苹果花期抗寒能力判定指标解析

李晓龙1,褚燕南1,张 磊2,陈仁伟3,张晓煜3,岳海英1,贾永华1*,王 芳4*

1宁夏农林科学院园艺研究所,银川 750000;2银川能源学院,银川 750000;3宁夏气象科学研究所,银川 750002;4宁夏农产品质量标准与检测技术研究所,银川 750000)

摘 要:目的】解析衡量苹果花期抗寒能力的客观判定指标。【方法】以海棠类八棱海棠、达尔文以及苹果类长富2号、岩富10号、丹霞、嘎拉、金冠和OPAL为试材,利用模拟霜箱系统检测并明确各品种花朵子房过冷点、结冰点温度及差异性。设置不同降温梯度与制冷时长双因素试验,明确不同生境下各品种花朵子房受冻率及差异性,解析过冷点、结冰点温度与子房受冻率的相关性,结合不同品种花朵的生长发育指标调查,综合判断造成苹果花期抗寒能力差异的影响因子。【结果】海棠类八棱海棠、达尔文过冷点温度显著低于苹果品种,丹霞、长富2号过冷点温度低于其他品种,且与岩富10号、OPAL之间存在显著差异性。花朵子房过冷点与受冻率(-3 ℃降温1 h)存在显著线性相关性(R2=0.93),结冰点与受冻率间无显著相关性。八棱海棠与达尔文在开花持续时长、花量等指标方面较苹果品种具有明显优势,金冠、OPAL单位长度花量较富士多,盛花期完全开放花比率较低。多元线性回归模型表明,过冷点(X1)、开花持续时间(X2)、花量(X3)及盛花期完全开放花比率(X4)与子房受冻率(Y)存在多元线性相关性(R2=0.89),其中过冷点温度(X1)标准化系数达0.87,对子房受冻率影响最大。【结论】过冷点温度是衡量果树花朵子房抗寒能力的重要指标,但还需要结合花量、开花持续时间和盛花期完全开放花比率等花朵生长发育指标来综合判定不同品种花期抗寒能力。

关键词:苹果;过冷点;结冰点;花朵子房受冻率;花期综合抗寒能力;判定指标

苹果产业是中国重要的经济林产业之一,种植面积与产量均居世界第一[1]。中国苹果种植适宜区大部分位于环渤海地区以及黄土高原区[2]。随着产业的发展,苹果栽培区域正呈现北移西扩趋势[3]。苹果栽培区域的转移为新产区带来了潜在的经济效益,但新产区较易出现的极端气候问题也为当地苹果产业的发展带来了新的考验。在气候变化加剧的大背景下,中国大部地区冬季及早春增暖趋势越来越明显,暖冬、暖春年份增多,且年际间气温波动幅度增大,果树物候期提前,花期随之提前[4-5],在春季气温回升加快的同时易出现大幅降温过程,致使果树遭遇花期晚霜冻害风险加大。

选育花期抗寒品种、开展不同苹果品种花期冻害调查并对不同层面的果树冻害机制研究,有利于减少花期冻害所造成的损失,为品种推广及防霜技术的研发提供理论支撑。不同果树品种间与品种内的花期抗寒性均存在差异;以苹果为例,富士和红星较易受冻,金冠与瑞雪抗寒性较强,嘎拉受冻率介于两者之间[6]。通过检测花朵过冷点及结冰点温度可以判定不同品种花朵抗寒性。花朵不同器官或不同发育阶段的抗寒性存在差异;花瓣、子房和花蕊等器官中,花瓣抗寒性最差;全开花的抗寒性较半开花或花蕾差[7]。雌蕊中,花柱基部最易受冻,其次为外珠被、花柱等部位[8]。对冻害机制的研究发现,低温可促使相关基因表达的变化,从而激活抗氧化和渗透调节系统的累积,使植株对冻害的耐受性提高[9]。冻害发生后,果树体内的超氧化物歧化酶(superoxide dismutase,SOD)、过氧化物酶(peroxidase,POD)和过氧化氢酶(catalase,CAT)等保护酶活性显著升高,减轻过氧化物对果树的毒害,这表明植物组织中抗氧化酶活性的变化与抗寒性存在相关性[10-11]

当前,针对不同果树品种抗寒能力的评价大部分采用调查法,即霜冻来临后对不同地域、不同栽培模式和不同水肥管理情况下的各种果树花朵进行冻害情况调查。此种调查方式实用性较强,可迅速明确不同品种抗寒能力的差异性,但很难全部排除各地不同的生态条件、栽培模式等外在因素对调查结果的干扰,无法真正客观评价某个品种的抗寒特性、分析果树品种间花期抗寒能力差异的原因。因此,找寻一种能够客观评价果树花期抗寒能力的判定方法或指标势在必行。笔者在本研究中以苹果为例,利用霜冻模拟试验系统,测定了不同品种在相同花朵生育期内子房的过冷点、结冰点温度,调查了各品种花朵在不同生境下的子房受冻率,分析指标间的相关性,结合开花持续时间、单位长度花量和盛花期完全开放花比率调查结果,分析不同苹果品种花期抗寒性差异的原因,找寻准确衡量苹果品种抗寒性的方法与指标,为开展花期抗寒性评价方面的基础性研究奠定基础。

1 材料和方法

1.1 试验材料

供试材料为海棠品种:八棱海棠、达尔文;苹果品种:长富2 号、岩富10 号、丹霞、嘎拉、金冠、OPAL。试验区位于宁夏回族自治区银川市西夏区宁夏农林科学院苹果种质资源圃,面积1 hm2,2015年定植,株行距1.5 m×4 m,南北走向,树龄5 a(年),树高3.5 m。

1.2 试验方法

1.2.1 过冷点和结冰点测定 随机在圃内选择8个品种各3株树龄、树势相同树体,待各品种达盛花期3 d 后,在每株树体距离地面2/3 高度主枝上,从东、西、南、北4个方向各选择2年生已成花枝条1根,从基部剪离主枝并插入花泥,带回实验室备用,基于检测设备与时长要求,每天采集并检测2 个品种花枝。检测采用中国农业科学院开发的MSX-2F型模拟霜箱系统,内设40 个T(K)-G 0.32 型热电偶温度传感器,将待测品种连同花泥一起放入试验箱中,将传感器分别固定于每个品种已完全开放的花朵子房壁上,每个品种中间花固定10朵,边花固定10朵,每次测试2个品种。利用FrosTem40 V2.0数据采集系统与温度传感器连接,设置好降温程序(0 ℃以下以1/20 ℃·min-1速度降温,温度降至-5 ℃后自然升温)后,以10 s·次-1的扫描频率收集数据并绘制降温曲线,精度为±0.3 ℃。当温度下降至某一临界值时,温度骤然升高,降温曲线出现峰值,峰值起点便为过冷点(T1);当苹果花朵细胞中的水分完全由液态变为冰晶核时,温度不再上升,吸热与放热达到平衡,峰值达到顶点,顶点为结冰点(T2),曲线如图1所示。

图1 八棱海棠花朵组织温度变化曲线
Fig.1 The changing curve of tissue temperature of Malus robusta

T1 表示过冷却点温度;T2 表示结冰点温度。T1.The supercooling point;T2.The freezing point.

1.2.2 不同品种开花持续时间、单位长度枝条花量、盛花期单位长度枝条完全开放花比率调查 开花持续时间:从各品种初花期开始,依据《苹果种质资源数据质量控制规范与数据标准》[12]对待测品种开花持续时间进行调查。

单位长度枝条花量(30 cm 长度):根据1.2.1 中的方法确定好采样时机与树体后,在每个树体选择东、西、南、北4个方向各一个主枝,在每个主枝上选取3根长度大于30 cm的2年生长花枝,从基部剪离主枝后立即插入花泥中,在每个枝条顶端以下30 cm范围内,统计花朵数,求得30 cm 单位长度下的各品种花量。

已完全开放花比率:选择与统计花量时相同花枝,在每个枝条上随机选取50 朵花,统计已完全开放花数量,已完全开放花比率按以下公式计算:

已完全开放花比率(%)=已开放花数量/50×100。

1.2.3 不同降温梯度与时长下花朵子房受冻率的测定 试验材料与1.2.2 相同,将每日所采集的2 个品种花枝连同花泥一同放入5台已预设好温度的恒温试验箱(上海一恒科技有限公司生产,温度误差±0.1 ℃)中,累计恒温制冷5 h,期间在预设的3 个制冷时间点内取样,自然升温12 h后统计各处理花朵子房受冻率,各品种试验处理如表1所示。

表1 各品种试验处理表
Table 1 Experimental processing table of varieties

温度梯度The temperature gradient/℃恒温制冷时长Constant temperature cooling time/h-1-2-3-4-5 135 135 135 135 135

花朵子房受冻调查:待测样品取出冰箱放置12 h后,在每个品种不同枝条上共选取100 朵已开放的花,利用刀具切开花朵子房观察子房内部情况,如子房内部发生褐变,即判定为受冻,无褐变则判定为完好。花朵子房受冻按以下公式计算:

子房受冻率(%)=子房发生冻害的花朵数/100×100。

1.3 数据统计

采用Origin 2018 数据分析软件进行数据统计、分析及制图。利用方差分析中的Turkey 检验法进行数据差异性分析,利用线性回归分析法进行数据相关性分析。

2 结果与分析

2.1 不同品种花朵子房过冷点与结冰点温度

图2 为不同品种花朵子房过冷点温度箱形图。品种内比较,中心花与边花过冷点温度无显著差异。品种间比较,2 个海棠品种中心花与边花的过冷点温度均低于苹果品种,八棱海棠中心花过冷点温度为(-4.27±0.33)℃,边花为(-4.17±0.36)℃,与其他品种呈显著差异(p<0.05),另一海棠品种达尔文与岩富10 号及OPAL 存在显著差异(p<0.05)。苹果品种间比较(中心花与边花综合)发现,丹霞花朵的过冷点温度最低,为(-3.25±0.17)℃,其次为长富2号、嘎拉与金冠,岩富10号与OPAL过冷点温度最高;丹霞与长富2 号分别与岩富10 号及OPAL 之间存在显著差异,其余品种在过冷点温度比较中无显著差异。

图2 不同品种花朵过冷却点温度与差异性
Fig.2 Temperature and difference of supercooling point of flowers of different varieties

*表示不同处理在0.05 水平上存在显著差异性。下同。*indicates significant differences between different treatments at the level of 0.05.The same below.

图3 为不同品种花朵子房结冰点温度箱形图。从品种内比较来看,中心花与边花表现了相同的结冰点温度。从品种间比较来看,OPAL 结冰点温度较低,并与大部分品种均存在显著差异(p<0.05)。

图3 不同品种花朵结冰点温度与差异性
Fig.3 Temperature and difference of freezing point of flowers of different varieties

2.2 不同降温梯度与制冷时长下各品种花朵子房受冻率调查

图4为各品种在不同制冷时长与降温梯度下花朵子房受冻率柱状图。制冷1 h时,-1 ℃条件下,除岩富10 号外,其余品种花朵子房未受冻;-2 ℃条件下,八棱海棠、丹霞未受冻,其余品种受冻率均在20%以下;-3 ℃条件下,各品种全部出现冻害,八棱海棠受冻率最低,仅为10.33%±0.98%,与其他品种存在显著差异;-5 ℃时,八棱海棠、丹霞花朵子房受冻率为80%左右,其余品种受冻率接近100%。

图4 不同制冷时长与温度梯度下各品种花朵子房受冻率
Fig.4 Freezing rate of flower varieties under different cooling time and temperature gradient

制冷3 h情况下,-1 ℃条件下,除八棱海棠花朵子房受冻率在20%以下外,其余品种受冻率均超过30%,岩富10号受冻率已达60%;-2 ℃条件下,八棱海棠仍表现了较低的受冻率,达尔文、丹霞、长富2号、嘎拉的受冻率为60%左右,岩富10 号、金冠、OPAL品种的受冻率超过70%;-3 ℃条件下,八棱海棠受冻率最低,丹霞次之,其余品种受冻率已超过80%;-4 ℃条件下,除八棱海棠外,其余品种受冻率近乎100%;-5 ℃条件下,全部受冻。

制冷5 h时,在-1 ℃条件下,八棱海棠花朵子房受冻率在40%以下,达尔文、丹霞、长富2号、嘎拉受冻率已超过50%,岩富10号、金冠、OPAL受冻率则已超过60%;-2与-3℃条件下,各品种受冻率差异愈发显著,八棱海棠受冻率最低,其次为达尔文、丹霞、长富2号,受冻率最高的为岩富10号;-4 ℃条件下,除10%的八棱海棠花朵未受冻外,其余品种全部受冻;-5 ℃条件下,各品种受冻害率均达100%。总体来讲,随着温度的不断降低,各品种的花朵受冻率开始上升,八棱海棠、丹霞的受冻率较低,达尔文、长富2 号、嘎拉的子房受冻率次之,岩富10 号、金冠、OPAL的受冻率最高。

为进一步分析同一降温梯度下不同降温时长是否会对花朵受冻率产生影响,绘制了不同制冷时长下海棠品种及苹果品种花朵子房受冻率变化趋势图(图5)。随着制冷时间的延长,各品种在同一温度梯度下的花朵子房受冻率也呈升高趋势,即便为轻度冷冻胁迫时(-1 ℃),制冷时间的延长也会促使花朵子房受冻率升高。以上结果说明,不论轻度冷冻胁迫还是重度冷冻胁迫,苹果花朵受冻率均受到2个因素影响,第一个影响因素为降温程度,另一个影响因素为降温时长。

图5 不同制冷时长下花朵子房受冻率变化趋势
Fig.5 Variation trend of flower ovary freezing rate under different cooling duration

2.3 苹果花朵过冷点、结冰点温度与花朵受冻率的相关性

因大部分品种过冷点温度及结冰点温度均在-3 ℃左右,为分析花朵过冷点、结冰点温度与子房受冻率的关系,本节选择了各品种在-2、-3、-4 ℃处理1 h后的花朵子房受冻率数据,同时整合了不同品种中心花与边花的过冷点、结冰点温度,将两者进行线性拟合,分析花朵过冷点、结冰点温度与花朵子房受冻率的关系。

图6 为花朵子房过冷点与受冻率线性拟合图,在-2、-3、-4 ℃条件下处理1 h 后,各品种受冻率与过冷点存在显著正相关性,其中-3 ℃条件下(图6-B)两者线性相关性最强(R2=0.93)。此结果表明,当花朵子房过冷点温度较高时,其受冻率较高,反之亦然。采用相同分析手段发现,各品种花朵子房结冰点温度与受冻率与之间不存在线性相关性。以上结果表明,花朵子房过冷点温度的高低可作为衡量花朵抗寒性的指标之一,而其结冰点温度则不能作为衡量花朵抗寒能力的指标。

图6 花朵子房过冷点与子房受冻率的线性拟合分析
Fig.6 Analysis of linear fitting of ovary supercooling point and ovary freezing rate of flower

A、B、C 分别为各品种在-2、-3、-4 ℃处理下的线性拟合图。
A,B and C are linear fitting diagrams of each variety treated at-2,-3 and-4 ℃,respectively.

2.4 果树花期抗寒能力判定指标解析

花朵子房过冷点温度差异可作为衡量果树抗寒能力强弱的判定指标之一,但其是否可作为唯一指标则值得进一步解析。当苹果花期遇到冷害后,不同品种的单一花朵会因生理及遗传差异导致抗寒能力存在差异[13],此种差异可利用花朵的过冷点温度去判定。但是,如果想去衡量整株树体花期抗寒能力,则还需将树体花量、开花持续时间和盛花期完全开放花比率等生长发育指标考虑进去。因此,对试材开花持续时间、单位枝条花量及盛花期完全开放花比率进行调查,结果如表2 所示。八棱海棠开花持续时间最长,其次为达尔文与金冠,其余均在16 d左右;八棱海棠的单位长度枝条的花量最大,说明其具有花量优势,其次为达尔文与金冠,花量最少的品种为长富2 号;八棱海棠与达尔文在盛花期的完全开放花比率分别达82.33%与80.67%,金冠、OPAL在盛花期的完全开放花比率较低,均低于60%。差异性分析发现,2个海棠品种在开花持续时间、花量和盛花期完全开放花比率指标上与其他苹果品种存在显著差异,4 个红色品种之间在各项调查指标上不存在显著差异,但与黄色品种金冠、OPAL在开花持续时间与盛花期完全开放花比率上存在显著差异。

表2 不同品种花朵生长发育指标调查统计分析
Table 2 Statistical analysis of flower growth indexes of different varieties

注:花朵子房受冻率数据源于-3 ℃条件下降温1 h 后的调查数据。不同小写字母表示数据在0.05 水平上存在显著差异。
Note:The data of flower ovary freezing rate came from the investigation data after cooling at-3 ℃for 1 h.Different lowercase letters indicate significant differences(p<0.05).

盛花期完全开放花比率Full flowering rate in full bloom period/%82.33±2.52 a 80.67±2.89 a 72.67±1.53 b 71.67±3.00 b 70.67±3.06 b 70.00±3.06 b 57.67±3.79 c 56.00±3.61 c品种Variety八棱海棠Malus robusta达尔文Darwin长富2号Nagafu 2岩富10号Rockfu 10丹霞Danxia嘎拉Gala金冠Golden Delicious OPAL花朵子房受冻率Flower ovary freezing rate/%10.33±0.56 a 26.00±0.64 b 36.00±0.75 bc 45.67±0.56 c 25.67±0.25 b 30.67±0.23 b 40.40±0.58 c 41.67±0.47 c子房过冷点Supercooling point of flower ovary/℃-4.22±0.33 a-3.32±0.13 b-3.07±0.46 b-2.59±0.13 c-3.26±0.27 b-3.02±0.22 b-2.87±0.18 b-2.57±0.38 c开花持续时间Duration of flowering/d 21.67±0.65 a 21.33±0.43 a 16.33±0.68 c 16.67±0.65 c 15.67±0.68 c 16.33±0.65 c 19.67±0.68 a 19.33±0.75 ab花量Amount of flowers 76.67±2.89 a 70.67±8.67 a 41.67±2.89 c 51.67±2.89 bc 61.67±2.89 bc 63.33±5.00 bc 63.33±5.77 ab 51.67±5.77 b

采用多元线性回归分析法,将-3 ℃条件下降温1 h后的各品种花朵子房受冻率作为因变量(Y),将同时期过冷点温度(X1)、开花持续时间(X2)、花量(X3)及盛花期完全开放花比率(X4)作为自变量,构建多元线性回归模型。如表3 所示,调整后R2=0.894,说明模型解释度较好。方差分析中,F=15.837,p=0.023<0.05,说明模型具有统计学意义。从不同自变量的标准化系数及显著性p值可以发现,花朵的过冷点温度是造成花朵子房受冻率差异的主要因素,其次为花量等花朵生长发育指标。以上结果表明,衡量苹果花期抗寒性的最主要指标是花朵子房的过冷点温度,但花量、开花持续时间等花朵生长发育指标也是衡量苹果花期抗寒性的重要指标。

表3 多元线性回归模型
Table 3 Multiple linear regression model

指标Index常量Constant过冷点温度(X1)Supercooling point of flower ovary(X1)开花持续时间(X2)Flowering duration(X2)单位长度枝条花量(X3)Floral quantity per unit length of branch(X3)盛花期完全开放花比率(X4)Ratio of fully open flowers at full flowering(X4)未标准化系数Unstandardized coefficients,B 92.061 18.888模型解释度Degree of model interpretation,R2 0.894方差分析ANOVA,F(p)15.837(0.023)标准化系数Normalization coefficient,Beta 0.873显著性Significant,p 0.008 0.034 0.690 0.146 0.440-0.236-0.233 0.329 0.004 0.004 0.986

3 讨 论

过冷点是衡量昆虫抗寒能力的重要指标[14-16]。果树研究方面,研究人员发现了果树根茎、枝条[17-19]、花朵[20]抗寒性与过冷点的高度相关性,水果的采后贮藏特性与过冷点温度也存在明显相关性,利用低温半致死温度和冻害指数法还可快速评价苹果砧木枝条的抗寒性[21]。可见,植物过冷点温度的高低也是衡量植物抗寒能力的重要指标,笔者在本研究中进一步证实了以上观点,且即将开展的基于冷胁迫下不同苹果品种花朵的转录组差异性研究将从分子层面探索其机制。

笔者在明确苹果花朵子房过冷点温度差异性的同时,也对不同品种花朵的生育特性进行了调查,根据以上判定指标可对不同品种花期抗寒性能差异的原因进行分析,具体为八棱海棠与达尔文的开花持续时间较长,花量较大,虽然其完全开放花比率较高,但其子房的过冷点温度较低,说明其单一花朵的抗寒性能较好,则其树体表现出了较好的抗寒特性,因此其常被用作苹果砧木及授粉树。4个红色品种中,丹霞的过冷点温度较低,说明其单个花朵自身的抗寒性较强,加之其开花持续时间、花量及全开花比率与其他红色品种相比并无差异,故其树体花期抗寒能力则较强,其次为长富2号与嘎拉,岩富10号抗寒能力最弱。2 个黄色品种金冠与OPAL 的过冷点温度均较高,且与岩富10 号等品种并无差异,说明其单个花朵自身的抗寒能力与富士品种无异,但其开花持续时间较红色品种长,花量较大,特别是盛花期花朵全开花比率较低,故其整株树体的花期抗寒性则要强于富士。

4 结 论

果树花朵子房过冷点温度可作为衡量果树花期抗寒性能的判定指标之一,但其仅能用于衡量单一花朵的抗寒性能。开花持续时间、花量和盛花期完全开放花比率等整株树体花朵生育特性指标也是衡量某一品种花期抗寒能力的重要指标。在对某一果树品种进行花期抗寒性能评价时,应根据花朵子房过冷点温度及整株树体的花朵生育特性来综合判定其花期综合抗寒性能。

参考文献References:

[1] 万炜,师纪博,刘忠,韩已文,刘凡,王佳莹,郑曼迪.栖霞市苹果园氮磷养分平衡及环境风险评价[J].农业工程学报,2020,36(4):211-219.WAN Wei,SHI Jibo,LIU Zhong,HAN Jiwen,LIU Fan,WANG Jiaying,ZHEN Mandi.Nitrogen and phosphorus nutrient balance and environmental risk assessment of apple orchard in Qixia city[J].Transactions of the Chinese Society of Agricultural Engineering,2020,36(4):211-219.

[2] 张玥滢,刘布春,邱美娟,刘园,吴昕悦,肖楠舒.气候变化背景下中国苹果适宜种植区北移西扩:基于高分辨率格点气象数据的区划分析[J].中国农业气象,2019,40(11):678-691.ZHANG Yueying,LIU Buchun,QIU Meijuan,LIU Yuan,WU Xinyue,XIAO Nanshu.Areas suitable for growing apples moved northward and westward in China under the background of climate change:Climatic degionalization of apple based on high-resolution meteorological grid data[J].Chinese Journal of Agrometeorology,2019,40(11):678-691.

[3] 白秀广,李纪生,霍学喜.气候变化与中国苹果主产区空间变迁[J].经济地理,2015,35(6):130-137.BAI Xiuguang,LI Jisheng,HUO Xuexi.Empirical studies on the climate change and variation of regional apple production strcuture in China[J].Economic Geography,2015,35(6):130-137.

[4] GE Q S,WANG H J,RUTISHAUSER T,DAI J H.Phenological response to climate change in China:A meta-analysis[J].Global Change Biology,2015,21(1):265-274.

[5] 郭佳,张宝林,高聚林,彭健,罗瑞林.气候变化对中国农业气候资源及农业生产影响的研究进展[J].北方农业学报,2019,47(1):105-113.GUO Jia,ZHANG Baolin,GAO Julin,PENG Jian,LUO Ruilin.Advances on the impacts of climate change on agro-climatic resources and agricultural production in China[J].Journal of Northern Agriculture,2019,47(1):105-113.

[6] 李红光,刘俊灵,勾真真,韩立新,瞿振芳,郝贝贝.不同品种苹果幼果期冻害比较及补救措施[J].北方果树,2021(1):18-19.LI Hongguang,LIU Junling,GOU Zhenzhen,HAN Lixin,QU Zhenfang,HAO Beibei.Comparison and remediation of freeze injury in young fruit period of different apple varieties[J].Northern Fruits,2021(1):18-19.

[7] 李红英,段晓凤,王静,张晓煜,张磊,马国飞.宁夏苹果花期霜冻敏感性指标研究[J].干旱地区农业研究,2015,33(6):184-188.LI Hongying,DUAN Xiaofeng,WANG Jing,ZHANG Xiaoyu,ZHANG Lei,MA Guofei.Research on frost sensitive indexes in apple blossom in Ningxia[J].Agricultural Research in the Arid Areas,2015,33(6):184-188.

[8] 宋学娜.6 个苹果品种花期冻害调查及抗冻性分析[D].杨凌:西北农林科技大学,2019.SONG Xuena.Investigation of freezing injury and freezing resistance of six varieties during apple florescence[D].Yangling:Northwest A&F University,2019.

[9] WANG Y X,HU Y,CHEN B H,ZHU Y F,DAWUDA M M,SVETLA S.Physiological mechanisms of resistance to cold stress associated with 10 elite apple rootstocks[J].Journal of Integrative Agriculture,2018,17(4):857-866.

[10] 王来平,薛晓敏,路超,聂佩显,王金政.几种抗逆增强剂对苹果花与幼果抗寒力的效果[J].江苏农业科学,2017,45(9):109-112.WANG Laiping,XUE Xiaomin,LU Chao,NIE Peixian,WANG Jinzhen.Effects of several anti-stress enhancers on cold resistance of apple flower and young fruit[J].Jiangsu Agricultural Sciences,2017,45(9):109-112.

[11] 郜怀峰,张亚飞,王国栋,孙希武,贺月,彭福田,肖元松.钼在桃树干旱胁迫响应中的作用解析[J].植物学报,2019,54(2):227-236.GAO Huaifeng,ZHANG Yafei,WANG Guodong,SUN Xiwu,HE Yue,PENG Futian,XIAO Yuansong.The effect of molybdenum on drought stress response in peach[J].Chinese Bulletin of Botany,2019,54(2):227-236.

[12] 王昆,刘凤之,曹玉芬.苹果种质资源描述规范和数据标准[M].北京:中国农业出版社,2005:1-26.WANG Kun,LIU Fengzhi,CAO Yufen.Descriptors and data standard for apple[M].Beijing:China Agriculture Press,2005:1-26.

[13] 陈代慧.不同山茶花抗寒生理及遗传差异分析[D].郑州:河南农业大学,2014.CHEN Daihui.The study of cold hardiness physiological and genetic analysis of different camellias[D].Zhengzhou:Henan Agricultural University,2014.

[14] 孙绪艮,王兴华,李恕廷.昆虫的耐寒机制及其研究进展[J].山东农业大学学报(自然科学版),2001,32(3):393-396.SUN Xugen,WANG Xinghua,LI Shuting.The cold tolerance mechanism of insects and its research development[J].Journal of Shandong Agricultural University (Natural Science Edition),2001,32(3):393-396.

[15] 邵钰莹,冯宇倩,田斌,宗世祥.冷驯化对油松毛虫越冬幼虫过冷却点及主要耐寒物质的影响[J].应用昆虫学报,2017,54(6):961-970.SHAO Yuying,FENG Yuqian,TIAN Bin,ZONG Shixiang.Effects of cold acclimation on the supercooling point and major cold hardiness chemicals of overwintering Dendrolimus tabulaeformis larvae[J].Chinese Journal of Applied Entomology,2017,54(6):961-970.

[16] STOREY K B,STOREY J M.Biochemistry of Cryoprotectants[M]// Insects at low temperature.Boston,MA:Springer,1991:64-93.

[17] 陈仁伟,张晓煜,丁琦,杨豫,南学军,胡宏远,冯蕊,李芳红,张亚红.基于差热分析技术的4 个酿酒葡萄品种不同部位抗寒性综合评价[J].中国生态农业学报,2020,28(7):1022-1032.CHEN Renwei,ZHANG Xiaoyu,DING Qi,YANG Yu,NAN Xuejun,HU Hongyuan,FENG Rui,LI Fanghong,ZHANG Yahong.Comprehensive evaluation of cold resistance in different parts of four wine grape varieties based on different thermal analysis[J].Chinese Journal of Eco-Agriculture,2020,28(7):1022-1032.

[18] 陈仁伟,张晓煜,杨豫,李芳红,冯蕊,李红英,王静,苏雨弦,丁永平.‘赤霞珠’酿酒葡萄根颈和不同根系部位抗寒性比较[J].生态学杂志,2021,40(9):2754-2762.CHEN Renwei,ZHANG Xiaoyu,YANG Yu,LI Fanghong,FENG Rui,LI Hongying,WANG Jing,SU Yuxian,DING Yongping.Comparison of cold resistance in root collar and different parts of root of Cabernet Sauvignon[J].Chinese Journal of Ecology,2021,40(9):2754-2762.

[19] 王静,张晓煜,杨洋,李红英,卫建国,朱永宁,田磊.宁夏主要果树花器官及幼果霜冻临界温度比较研究[J].北方园艺,2015(7):9-13.WANG Jing,ZHANG Xiaoyu,LI Hongyin,WEI Jianguo,ZHU Yongning,TIAN Lei.Comparative study of critical temperature suffering frost of floral organs and young fruit of the main fruit trees in Ningxia province[J].Northern Horticulture,2015(7):9-13.

[20] 孟庆瑞,王文凤,梁隐泉,聂庆娟,李彦慧,杜绍华,杨建民.杏品种花器官过冷却点及结冰点的研究[J].中国农业科学,2008,41(4):1128-1133.MENG Qingrui,WANG Wenfeng,LIANG Yinquan,NIE Qingjuan,LI Yanhui,DU Shaohua,YANG Jianmin.Study on supercooling point and freezing point in floral organs of apricot[J].Scientia Agricultura Sinica,2008,41(4):1128-1133.

[21] 王红平,董铁,刘兴禄,尹晓宁,孙文泰,牛军强,马明.5 个苹果砧木品种枝条的低温半致死温度及耐寒性评价[J].果树学报,2020,37(4):495-501.WANG Hongping,DONG Tie,LIU Xinglu,YIN Xiaoning,SUN Wentai,NIU Junqiang,MA Ming.A study on the cold resistance and the semi-lethal temperatures for branches of five apple rootstock cultivars[J].Journal of Fruit Science,2020,37(4):495-501.

Analysis of evaluation indexes of cold resistance of apple trees at flowering stage

LI Xiaolong1,CHU Yannan1,ZHANG Lei2,CHEN Renwei3,ZHANG Xiaoyu3,YUE Haiying1,JIA Yonghua1*,WANG Fang4*

(1Institute of Horticulture,Ningxia Academy of Agriculture and Forestry Sciences,Yinchuan 750000,Ningxia,China;2Yinchuan University of Energy,Yinchuan 750000,Ningxia,China;3Ningxia Institute of Meteorological Science,Yinchuan 750002,Ningxia,China;4Ningxia Research Institute of Quality Standards and Testing Technology of Agricultural Products,Yinchuan 750000,Ningxia,China)

Abstract:【Objective】Field survey are usually used for cold resistance of different fruit trees, but this method has difficulty to exclude the interference of external factors such as different ecological conditions and cultivation mode, and can not really objectively evaluate the cold resistance of a certain variety.By comparing the correlation between supercooling point and freezing point temperature of apple flower ovary and freezing rate under specific conditions, combining with the investigation of flower growth and development indexes of different varieties, a multiple linear regression model was established to determine the objective evaluation indexes of cold resistance of apple trees at flowering stage.The reasons for differences in cold resistance at flowering stage of some apple varieties were discussed.【Methods】The Malus species Malus robusta and Darwin,apple varieties Nagafu 2,Rockfu 10,Danxia,Gala,Gold Delicious,OPAL were used as test materials.The supercooling and freezing temperatures of ovaries were measured using a simulated frost box system.The differences among varieties in the above indexes were analyzed.A two-factors experiment based on cooling gradient and cooling time was used to determine the ovary freezing rate of different varieties.The linear fitting was carried out to analyze the relationship between the flower supercooling point, freezing point temperature and flower ovary freezing rate.The flowering duration, number of flowers per unit length, and the percentage of fully opened flowers at full bloom period were also investigated and analyzed to further clarify the influence of flower growth and development characteristics on freezing rate.The factors influencing the difference of cold resistance of apple trees during flowering stage were comprehensively discussed.【Results】There was no significant difference in the temperature of supercooling point and freezing point of central flowers and side flowers of the same variety.The supercooling point of M.robusta was the lowest (-4.27±0.33 ℃), It was significantly different from those of the other varieties (p<0.05).Among the apple varieties,Danxia and Nagafu 2 had the lowest supercooling point temperature,which was significantly different from those of Rockfu 10 and OPAL.The freezing point temperature of OPAL was lower than those of most cultivars (p<0.05).The freezing rate of M. robusta and apple variety Danxia was lower, followed by Darwin, Nagafu 2 and Gala.Rockfu 10 had the highest freezing rate under the different temperature gradients and cooling duration.With the extension of cooling time, the ovary freezing rate of flowers increased under the same temperature gradient, even under mild freezing stress(-1 ℃).Regardless of mild or severe freezing stress,the freezing rate of apple flowers was affected by two factors.The first factor was the degree of cooling,and the other factor was the duration of cooling.After 1h treatment at-2,-3 and-4 ℃,there was a significant positive correlation between the freezing rate and the supercooling point of all varieties, and the linear correlation between them was the strongest at-3 ℃(R2= 0.93).but there was no significant correlation between the freezing point and ovary freezing rate.The flowering time of M. robusta was the longest, followed by Darwin and Golden Delicious,and the other varieties lasted about 16 days.The flower quantity of branches per unit length of M.robusta was the largest, indicating that it had the flower quantity advantage, followed by Darwin and Golden Delicious, and Nagafu 2 had the least flower quantity.The ratios of fully opened flowers of M.robusta and Darwin were 82.33% and 80.67%, respectively, while the ratios of fully opened flowers of Golden Delicious and OPAL were less than 60%.The multiple linear regression model showed that there were multiple linear correlations (R2=0.89) between supercooling point (X1), flowering duration(X2),flowering quantity(X3),full flowering rate in full blooming period(X4)and freezing rate of ovaries(Y).According to the standardized coefficients and significance p values of different independent variables,it could be found that the supercooling point temperature of the flowers was the main factor causing the difference of the ovary freezing rate, followed by the flower quantity and the other flower growth and development indicators.【Conclusion】The supercooling point temperature was an important index to measure the cold resistance ability of apple flowers.The normalization coefficient of the supercooling point temperature was 0.87,which had the greatest influence on the freezing rate of ovary.It would be necessary to comprehensively judge the cold resistance ability of different apple varieties at flowering stage by combining the flower quantity,flowering duration,full blossom ratio and other flower growth and development indexes.

Key words: Malus domestica Borkh; Supercooling point; Freezing point; Freezing rate of flower ovary;Comprehensive cold resistance at flowering stage;Judgment standard

中图分类号:S661.1

文献标志码:A

文章编号:1009-9980(2022)10-1935-10

DOI:10.13925/j.cnki.gsxb.20210704

收稿日期2022-01-19

接受日期:2022-04-18

基金项目宁夏回族自治区重点研发计划项目(2021BBF02014、2022BBF02035);宁夏农林科学院农业高质量发展和生态保护科技创新示范项目(NGSB-2021-1);农业农村部国家苹果产业技术体系(CARS-27);宁夏自然科学基金(2020AAC03321)

作者简介:李晓龙,男,副研究员,硕士,研究方向为果树栽培。Tel:0951-6886778,E-mail:262450313@qq.com

*通信作者Author for correspondence.Tel:0951-6886778,E-mail:529843423@qq.com;Tel:0951-6886912,E-mail:572865067@qq.com