。
Note:*.At the 0.05 level(two-tailed),the correlation is significant;**.At the 0.01 level(two-tailed),the correlation is extremely significant.

指标Index土壤微生物量碳Soil microbial biomass carbon,SMBC产量Yield 0.682**可溶性固形物含量Soluble solids content 0.650**生育期Growth stage坐果期Fruit setting stage膨果期Fruit swelling stage成熟期Fruit maturity stage坐果期Fruit setting stage膨果期Fruit swelling stage成熟期Fruit maturity stage坐果期Fruit setting stage膨果期Fruit swelling stage成熟期Fruit maturity stage维生素C含量Vitamin C content 0.443**石细胞含量Stone cell content-0.443**总酸含量Total acid content-0.409*糖酸比Sugar-acid ratio 0.550**0.637**0.618**0.519**-0.229-0.269 0.373*0.492**0.384*0.620**-0.356*-0.389*0.406*土壤微生物量氮Soil microbial biomass nitrogen,SMBN 0.571**0.544**0.506**-0.073-0.618**0.549**0.689**0.706**0.516**-0.257-0.411*0.521**0.636**0.662**0.437**-0.391*-0.328 0.463**土壤微生物量碳/土壤微生物量氮Soil microbial biomass carbon/Soil microbial biomass nitrogen,SMBC/SMBN-0.287-0.283-0.313-0.117 0.514**-0.340*-0.492**-0.543**-0.346*0.210 0.330*-0.430**-0.371*-0.446**-0.186 0.244 0.072-0.239

产量、可溶性固形物含量、糖酸比与膨果期SMBC/SMBN呈极显著负相关(p<0.01);Vc含量与膨果期SMBC/SMBN呈显著负相关(p<0.05);总酸含量与坐果期SMBC/SMBN 呈极显著正相关(p<0.01),与膨果期SMBC/SMBN 呈显著正相关(p<0.05)。说明香梨产量、品质主要在膨果期受到SMBC/SMBN的直接影响。

香梨的产量、品质与土壤微生物量之间联系紧密。说明土壤微生物量的提高在一定程度上可以提高香梨的产量与品质,因此可以通过合理地施用氮肥来提高土壤微生物量,以提高香梨产量以及改善香梨的品质。整体来看,香梨的产量、品质与土壤微生物量各项指标的相关性在膨果期表现最好,说明香梨的产量、品质可能受到膨果期土壤养分的影响较大。

2.4 香梨产量、品质对施氮量的响应

将库尔勒香梨产量、品质(y)与施氮量(x)进行回归分析,得出拟合方程(表3)。根据相关系数RF值、p 值和调整相关系数Ra发现,香梨产量、可溶性固形物含量与施氮量间的交互作用更强,能更好地拟合库尔勒香梨产量、品质与施氮量间的关系。通过方程1 确定理论最佳施氮量为355.43 kg·hm-2,所得产量为14 376.83 kg·hm-2;通过方程2确定理论最佳施氮量为318.33 kg·hm-2,所得香梨可溶性固形物含量(w)为13.87%。

表3 施氮量与产量、品质指标间的回归分析结果
Table 3 Regression analysis between nitrogen application rate and yield,quality parameters

编号Number 123456因变量Dependent variable产量Yield可溶性固形物含量Soluble solids content维生素C含量Vitamin C content石细胞含量Stone cell content总酸含量Total acid content糖酸比Sugar-acid ratio拟合方程Fitting equation y=-0.070 4x2+50.045x+5483 y=-0.000 03x2+0.019 1x+10.833 y=-0.000 008x2+0.004 9x+3.911 8 y=0.000 001x2-0.000 7x+0.386 2 y=0.000 003x2-0.002 4x+0.989 1 y=-0.000 08x2+0.071 9x+11.454复相关系数Multiple correlation coefficient,R 0.689 0.696 0.266 0.107 0.523 0.668 F值F value 22.146 22.903 3.629 1.202 10.983 20.131显著水平Significance level,p 0.001 0.001 0.086 0.299 0.008 0.001调整相关系数Adjust the correlationcoefficient,Ra 0.658 0.666 0.193 0.018 0.476 0.635

2.5 产量、品质对施氮量和土壤微生物量碳氮比的响应

以施氮量和SMBC/SMBN 为自变量,以库尔勒香梨产量、品质为因变量建立回归模型(表4)。根据复相关系数RF 值、显著水平p 以及调整相关系数Ra 得到,施氮量和SMBC/SMBN 在影响香梨产量、可溶性固形物含量、Vc含量、总酸含量以及糖酸比时交互作用更强,主要表现在膨果期。

表4 施氮量和土壤微生物量碳氮比与产量、品质指标间的二次多项式逐步回归结果
Table 4 The results of the quadratic polynomial stepwise regression between nitrogen application rate,SMBC/SMBN and yield,quality parameters

编号Number生育期Growth stage拟合方程Fitting equation 1 2 3 4 5 6 7 8 9因变量Dependent variable产量Yield复相关系数Multiple correlation coefficient ,R 0.690 F值F value 36.704坐果期Fruit setting stage膨果期Fruit swelling stage成熟期Fruit maturity stage坐果期Fruit setting stage膨果期Fruit swelling stage成熟期Fruit maturity stage坐果期Fruit setting stage膨果期Fruit swelling stage成熟期Fruit maturity stage坐果期Fruit setting stage膨果期Fruit swelling stage成熟期Fruit maturity stage坐果期Fruit setting stage膨果期Fruit swelling stage成熟期Fruit maturity stage坐果期Fruit setting stage膨果期Fruit swelling stage成熟期Fruit maturity stage y=9 441.534 3+50.971 6x1-737.862 7x2-0.072 7x12+32.902 1x22+0.030 6x1x2 y=9 328.792 3+50.086 5x1-773.838 8x2-0.074 1x12+35.237 4x22+0.228 3x1x2 y=-1182.0283+66.9103x1+632.7267x2-0.081 5x12-11.646 4x22-0.840 7x1x2 y=11.052 7+0.019 0x1-0.056 4x2-0.000 03x12+0.003 1x22+0.000 02x1x2 y=11.495 0+0.020 2x1-0.127 9x2-0.000 03x12+0.005 7x22-0.000 05x1x2 y=11.113 9+0.019 4x1-0.034 6x2-0.000 03x12+0.000 9x22-0.000 04x1x2 y=2.930 1+0.011 5x1+0.131 2x2-0.000 01x12-0.004 0x22-0.000 6x1x2 y=5.377 7+0.001 4x1-0.214 2x2-0.000 01x12+0.007 6x22+0.000 3x1x2 y=2.415 7+0.006 3x1+0.151 8x2-0.000 01x12-0.003 1x22+0.000 03x1x2 y=0.604 6+0.000 1x1-0.029 0x2+0.000 001x12+0.000 9x22-0.000 07x1x2 y=1.432 2-0.002 6x1-0.151 7x2+0.000 001x12+0.005 3x22+0.000 2x1x2 y=0.672 4-0.001 5x1-0.029 6x2+0.000 001x12+0.000 6x22+0.000 06x1x2 y=-0.0088+0.0008x1+0.0875x2+0.000002x12-0.000 3x22-0.000 2x1x2 y=-1.843 8-0.001 5x1+0.465 5x2+0.000 004x12-0.018 4x22-0.000 1x1x2 y=2.399 3-0.005 9x1-0.130 0x2+0.000 005 6x12+0.002 3x22+0.000 2x1x2 y=35.271 6+0.015 2x1-3.149 9x2-0.000 07x12+0.093 3x22+0.004 7x1x2 y=36.937 4+0.094 1x1-4.594 8x2-0.000 1x12+0.194 8x22-0.000 9x1x2 y=-13.6508+0.1388x1+2.3492x2-0.0001x12-0.042 1x22-0.003 4x1x2显著水平Significance level,p 0.000调整相关系数Adjust the correlation coefficient,Ra 0.671 0.690 36.776 0.000 0.672 0.700 38.459 0.000 0.682可溶性固形物含量Soluble solids content 0.697 37.901 0.000 0.678 0.705 39.435 0.000 0.687 0.729 44.377 0.000 0.713维生素C含量Vitamin C content 0.292 6.812 0.003 0.249 0.271 6.141 0.005 0.227 0.267 5.996 0.006 0.222 10 0.160 3.151 0.056 0.109 11石细胞含量Stone cell content 0.108 2.008 0.150 0.054 12 0.128 2.424 0.104 0.075 13 0.616 26.506 0.000 0.593 14总酸含量Total acid content 0.531 18.689 0.000 0.503 15 0.555 20.536 0.000 0.528 16 0.676 34.483 0.000 0.657 17糖酸比Sugar-acid ratio 0.669 33.346 0.000 0.649 18 0.669 33.363 0.000 0.649

当经济目标为产量时,方程1 中各因素的最佳组合为:产量(y)14 355.47 kg·hm-2,施氮量(x1)352.76 kg·hm-2,SMBC/SMBN(x2)11.05;方程2中各因素的最佳组合为:产量(y)14 360.30 kg·hm-2,施氮量(x1)352.90 kg·hm-2,SMBC/SMBN(x2)9.84;方程3中各因素的最佳组合为:产量(y)14 738.63 kg·hm-2,施氮量(x1)332.48 kg·hm-2,SMBC/SMBN(x2)15.16。

以品质为经济目标时,方程5 中各因素的最佳组合为:可溶性固形物含量(y)14.06%,施氮量(x1)336.15 kg·hm-2,SMBC/SMBN(x2)12.79;方程8中各因素的最佳组合为:Vc 含量(y)46.36 mg·kg-1,施氮量(x1)281.89 kg·hm-2,SMBC/SMBN(x2)8.76;方程14中各因素的最佳组合为:总酸含量(y)0.51 g·kg-1,施氮量(x1)376.82 kg·hm-2,SMBC/SMBN(x2)11.31;方程17中各因素的最佳组合为:糖酸比(y)26.34,施氮量(x1)393.84 kg·hm-2,SMBC/SMBN(x2)12.67。

3 讨 论

3.1 施氮对库尔勒香梨产量、品质的影响

研究发现当氮肥施用量为300 kg·hm-2时,库尔勒香梨产量最高,但过多的氮肥施用量会致使香梨产量减少。此结果与前人的研究结果相似[21-22],在适量施氮条件下果园产量最高,但过多的氮肥施用量不利于作物的产量增加,是因为施用氮肥过量会使库尔勒香梨生长发育过程中营养过度,植株生长遭受抑制及引发营养失衡等,进而对植株生长发育及果实产量、品质产生影响[23-24]

果实可溶性固形物、Vc、石细胞、总酸含量以及糖酸比等指标是衡量果实品质好坏的标准,其中果实糖酸比是评判果实中糖、酸占比的重要指标,直接影响其口感品质。本研究表明施肥能显著提升果实的可溶性固形物含量,提高Vc含量,降低总酸含量,提高果实的糖酸比,对果实品质的提高有促进作用,能显著提升果实的口感品质。随着施氮量的增加,在合理施氮范围内品质的改善与氮肥的施用量呈正相关,并表现为N2处理下改善效果最好,但过量施用氮肥会导致香梨品质下降。与前人的研究结果相似[25-27],增大施肥量,果实品质指标表现为先增大后降低,同时氮肥施用量过多致使果实中可溶性固形物和糖含量减少、可滴定酸含量升高,导致果实品质降低。可能是因为氮肥施用过量致使氮代谢旺盛,碳骨架以及还原力损耗过多,同时植株同化速率下降,光合产物的输出受到影响,最终导致果实中可溶性固形物和糖含量减少[28]。有研究表明,口味甘美的苹果糖酸比为20~60,糖酸比较低者口味趋酸,糖酸比较高者口味偏甜[29]。本研究N2、N3施肥处理的果实糖酸比分别为27.11、27.03,风味优良;N0、N1施肥处理的果实糖酸比分别为13.27、17.73,风味偏酸。

3.2 土壤微生物量与库尔勒香梨产量、品质的相关性分析

通过相关性分析表明,香梨产量、品质在整个生育期内都受到SMBC或SMBN的直接影响,它们之间存在着动态依存关系。产量、可溶性固形物含量、糖酸比与膨果期SMBC/SMBN 呈极显著负相关(p<0.01);Vc 含量与膨果期SMBC/SMBN 呈显著负相关(p<0.05);总酸含量与坐果期SMBC/SMBN呈极显著正相关(p<0.01),与膨果期SMBC/SMBN呈显著正相关(p<0.05)。说明香梨产量、品质主要在膨果期受到SMBC/SMBN 的直接影响。香梨的产量、品质与土壤微生物量之间联系紧密。说明土壤微生物量的提高在一定程度上可以提高香梨的产量与品质,因此可以通过合理的施用氮肥来提高土壤微生物量[9,11],以提高香梨产量以及改善香梨的品质。整体来看,香梨的产量、品质与土壤微生物量各项指标的相关性在膨果期最强,说明香梨的产量、品质可能受到膨果期土壤养分的影响较大。

在果树施肥效应模型研究方面,大量研究者以果实产量或品质为依据构建模型展开研究,提出果树生长发育过程中所需的施肥参数,为科学合理的施肥提供重要的理论依据[1,30],笔者在本研究中依据氮肥施用量和土壤微生物量碳氮比的调控,以库尔勒香梨产量、品质为经济目标构建方程模型,利用模型展开研究推断出理论最优氮肥施用量,并发现施氮量和SMBC/SMBN这2个因素在影响香梨产量和可溶性固形物、Vc、总酸含量以及糖酸比时交互作用更强,主要表现在膨果期。

4 结 论

本研究结果表明,香梨产量以及果实品质在适宜浓度氮添加下有提高态势,但过量的施氮量会使香梨产量以及果实品质下降。通过相关性分析及模型分析表明香梨的产量、品质受到膨果期土壤养分的影响较大。

根据试验结果和模型分析,推荐6~7 年树龄的库尔勒香梨最适宜的氮肥施用量范围为300~380 kg·hm-2,SMBC/SMBN 范围为9~15,此结果可为优化库尔勒香梨园施肥管理、香梨持续高产稳产、果实品质提升提供理论依据。

参考文献References:

[1] 何雪菲,马泽跃,玉素甫江·玉素音,黄战,张曦瑜,柴仲平.碳、氮含量及比值与库尔勒香梨产量的相关性[J].果树学报,2021,38(5):702-713.HE Xuefei,MA Zeyue,Yusufujiang·Yusuyin,HUANG Zhan,ZHANG Xiyu,CHAI Zhongping.Correlation between the contents of carbon and nitrogen and ratio of C/N and the yield of Kuerlexiangli pear[J].Journal of Fruit Science,2021,38(5):702-713.

[2] 张建新,葛淑芳,吴玉环,杨云峰,徐根娣,刘鹏.干旱胁迫对紫金牛叶片碳氮代谢的影响[J].水土保持学报,2015,29(2):278-282.ZHANG Jianxin,GE Shufang,WU Yuhuan,YANG Yunfeng,XU Gendi,LIU Peng.Effects of drought stress on carbon and nitrogen metabolism of Ardisia japonica leaves[J].Journal of Soil and Water Conservation,2015,29(2):278-282.

[3] 李学文,李树营,王齐龙,刘家友,萧洪东,施卫明,喻敏.减氮配施脲酶/硝化抑制剂对冬瓜品质、产量和土壤氮磷淋失的影响[J].中国瓜菜,2021,34(1):55-59.LI Xuewen,LI Shuying,WANG Qilong,LIU Jiayou,XIAO Hongdong,SHI Weiming,YU Min.Effect of urease/nitrification inhibitors combined with reduction of nitrogen on quality,yield and nitrogen & phosphorus leaching of blackwax gourd[J].China Cucurbits and Vegetables,2021,34(1):55-59.

[4] ZHANG T A,CHEN H Y H,RUAN H H.Global negative effects of nitrogen deposition on soil microbes[J].The International Society for Microbial Ecology Journal,2018,12(7):1817-1825.

[5] 徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响[J].土壤学报,2002,39(1):89-96.XU Yangchun,SHEN Qirong,RAN Wei.Effects of zero-tillage and application of manure on soil microbial biomass C,N and P after sixteen years of cropping[J].Acta Pedologica Sinica,2002,39(1):89-96.

[6] 孙凤霞,张伟华,徐明岗,张文菊,李兆强,张敬业.长期施肥对红壤微生物生物量碳氮和微生物碳源利用的影响[J].应用生态学报,2010,21(11):2792-2798.SUN Fengxia,ZHANG Weihua,XU Minggang,ZHANG Wenju,LI Zhaoqiang,ZHANG Jingye.Effects of long-term fertilization on microbial biomass carbon and nitrogen and on carbonsource utilization of microbes in a red soil[J].Chinese Journal of Applied Ecology,2010,21(11):2792-2798.

[7] 孙文泰,刘兴禄,董铁,尹晓宁,牛军强,马明.陇东旱塬苹果园不同覆盖措施对土壤性状、根系分布和果实品质的影响[J].果树学报,2015,32(5):841-851.SUN Wentai,LIU Xinglu,DONG Tie,YIN Xiaoning,NIU Junqiang,MA Ming.Root distribution,soil characteristics,root distribution and fruit quality affected by different mulching measures in apple orchard in the dry area of eastern Gansu[J].Journal of Fruit Science,2015,32(5):841-851.

[8] 董海强,李丙智,王金锋,王俊峰,刘富庭,李雪薇.不同覆盖方式对苹果树体生长及土壤理化特性的影响[J].西北农业学报,2015,24(8):101-109.DONG Haiqiang,LI Bingzhi,WANG Jinfeng,WANG Junfeng,LIU Futing,LI Xuewei.Effects of different mulching patterns on growth of appletrees and soil physicochemical properties[J].Acta Agriculturae Boreali-Occidentalis Sinica,2015,24(8):101-109.

[9] 李娟,赵秉强,李秀英,SO H B.长期有机无机肥料配施对土壤微生物学特性及土壤肥力的影响[J].中国农业科学,2008,41(1):142-152.LI Juan,ZHAO Bingqiang,LI Xiuying,SO H B.Effects of longterm combined application of organic and mineral fertilizers on soil microbiological properties and soil fertility[J].Scientia Agricultura Sinica,2008,41(1):142-152.

[10] 贾伟,周怀平,解文艳,关春林,郜春花,石彦琴.长期有机无机肥配施对褐土微生物生物量碳、氮及酶活性的影响[J].植物营养与肥料学报,2008,14(4):700-705.JIA Wei,ZHOU Huaipin,XIE Wenyan,GUAN Chunlin,GAO Chunhua,SHI Yanqin.Effects of long-term inorganic fertilizer combined with organic manure on microbial biomass C,N and enzyme activity in cinnamon soil[J].Journal of Plant Nutrition and Fertilizers,2008,14(4):700-705.

[11] 王长庭,王根绪,刘伟,王启兰.施肥梯度对高寒草甸群落结构、功能和土壤质量的影响[J].生态学报,2013,33(10):3103-3113.WANG Changting,WANG Genxu,LIU Wei,WANG Qilan.Effects of fertilization gradients on plant community structure and soil characteristics in alpine meadow[J].Acta Ecologica Sinica,2013,33(10):3103-3113.

[12] 杨熠路,胡枫,倪照君,黄霄,侍婷,田传正,卢炫羽,高志红.园艺地布覆盖对桃园土壤和桃果实品质的影响[J].中国果树,2021(8):24-30.YANG Yilu,HU Feng,NI Zhaojun,HUANG Xiao,SHI Ting,TIAN Chuanzheng,LU Xuanyu,GAO Zhihong.Effects of black ground fabric mulching on fruit quality and soil in peach orchard[J].China Fruits,2021(8):24-30.

[13] 丁邦新,刘雪艳,何雪菲,陈波浪,柴仲平.‘库尔勒香梨’园测土配方推荐施肥研究[J].果树学报,2019,36(8):1020-1028.DING Bangxin,LIU Xueyan,HE Xuefei,CHEN Bolang,CHAI Zhongping.Recommendation of fertilization for‘Kuerlexiangli’pear orchardsbased on soil testing[J].Journal of Fruit Science,2019,36(8):1020-1028.

[14] 李养义,张峰,关晓媛.‘库尔勒香梨’产业发展优势、问题及对策[J].北方果树,2019(5):45-48.LI Yangyi,ZHANG Feng,GUAN Xiaoyuan.Development advantages,problems and countermeasures of‘Korla fragrant pear’industry[J].Northern Fruits,2019(5):45-48.

[15] 张林森,李雪薇,王晓琳,张立新,吕殿青,王朝辉,韩明玉.根际注射施肥对黄土高原苹果氮素吸收利用及产量和品质的影响[J].植物营养与肥料学报,2015,21(2):421-430.ZHANG Linsen,LI Xuewei,WANG Xiaolin,ZHANG Lixin,LÜ Dianqing,WANG Zhaohui,HAN Mingyu.Effects of fertilization with injection to the rhizosphereon nitrogen absorption and utilization,fruit yield and quality of apple in the Loess Plateau[J].Journal of Plant Nutrition and Fertilizers,2015,21(2):421-430.

[16] 陈淼,李玮,陈歆,李宁,杨桂生,彭黎旭.菜地土壤氮素迁移转化研究进展[J].中国瓜菜,2017,30(8):1-6.CHEN Miao,LI Wei,CHEN Xin,LI Ning,YANG Guisheng,PENG Lixu.Research progress on transfer and transformation of soil nitrogen invegetable field[J].China Cucurbits and Vegetables,2017,30(8):1-6.

[17] 吴金水.土壤微生物生物量测定方法及其应用[M].北京:气象出版社,2006:54-79.WU Jinshui.Soil microbial biomass measurement method and its application[M].Beijing:Meteorological Press,2006:54-79.

[18] 曹建康,姜微波,赵玉梅.果蔬采后生理生化实验指导[M].北京:中国轻工业出版社,2007:31-44.CAO Jiankang,JIANG Weibo,ZHAO Yumei.Experiment guidance of postharvest physiology and biochemistry of fruits and vegetables[M].Beijing:China Light Industry Press,2007:31-44.

[19] LEE S H,CHOI J H,KIM W S,HAN T H,PARK Y S,GEMMA H.Effect of soil water stress on the development of stone cells in pear (Pyrus pyrifolia‘Niitaka’) flesh[J].Scientia Horticulturae,2006,110(3):247-253.

[20] 黄凯,王娟娟,刘汉云.不同品种梨果石细胞含量差异研究[J].山西农业科学,2017,45(2):191-193.HUANG Kai,WANG Juanjuan,LIU Hanyun.Study on the difference of stone cells content in different pear varieties[J].Journal of Shanxi Agricultural Sciences,2017,45(2):191-193.

[21] 刘志刚,任红松,王岩萍,张春梅,买买提·艾合买提,胡西旦·买买提,努尔孜叶古丽·马合木提,阿木提·库尔班,王瑞华,李海峰.不同施氮处理对设施甜瓜生长发育、产量和品质的影响[J].中国瓜菜,2019,32(10):36-41.LIU Zhigang,REN Hongsong,WANG Yanping,ZHANG Chunmei,Maimaiti·Aihemaiti,Huxidan·Maimaiti,Nuerziyeguli·Mahemuti,Amuti·Kuerban,WANG Ruihua,LI Haifeng.Effects of different nitrogen application on growth,yield and quality of muskmelon in facilities[J].China Cucurbits and Vegetables,2019,32(10):36-41.

[22] 冯焕德,李丙智,张林森,金会翠,李焕波,韩明玉.不同施氮量对红富士苹果品质、光合作用和叶片元素含量的影响[J].西北农业学报,2008,17(1):229-232.FENG Huande,LI Bingzhi,ZHANG Linsen,JIN Huicui,LI Huanbo,HAN Mingyu.Influences of different rates of nitrogen on fruit quality‚ photosynthesis and element contents in leaves of Red Fuji apples[J].Acta Agriculturae Boreali-Occidentalis Sinica,2008,17(1):229-232.

[23] 魏斌,李友明,翟广生,黄伟军,李娜,权小容.氮素营养对猕猴桃营养功能特征及果实产量的影响[J].安徽农业科学,2015,43(12):98-101.WEI Bin,LI Youming,ZHAI Guangsheng,HUANG Weijun,LI Na,QUAN Xiaorong.Effects of nitrogenous nutrition on nutritional functional traits and fruit yield of Actinidia Lindl.[J].Journal of Anhui Agricultural Sciences,2015,43(12):98-101.

[24] 彭福田,姜远茂,顾曼如,束怀瑞.氮素对苹果果实内源激素变化动态与发育进程的影响[J].植物营养与肥料学报,2003,9(2):208-213.PENG Futian,JIANG Yuanmao,GU Manru,SHU Huairui.Effect of nitrogen on apple fruit hormone changing trends and development[J].Journal of Plant Nutrition and Fertilizers,2003,9(2):208-213.

[25] 邢英英,张富仓,张燕,李静,强生才,吴立峰.滴灌施肥水肥耦合对温室番茄产量、品质和水氮利用的影响[J].中国农业科学,2015,48(4):713-726.XING Yingying,ZHANG Fucang,ZHANG Yan,LI Jing,QIANG Shengcai,WU Lifeng.Effect of irrigation and fertilizer coupling on greenhouse tomato yield,quality,water and nitrogen utilization under fertigation[J].Scientia Agricultura Sinica,2015,48(4):713-726.

[26] 任静,刘小勇,韩富军,孔芬,李建明,彭海,李强.施氮水平对旱塬覆沙苹果园土壤酶活性及果实品质的影响[J].农业工程学报,2019,35(8):206-213.REN Jing,LIU Xiaoyong,HAN Fujun,KONG Fen,LI Jianming,PENG Hai,LI Qiang.Effects of nitrogen fertilizer levels on soil enzyme activity and fruit quality of sand-covered apple orchard in Loess Plateau of Eastern Gansu[J].Transactions of the Chinese Society of Agricultural Engineering,2019,35(8):206-213.

[27] 陈磊,伍涛,张绍铃,姚改芳,陶书田,贾兵,苗永春,曹慧莲.丰水梨不同施氮量对果实品质形成及叶片生理特性的影响[J].果树学报,2010,27(6):871-876.CHEN Lei,WU Tao,ZHANG Shaoling,YAO Gaifang,TAO Shutian,JIA Bing,MIAO Yongchun,CAO Huilian.Effects of nitrogen fertilizer on fruit quality and leaf physiological metabolism of Hosui pear[J].Journal of Fruit Science,2010,27(6):871-876.

[28] 曹翠玲,李生秀,苗芳.氮素对植物某些生理生化过程影响的研究进展[J].西北农林科技大学学报(自然科学版),1999,27(4):96-101.CAO Cuiling,LI Shengxiu,MIAO Fang.The research situation about effects of nitrogenon certain physiological and biochemical process in plants[J].Journal of Northwest A& F University(Natural Science Edition),1999,27(4):96-101.

[29] 贾定贤,米文广,杨儒琳,陈素芬,张凤兰.苹果品种果实糖、酸含量的分级标准与风味的关系[J].园艺学报,1991,18(1):9-14.JIA Dingxian,MI Wenguang,YANG Rulin,CHEN Sufen,ZHANG Fenglan.Sugar and acid content of fruit and its classification standard associated with flavor in different apple cultivars[J].Acta Horticulturae Sinica,1991,18(1):9-14.

[30] 王晓军,张新学,李明,张建虎,万鹏.氮磷钾肥用量及配比对艾草产量的影响[J].农业科学研究,2020,41(3):84-88.WANG Xiaojun,ZHANG Xinxue,LI Ming,ZHANG Jianhu,WAN Peng.Effects of nitrogen,phosphorus and potassium fertilizer dosage and ratioon the yield of Artemisia argyi[J].Journal of Agricultural Sciences,2020,41(3):84-88.

Correlation between the soil microbial biomass and yield and quality in Kuerlexiangli pear orchard with different nitrogen application levels

MA Zeyue1,HUANG Zhan1,CHEN Bolang1,2,Miriguli·Aishan1,CHAI Zhongping1,2*

(1College of Resource and Environment,Xinjiang Agricultural University,Urumqi 830052,Xinjiang,China;2Xinjiang Key Laboratory of Soil and Plant Ecological Processes,Urumqi 830052,Xinjiang,China)

Abstract:【Objective】Nitrogen is one of the most active elements in soil fertility.Excessive application of nitrogen leads to decline in fruit yield and quality and reduces soil microbial activity.Soil microbial biomass represents the active part of soil nutrients and is considered an important indicator of soil quality and ecological function.Application of nitrogen fertilizer can affect the growth and metabolism of soil microorganisms, which invariably affects material conversion and energy cycle of the whole orchard ecosystem.Subsequently,growth and development of the aboveground part of the plant is affected.Understanding of the correlations between soil microbial biomass, yield and quality under different nitrogen application rates are important to realize efficient nitrogen utilization for the sustainable development of fruit trees.However,few in-depth studies on the correlation between soil microbial biomass,yield and quality under different nitrogen application rates are presently available.This study investigated the effect of nitrogen application rate on the yield and fruit quality of Kuerlexiangli pear based on soil obtained in orchards.The correlations between nitrogen application rate and soil microbial biomass,yield and fruit quality were analyzed.The optimal nitrogen application range for improvement of Kuerlexiangli pear yield and quality was recommended.【Methods】Soil from a 6-7-year-old Kuerlexiangli pear orchard was used as the research material.Four nitrogen application levels of 0, 150, 300 and 450 kg·hm-2 (expressed by N0, N1, N2 and N3 respectively) were used.Soil samples were collected by soil drilling method at different growth stages of Kuerlexiangli pear(fruit setting period:June 1st;fruit swelling period:August 1st; and fruit ripening period: September 15th).The fruit samples were collected at the fruit ripening stage (September 15th).Soil microbial biomass carbon (SMBC) was determined with fumigation extraction volumetric analysis.Soil microbial biomass nitrogen (SMBN) was determined with fumigation extraction ninhydrin colorimetry.The yield per plant was the number of fruit per plant multiplied by average fruit weight.Yield per plant was used to calculate yield per hectare.The content of soluble solids was determined with a hand-held refractometer.The content of vitamin C(Vc)was determined using 2,6-dichloroindophenol method.Total acid content was determined with acid-base indicator titration according to the national standard (GB/T 12456—2021).The content of stone cells was determined using frozen H2SO4 treatment.【Results】With the increase in nitrogen application rate,yield, soluble solids,Vc and sugar/acid ratio increased initially and then decreased.The best effect was observed in N2.The total acid content decreased with the increase in nitrogen application (N0>N1>N2>N3).Yield, soluble solids, Vc and sugar/acid ratio were positively correlated with SMBC and SMBN in the three stages, and negatively correlated with SMBC/SMBN.Stone cells and total acids were negatively correlated with SMBC and SMBN, and positively correlated with SMBC/SMBN.Regression analysis of nitrogen application rate and SMBC/SMBN with yield and quality showed that the interaction between nitrogen application rate and SMBC/SMBN was strong in effect on the yield, soluble solids, Vc, total acid content and sugar/acid ratio, especially at the fruit swelling period.【Conclusion】The yield and fruit quality of fragrant pear increased with the increase in concentration of nitrogen within certain range.N2 treatment was the best level.Excessive nitrogen application reduced the yield and fruit quality of fragrant pear.According to the results,application rate of 300-380 kg·hm-2 and an SMBC/SMBN range of 9-15 were recommended for 6-7-year-old Kuerlexiangli pear orchard.

Key words:Kuerlexiangli pear;Nitrogen application rate;Soil microbial biomass;Yield;Quality

中图分类号S661.2

文献标志码:A

文章编号:1009-9980(2022)11-2046-10

DOI:10.13925/j.cnki.gsxb.20220109

收稿日期2022-03-10

接受日期:2022-06-21

基金项目国家自然科学基金项目(31960639);新疆维吾尔自治区重点实验室开放课题(2021D04005)

作者简介马泽跃,男,在读硕士研究生,研究方向:果树营养与施肥。Tel:17509005808,E-mail:1468165550@qq.com

*通信作者Author for correspondence.Tel:13565912598,E-mail:chaizhongpingth@sina.com