不同叶果比对设施红美人杂柑光合特性和果实品质的影响

王 鹏1,2,金龙飞1,2,黄 贝1,2,曹明奡3,温明霞1,吴韶辉1,徐建国1,2*

1浙江省柑橘研究所,浙江台州 318026;2国家柑橘品种改良中心浙江分中心,浙江台州 318026;3长江大学园艺园林学院,湖北荆州 434025)

摘 要:【目的】探究不同叶果比对柑橘光合特性和果实品质的影响,以期为柑橘树势调控和品质提升提供理论依据。【方法】以设施栽培红美人杂柑为试材,设置3个叶果比处理,测定枝叶的生长量、叶绿素相对含量、光合参数、产量和果实品质。【结果】叶果比100(LFR 100)的发梢数、节间长度、叶绿素相对含量、单果质量、纵径和横径显著高于其他处理,LFR80的叶面积、厚度和品质较高,LFR60的净光合速率、蒸腾速率、气孔导度和水分利用率较高,LFR80的可溶性固形物含量较高,总酸较低,固酸比最高。【结论】LFR80的枝叶生长量大、叶绿素相对含量和光合速率较高、单果质量和单株产量适中、果实品质最佳。因此,设施栽培红美人杂柑的叶果比控制在80左右比较适宜。

关键词:柑橘;叶果比;枝叶生长;光合特性;果实品质

柑橘属芸香科柑橘亚科植物,在我国的栽培历史久远、种类众多,也是栽培面积和产量最大的水果,具有重要的经济价值[1]。红美人杂柑是橘橙类杂交柑橘品种,果皮浓橙色,果肉极化渣,高糖低酸,有特殊香气,深受消费者喜爱,经济价值极高[2],近年来在浙江、四川及湖北等地广泛种植。随着推广面积的不断扩大,红美人杂柑的树势早衰现象成为栽培上的突出难题。调查发现该品种在设施保护栽培条件下有开花量大、坐果率高的特点,而大量结果容易造成树势早衰和果实品质下降,因此通过花果管理确定合适的叶果比是红美人杂柑优质稳产栽培中的关键环节。

叶果比直接影响果树源-库关系的平衡,改变源叶中的同化产物的分配,进而影响果树的产量和果实的品质。对挂果量大的果树品种进行适度疏花疏果,提高叶果比,能够使更多的同化产物转运到果实中,进而提高果实的单果质量和内在品质[3-5]。对挂果量小的果树品种实行保花保果措施,适度降低叶果比,也能有效提高整体产量和果实品质[6-7]。叶果比还会影响叶片的激素合成和同化产物积累,进而影响叶片和枝梢的生长,最终影响果实产量和品质[8-10]。合适的叶果比既能保证当年的果实产量和品质,还能维持树势稳健,确保翌年的开花结果[10]。叶果比过低会加剧叶果之间的同化物竞争,不仅影响当年坐果率、产量和品质,还会影响翌年的营养生长和花芽分化;叶果比过高则会降低果实产量和经济效益[11]。光合作用是同化产物积累的基础,在一定范围内降低叶果比、增大库强能够促进作物的光合作用,叶果比过高导致库强过低反而抑制光合作用[12]。在苹果中的研究发现[13],随着负载量的增加,叶绿素和光合参数呈上升趋势,果实大小、单果质量、可溶性固形物含量、糖酸比、可溶性糖含量呈下降趋势。在桃中研究发现随着负载量下降,叶片的叶绿素相对含量、光合参数以及同化产物积累量均呈下降趋势,但是单果质量、果实大小和内含物含量呈上升趋势[14]。在柑橘中的研究发现,砂糖橘适宜的叶果比为(15~25)∶1[15],沃柑的适宜叶果比为(30~40)∶1[16],然而这些研究都是在露天栽培的柑橘中进行的,在设施栽培柑橘中还鲜见报道,且叶果比与柑橘枝叶生长、光合特性和果实品质之间的关系还不明确。

笔者以设施栽培的红美人杂柑为研究对象,设置叶果比分别为60∶1、80∶1、100∶1的3个处理,测定新梢枝叶的生长量、叶片的叶绿素相对含量、光合参数和果实品质,探讨不同叶果比与枝叶生长、光合作用和果实品质形成之间的关系,以期为柑橘设施栽培管理中树势调控和果实品质之间的平衡提供实践指导和理论依据。

1 材料和方法

1.1 试验材料

供试材料为6 a生枳(Poncirus trifoliata)砧红美人杂柑,栽植于浙江省黄岩区宁溪镇晨湖果蔬家庭农场(东经121°15’9”,北纬28°39’33”,海拔24 m),株行距为3 m×4 m,园中土壤为酸性山坡黄壤,土壤pH 值5.69,有机质含量(w,后同)3.14%,速效氮77.00 mg·kg-1、速效磷160.13 mg·kg-1、速效钾148.55 mg·kg-1、有效钙241.50 mg ·kg-1、有效镁66.54 mg·kg-1、有效硼0.26 mg·kg-1

1.2 实验设计

采用单因素试验设计,选择树体大小相仿,树势一致,栽培统一的6年生红美人杂柑,分别进行低叶果比(叶片∶果实=60∶1,LFR60)、中叶果比(叶片∶果实=80∶1,LFR60)和高叶果比(叶片∶果实=100∶1,LFR100)3种处理,每个处理10株,共30株。疏果处理分2个阶段(初步疏果和最终定果)完成,2019年6月中旬第二次生理落果初步完成后,对果树进行初步疏果,疏果程度为目标的90%,2019年9月中旬最终定果达到目标叶果比。

1.3 新梢枝叶生长参数、叶片叶绿素含量和光合参数测定

2019年11月果实采收前,统计秋梢的发梢数和节数,使用尺子测定选取新梢长度和节间长度,使用电子游标卡尺测定秋梢粗度,选择秋梢的第5~6 枚叶片,使用电子游标卡尺测定叶片厚度,用叶面积仪(ScanMaker i800plus)测定叶片面积和叶片周长,用电子天平测定叶质量,用叶绿素仪(CCM-200 plus)测定叶片叶绿素相对含量,用光合仪(CIRAS-2)测定秋梢叶片的光合速率、蒸腾速率、气孔导度和水分利用效率,每个指标设置10个重复。

1.4 果实品质测定

果实成熟后,采集中外围10个果实测定果实品质,使用电子天平测定果实质量,用电子游标卡尺测定果实横径、纵径和果皮厚度,用色差仪(CR-400)测定果实色泽,用糖度计(PAL-1)测定可溶性固形物含量,用酸度计(PLA-Easy ACID1)测定总酸含量,采用2,6-二氯酚靛酚滴定法测定维生素C含量。

1.5 统计分析

采用SAS 8.1 软件的ANOVA 过程进行处理间的差异分析,采用Duncan 多量程检验比较各处理间差异的显著性(p<0.05)。采用隶属函数法对果实品质进行综合评价[13],分别计算单果质量、纵径、横径、果形指数、可溶性固形物含量、总酸含量、固酸比7 项指标的隶属函数值。分析指标与品质呈正相关,则计算公式为:U(Xij)=(Xij-Xmin)/(Xmax-Xmin);分析指标与品质呈负相关,则计算公式为:U(Xij)=1-(Xij-Xmin)/(Xmax-Xmin)。Xij表示第i个指标第j 个处理下的测定值;U(Xij)表示第i 个指标第j 个处理下的隶属函数值;Xmax 和Xmin 表示测定值中的最大值和最小值。先对各指标分别计算隶属函数值,再对所有指标计算平均值,值越大,品质越好,反之则越差。

2 结果与分析

2.1 不同叶果比对柑橘新梢生长的影响

采果前测定了柑橘新梢生长发育指标。随着叶果比的升高,发梢数和节间长度显著降低。LFR100 的发梢数为191,显著高于LFR60 和LFR80;LFR100 的节间长度为1.94 cm,显著高于LFR60;但3种叶果比处理的新梢粗度、长度和节数无显著差异(表1)。

表1 不同叶果比对柑橘新梢生长的影响
Table 1 The effect of different leaf/fruit ratio on the growth of citrus shoots

注:同列数据后不同小写字母表示在p<0.05 差异显著;n=10。下同。
Note:The values within a column followed by different small letters show significant difference at p<0.05,n=10.The same below.

节间长度Internode length/cm 1.52±0.22 b 1.80±0.22 ab 1.94±0.28 a处理Treatment LFR60 LFR80 LFR100发梢数Number of shoots 102±13 b 127±15 b 191±20 a粗度Thickness/mm 3.39±0.43 3.75±0.54 3.93±0.57节数Number of sections 7.70±1.06 6.75±1.04 6.78±0.97长度Length/cm 11.7±1.6 12.0±2.8 13.1±2.4

2.2 不同叶果比对柑橘新梢叶片生长的影响

随着叶果比的升高,新梢的叶片面积、叶片周长、叶片厚度和叶片质量呈先增加后降低的趋势。LFR60 的叶片面积为2 915.5 mm²,显著低于LFR80和LFR100;LFR80 的叶片厚度为0.34 mm,显著高于LFR60 和LFR100;LFR80 的叶片质量为1.47 g,显著大于LFR60 和LFR100;3个叶果比处理的叶片周长无显著差异(表2)。

表2 不同叶果比对柑橘新梢叶片生长的影响
Table 2 The effect of different leaf/fruit ratio on the leaves growth of citrus shoots

处理Treatment LFR60 LFR80 LFR100叶片面积Leaf area/mm2 2 915.5±408.0 b 3 913.1±573.0 a 3 891.6±492.5 a叶片周长Leaf circumference/mm 314.2±45.8 a 331.5±54.6 a 329.8±59.8 a叶片厚度Leaf thickness/mm 0.26±0.02 b 0.34±0.04 a 0.31±0.02 ab叶片质量Leaf weight/g 1.29±0.09 b 1.47±0.03 a 1.32±0.07 b

2.3 不同叶果比对柑橘新梢叶片叶绿素含量和光合特性的影响

春梢LFR100 的叶绿素相对含量最高,为138.56,显著高于LFR60 和LFR80;秋梢LFR80 和LFR100的叶绿素相对含量分别为127.76和121.96,显著高于LFR60(表3)。春梢和秋梢LFR60的净光合速率分别为14.84 μmol·m-2·s-1和17.26 μmol·m-2·s-1,显著高于LFR80 和LFR100,而且秋梢的净光合速率高于春梢(表3)。春梢LFR60 的蒸腾速率为2.14 mmol·m-2·s-1,显著高于LFR100,秋梢LFR60的蒸腾速率为2.03 mmol·m-2·s-1,显著高于LFR80和LFR100。春梢和秋梢的的气孔导度分别为67.87 mmol·m-2·s-1和94.33 mmol·m-2·s-1,显著高于LFR80 和LFR100。春梢和秋梢LFR60 的水分利用率分别为0.25%和0.27%,显著高于LFR80 和LFR100。

表3 不同叶果比对柑橘新梢叶片叶绿素含量及光合参数的影响
Table 3 Effects of different leaf/fruit ratio on photosynthetic parameters of new shoot leaves

处理Treatment春梢Spring shoots秋梢Autumn shoots LFR60 LFR80 LFR100 LFR60 LFR80 LFR100叶绿素相对含量Chlorophyll relative content 102.96±9.79 c 123.49±17.98 b 138.56±17.18 a 103.45±17.17 b 127.76±12.88 a 121.96±11.19 a净光合速率Net photosynthetic rate/(μmol·m-2·s-1)14.84±1.70 a 12.35±1.36 b 12.42±1.44 b 17.26±1.64 a 15.02±1.90 b 14.72±1.49 b蒸腾速率Transpiration rate/(mmol·m-2·s-1)2.14±0.14 a 1.96±0.26 ab 1.87±0.21 b 2.03±0.29 a 1.77±0.20 b 1.78±0.18 b气孔导度Stomatal conductance/(mmol·m-2·s-1)67.87±3.00 a 53.62±4.81 b 50.13±4.03 b 94.33±12.79 a 70.56±10.43 b 65.25±7.20 b水分利用效率Water use efficiency/%0.25±0.05 a 0.18±0.02 b 0.15±0.02 b 0.27±0.02 a 0.22±0.04 b 0.21±0.01 b

2.4 不同叶果比对柑橘产量和果实品质的影响

叶果比对柑橘果实大小影响较大,而对果实色泽无显著影响。LFR100的单果质量最大为328.54 g,显著高于LFR60和LFR80。LFR60的单株产量最高为21.51 kg,显著高于LFR100,LFR60 和LFR80 的产量无显著差异。LFR100的纵径最大,为88.20 mm,显著高于LFR60 和LFR80;LFR100 的横径最大,为87.68 mm,显著高于LFR60 和LFR80。3 个处理的叶果比的果形指数和色泽无显著差异。叶果比对柑橘果实糖、酸含量影响较大,而对可食率和维生素C含量无显著影响。LFR60 和LFR80 的果实可溶性固形物含量为11%和10.6%,显著高于LFR100;而LFR60 的总酸含量为0.74 g·100 mL-1,显著高于LFR80 和LFR100;LFR80 的固酸比平均值最高,但3个叶果比间无显著差异(表4)。

表4 不同叶果比对柑橘产量和果实品质的影响
Table 4 Effect of different leaf/fruit ratio on the yield and fruit quality of citrus

处理Treatment LFR60 LFR80 LFR100处理Treatment LFR60 LFR80 LFR100单果质量Single fruit weight/g 194.33±19.25 c 252.60±37.30 b 328.54±48.08 a可食率Edible rate/%82.2±4.42 81.6±4.61 80.0±4.29单株产量yield per plant/kg 21.51±0.88 a 20.63±0.77 ab 19.06±0.87 b w(可溶性固形物)Total soluble solids/%11.0±0.80 a 10.6±0.87 a 9.1±0.36 b纵径Polar diameter/mm 72.73±3.04 b 77.62±5.81 b 88.20±7.60 a横径Equatorial diameter/mm 73.98±1.99 c 80.31±5.04 b 87.68±3.91 a ρ(总酸)Total acid/(g·100 mL-1)0.74±0.04 a 0.67±0.03 b 0.63±0.03 b果形指数Shape index 0.98±0.06 0.97±0.06 1.01±0.06色泽Coloration value L 64.47±2.21 64.27±1.2 63.91±1.95 a b 28.52±3.39 29.30±3.50 29.61±2.62 w(维生素C)Vitamin C/(g·100 mL-1)30.3±1.68 30.3±1.00 29.4±1.23 64.16±2.91 64.68±2.33 64.60±2.28固酸比Solid acid ratio 14.9±1.8 15.8±0.7 14.4±0.9

2.5 不同叶果比柑橘果实品质的隶属函数分析

采用隶属函数对3 个叶果比的柑橘的7 个品质指标进行综合评价,隶属函数值平均值由大到小依次为LFR80>LFR60>LFR100(表5)。说明设施栽培的红美人杂柑LFR80的果实品质最佳。

表5 不同叶果比柑橘品质的隶属函数值
Table 5 Membership function value of citrus fruit quality in different leaf/fruit ratio

处理Treatment LFR60 LFR80 LFR100单果质量Single fruit weight 0.000 0.434 1.000纵径Polar diameter 1.000 0.684 0.000横径Equatorial diameter 0.000 0.462 1.000果形指数Shape index 0.750 1.000 0.000可溶性固形物Total soluble solids 1.000 0.789 0.000总酸Total acid 0.000 0.636 1.000固酸比Solid acid ratio 0.357 1.000 0.000平均值Average 0.444 0.715 0.429排名Rank 213

3 讨 论

控制合理的叶果比是果树栽培管理的重要环节。叶果比的高低决定了光合同化产物在源-库之间的合理分配,适宜的叶果比既能满足当年果实的生长发育的需求,还为翌年的开花结果贮备充足的养分[10,17]。叶果比过低,果实和叶片之间就会存在同化产物分配的竞争,大量的光合产物分配到果实中,就会导致果树枝叶的生长受抑制,进而影响树势和翌年的生产。在本研究中,LFR100红美人杂柑的发梢数和枝条长度显著高于LFR60 和LFR80,这表明增加叶果比能够促进枝梢抽发与生长。生产上通常以秋梢作为红美人杂柑翌年的结果母枝,适度增加叶果比能够促进秋梢老熟,以保证翌年的正常开花结果。随着叶果比的增大,红美人杂柑叶片的生长量呈先升高后降低的趋势,LFR80 的红美人杂柑叶片面积、厚度和质量显著高于LFR60 和LFR100,这表明不同叶果比改变了同化产物在叶片和果实之间的分配进而改善叶片的质量。在核桃中的研究也发现随着叶果比的增大,叶面积、百叶干质量、鲜质量均呈先升高后降低的趋势,这表明叶果比过高或者过低都会影响叶片的生长[9];而在苹果中的研究却发现随着负载量的增大,叶面积逐渐降低[18],这可能是不同果树抽梢和叶片生长的差异所致。

合理的叶果比,能够平衡光合产物在叶片和果实中的分配,增强叶片的光合能力。在甘蔗中的研究发现提高库强,能够促进叶片积累的同化产物的转运,进而提高叶片的光合速率[12]。在桃中的研究发现[14],随着叶果比的降低,叶片叶绿素相对含量、净光合速率、水分利用效率、表观光能利用效率、表观CO2 利用效率均呈升高趋势。在本研究中,LFR60 红美人杂柑的净光合速率、气孔导度和水分利用率显著高于LFR80 和LFR100,这说明降低叶果比能够提高柑橘的光合作用效率。然而,LFR60的叶绿素相对含量却显著低于LFR80和LFR100,这可能是叶果比过低导致大量的同化产物转运到果实中,影响了叶片的生长发育。在梨中的研究还发现叶果比影响光合作用还与疏果的时期有关,花后80 d不疏果的叶片净光合速率最高,而花后110 d重度疏果的叶片净光合速率最高[19],这可能与不同叶龄的叶绿体结构和衰老程度有关。植物叶片产生的光合产物既要转运到根、茎和果实等库器官中,还需要满足叶片自身的生长发育需求,因此在确定果树叶果比时需考虑叶片生长和果实产量之间的平衡。

叶片光合作用积累的同化产物是果实产量和品质形成的基础,适度的提高叶果比,叶片能够将更多的同化产物转移到果实中,进而提高果实的单果质量和品质。在本研究中,随着叶果比的提高,红美人杂柑的单果质量、纵径和横径逐渐升高,在椪柑和葡萄中也发现类似的结果[8,20]。本研究中提高叶果比降低了树体的总体挂果数,导致LFR100 的单株产量略有下降,因此在确定柑橘适宜叶果比时,需综合考虑产量和果实品质间的平衡。色泽是果实重要的外观品质之一,在苹果中的研究表发现随着叶果比的降低L值呈下降趋势,ab值则呈先升高后降低的趋势,表明叶果比的高低影响苹果的着色[13],而在本研究中却发现红美人杂柑果实的色泽与叶果比的高低无显著差异,这可能与苹果和柑橘表皮中色素物质成分的差异有关。叶果比对果实的内在品质影响较大,在椪柑、苹果、葡萄和桃中的研究发现适度提高叶果比能够有效提高果实的内在品质[8,13,20-21],而本研究中红美人的叶果比由60 增加到80 时果实的可溶性固形物含量略有下降,但由于总酸含量的显著下降,固酸比反而升高,果实品质相应得到提升。随着叶果比的进一步增大,LFR100果实的可溶性固形物含量显著降低,这可能是叶果比过大促发枝梢的大量生长与果实竞争光合产物,导致果实内含物积累量减少,形成粗皮大果,品质下降。因此,在一定范围内增大叶果比能有效提升品质,而为了增强树势过量疏果反而会导致果实品质的下降。维生素C含量是果实品质的重要指标之一,在本研究中不同叶果比对柑橘的维生素C含量没有显著影响,在苹果中研究也发现维生素C含量与负载量之间没有明显变化规律[13]。果实品质由大小、果形指数、着色、糖含量、酸含量、香气物质等多个指标综合决定,单一的采用某个指标无法对果实品质进行综合评价,基于隶属函数评价法对多项指标进行综合分析,能够较准确地评价果实的品质,该方法已在金柑[22]、苹果[13]、桃[14]、龙眼[23]等多种果树中得到广泛应用。本研究采用隶属函数法对设施栽培下的红美人杂柑的品质进行综合评价,结果表明LFR80的果实品质最佳。

4 结 论

LFR80 的树势较旺,光合速率高,产量适中,品质最佳。因此,为确保设施栽培红美人杂柑连年优质稳产,叶果比控制在80左右比较适宜。

参考文献References:

[1] 邓秀新,彭抒昂.柑橘学[M].北京:中国农业出版社,2013:1-14.DENG Xiuxin,PENG Shuang.The citrus[M].Beijing:China Agriculture Press,2013:1-14.

[2] 黄振东,王鹏,徐建国,鹿连明,陈国庆,温明霞,林媚.浙东地区‘红美人’杂柑果实品质与土壤和叶片养分的关系[J].果树学报,2020,37(1):88-97.HUANG Zhendong,WANG Peng,XU Jianguo,LU Lianming,CHEN Guoqing,WEN Mingxia,LIN Mei.Relationship between fruit quality and nutrients in soil and leaves of‘Hongmeiren’citrus hybrid cultivated in eastern Zhejiang province[J].Journal of Fruit Science,2020,37(1):88-97.

[3] 邓钊.椪柑省力化疏果和促进果实膨大技术研究[D].武汉:华中农业大学,2018.DENG Zhao.Studies on labor-saving fruit thinning and promoting fruit enlargement practices in Ponkan[D].Wuhan:Huazhong Agriculture University,2018.

[4] 石丝.不同疏花疏果剂对‘大五星’枇杷花果疏除效应的研究[D].雅安:四川农业大学,2018.SHI Si.The thinning effect of flower and fruit thinning agents in‘dawuxing’loquat (Eriobotrya japonica Lindl.)[D].Ya’an:Sichuan Agriculture University,2018.

[5] 任洪毅.旱地苹果化学疏花疏果效应及适宜负载量研究[D].杨凌:西北农林科技大学,2018.REN Hongyi.Study on the chemical thinning of fruits and the suitable yield in the apple orchard of arid area[D].Yangling:Northwest Agriculture and Forestry University,2018.

[6] 岳婉婉,靳娟,阿布都卡尤木·阿依麦提,郝庆,刘平,曾斌,赵婧彤.保花保果药剂喷施模式对骏枣光合特性、产量及品质的影响[J].河南农业科学,2021,50(12):134-141.YUE Wanwan,JIN Juan,Abudukayoumu·Ayimaiti,HAO Qing,LIU Ping,ZENG Bin,ZHAO Jingtong.Effects of spraying modes of flower and fruit preservation agent on photosynthetic characteristics,yield and quality of Jun jujube[J].Journal of Henan Agricultural Sciences,2021,50(12):134-141.

[7] 陈少珍,蒋慧萍,吴代东,邹瑜,刘盛武,林贵美,龙盛风,李婷.植物生长调节剂对野生毛葡萄保花保果及其果实品质的影响[J].西南农业学报,2016,29(6):1420-1424.CHEN Shaozhen,JIANG Huiping,WU Daidong,ZOU Yu,LIU Shengwu,LIN Guimei,LONG Shengfeng,LI Ting.Effect of plant growth regulators on flower-fruit retention and fruit quality of hairy grape[J].Southwest China Journal of Agricultural Sciences,2016,29(6):1420-1424.

[8] LIU C,LI D X,HUANG X B,ZHANG F Q,XIE Z Z,ZHANG H Y,LIU J H.Manual thinning increases fruit size and sugar content of Citrus reticulata Blanco and affects hormone synthesis and sugar transporter activity[J].Journal of Integrative Agriculture,2022,21(3):725-735.

[9] 宁万军,张强,黄闽敏,刘旭丽.不同负载量对新新2 核桃树体营养、生长及果实品质的影响[J].果树学报,2021,38(9):1550-1556.NING Wanjun,ZHANG Qiang,HUANG Minmin,LIU Xuli.Effects of loading capacity on tree nutrition,growth and fruit quality in Xinxin 2 walnut[J].Journal of Fruit Science,2021,38(9):1550-1556.

[10] KUMARIHAMI H M P C,PARK H,KIM S,PARK J,LEE E,KIM H L,KIM J G.Flower and leaf bud density manipulation affects fruit set,leaf-to-fruit ratio,and yield in southern highbush 'Misty' blueberry[J].Scientia Horticulturae,2021,290:110530.

[11] HAIM D,SHALOM L,SIMHON Y,SHLIZERMAN L,KAMARA I,MOROZOV M,ALBACETE A,RIVERO R M,SADKA A.Alternate bearing in fruit trees:Fruit presence induces polar auxin transport in citrus and olive stem and represses IAA release from the bud[J].Journal of Experimental Botany,2021,72(7):2450-2462.

[12] RIBEIRO R V,MACHADO E C,MAGALHÃES F J R,LOBO A K M,MARTINS M O,SILVEIRA J A G,YIN X,STRUIK P C.Increased sink strength offsets the inhibitory effect of sucrose on sugarcane[J].Journal of Plant Physiology.2017,208:61-69.

[13] 刘丽,石彩云,魏志峰,徐玉西,李秋利,高登涛.负载量水平对矮化自根砧富士苹果生长发育和果实品质的影响[J].果树学报,2022,39(6):982-991.LIU Li,SHI Caiyun,WEI Zhifeng,XU Yuxi,LI Qiuli,GAO Dengtao.The effects of load level on growth,development and fruit quality of dwarfing rootstock Fuji apple[J].Journal of Fruit Science,2022,39(6):982-991.

[14] 王晓俊,张斌斌,马瑞娟,绍雷,郭磊,俞明亮.负载量对桃叶片光合特性及果实品质的影响[J].果树学报,2022,39(6):1004-1016.WANG Xiaojun,ZHANG Binbin,MA Ruijuan,SHAO Lei,GUO Lei,YU Mingliang.Effects of loading on photosynthetic characteristics of peach leaves and fruit quality[J].Journal of Fruit Science,2022,39(6):1004-1016.

[15] 张社南,贺申魁,梅正敏,刘冰浩,区善汉.沙糖橘叶果比观察分析[J].南方园艺,2019,30(5):16-18.ZHANG Shenan,HE Shenkui,MEI Zhengmin,LIU Binghao,QU Shanhan.Observation and analysis of leaf-fruit ratio of‘Shatangju’citrus[J].Southern Horticulture,2019,30(5):16-18.

[16] 张社南,贺申魁,梅正敏,刘冰浩,区善汉,闫勇,唐燕玲.沃柑的叶果比及其对产量与果实品质的影响[J].南方园艺,2020,31(6):17-21.ZHANG Shenan,HE Shenkui,MEI Zhengmin,LIU Binghao,QU Shanhan,YAN Yong,TANG Yanling.Leaf-fruit ratio and its effect on yield and fruit quality of'Wogan'citrus[J].Southern Horticulture,2020,31(6):17-21.

[17] ROSSOUW G C,SMITH J P,BARRIL C,DELOIRE A,HOLZAPFEL B P.Carbohydrate distribution during berry ripening of potted grapevines:Impact of water availability and leaf-tofruit ratio[J].Scientia Horticulturae,2017,216:215-225.

[18] 丁宁,陈建明,丰艳广,沙建川,张民,姜远茂.矮化苹果负载量对氮素吸收、分配及利用的影响[J].园艺学报,2016,43(3):549-556.DING Ning,CHEN Jianming,FENG Yanguang,SHA Jianchuan,ZHANG Min,JIANG Yuanmao.Effects of fruit load on absorption,distribution and utilization of N in the dwarf apple[J].Acta Horticulturae Sinica,2016,43(3):549-556.

[19] 伍涛,陶书田,张虎平,宋跃,姚改芳,张绍铃.疏果对梨果实糖积累及叶片光合特性的影响[J].园艺学报,2011,38(11):2041-2048.WU Tao,TAO Shutian,ZHANG Huping,SONG Yue,YAO Gaifang,ZHANG Shaoling.Effects of fruit thinning on fruit sugar accumulation and leaf photosynthetic characteristics of pear[J].Acta Horticulturae Sinica,2011,38(11):2041-2048.

[20] 常馨月.杨凌引进葡萄品种性状调查及负载量分析[D].杨凌:西北农林科技大学,2018.CHANG Xinyue.Invetigation on characters and load analysis of grape varieties introduced into Yangling[D].Yangling:Northwest Agriculture and Forestry University,2018.

[21] WANG X J,ZHANG B B,GUO S L,GUO L,CHEN X X,HE X,MA R J,YU M L.Effects of fruit load on photosynthetic characteristics of peach leaves and fruit quality[J].Scientia Horticulturae,2022,299:110977.

[22] 杨蕾,洪林,刘兆俊,杨海健,王武.六个金柑品种果实品质与营养综合评价[J].浙江农业学报,2022,34(3):534-547.YANG Lei,HONG Lin,LIU Zaojun,YANG Haijian,WANG Wu.Comprehensive evaluation of fruit quality and nutrition of six kumquat varieties[J].Acta Agriculturae Zhejiangensis,2022,34(3):534-547.

[23] 马若寒,谢雪曼,肖若余,雷世梅,韩刚,林钧,杨治友,宋明华,蒋猛,曾维英,罗雪峰,韦洁敏,白娟,李纯凡,杨晓红.重庆主栽龙眼品种果实品质研究[J].西南大学学报(自然科学版),2021,43(7):52-60.MA Ruohan,XIE Xueman,XIAO Ruoyu,LEI Shimei,HAN Gang,LIN Jun,YANG Zhiyou,SONG Minghua,JIANG Meng,ZENG Weiying,LUO Xuefeng,WEI Jiemin,BAI Juan,LI Chunfan,YANG Xiaohong.Study of fruit quality of main longan cultivars in Chongqing[J].Journal of Southwest University(Natural Science Edition),2021,43(7):52-60.

Effects of different leaf/fruit ratio on photosynthetic characteristics and fruit quality of Hongmeiren citrus hybrid under protected cultivation

WANG Peng1,2,JIN Longfei1,2,HUANG Bei1,2,CAO Ming’ao3,WEN Mingxia1,WU Shaohui1,XU Jianguo1,2*

(1Zhejiang Citrus Research Institute,Taizhou 318026,Zhejiang,China;2Zhejiang Branch of National Citrus Variety Improvement Center,Taizhou 318026,Zhejiang,China;3College of Horticulture and Gardening,Yangtze University,Jingzhou 434025,Hubei,China)

Abstract:【Objective】Reasonable leaf/fruit ratio is an important cultivation index to balance tree vigor, yield and fruit quality.The study on effects of different leaf/fruit ratio on the photosynthetic characteristics and fruit quality of citrus can provide a theoretical basis for improving fruit quality and tree growth.【Methods】6-year-old Hongmeiren citrus hybrid trees grafted on trifoliate orange rootstock under protected cultivation were used as experimental materials.Three different leaf/fruit ratio(LFR)levels(60,80 and 100)were set respectively through twice thinning.The shoot and leaf growth,leaf chlorophyll content, photosynthetic parameters, yield and fruit quality were determined.【Results】The shoot growth increased with the increase of leaf/ fruit ratio.The shoot number and internode length with LFR100 treatment were 1.91 and 1.94 cm,respectively,which were higher than those with LFR60 and LFR80 treatments.However, the leaf growth increased firstly and then decreased with the increase of leaf/fruit ratio.The leaf area, thickness and weight with LFR80 were 291 5.5 mm², 0.34 mm and 1.47 g,respectively,which were higher than those with LFR60 and LFR80.Chlorophyll synthesis in citrus leaves was also affected by leaf/fruit ratio.The chlorophyll content increased significantly with the increase of leaf/fruit ratio.The leaf chlorophyll content with LFR100 in spring- and autumn-growing shoots were 138.56 and 121.96 respectively, which were obviously higher than those with LFR60 and LFR80.The fruit size of citrus was closely related to leaf/fruit ratio.The single fruit weight, longitudinal diameter and transverse diameter with LFR100 were 328.54 g,88.20 mm and 87.68 mm,respectively,which were significantly higher than those with LFR60 and LFR80.The photosynthetic rate of citrus leaves was also affected by leaf/ fruit ratio due to the distribution change of assimilative products.The net photosynthetic rates with LFR60 in spring-and autumn-growing shoots were 14.84 μmol·m-2·s-1 and 17.26 μmol·m-2·s-1,respectively,which were obviously higher than those with LFR80 and LFR100.The transpiration rates with LFR60 in spring-and autumn-growing shoots were 2.14 and 2.03 mmol·m-2·s-1,respectively, which were higher than those with LFR80 and LFR100.The stomatal conductance of LFR60 in spring-and autumn-growing shoots were 67.87 and 94.33 mmol·m-2·s-1,which were obviously higher than that with LFR80 and LFR100.The water use efficiency with LFR60 in spring- and autumn-growing shoots were 0.25%and 0.27%,respectively,which were obviously higher than that with-LFR80 and LFR100.The quality of citrus fruit was greatly affected by the leaf/fruit ratio.The total soluble solid contents with LFR60 and LFR80 were 11 and 10.6, respectively, which were significantly higher than those with LFR100.The total acid content with LFR60 was 0.74 g·100 ml-1,which was significantly higher than that with LFR80 and LFR100.LFR80 had the highest mean value of total soluble solid/acid ratio.The color,edible rate and vitamin C content didn’t exhibit significant change.The fruit quality was comprehensively assessed by using the membership function.The average value of the membership function ranked in a descending order: LFR80 >LFR60 >LFR100.【Conclusion】The LFR80 treatment had higher shoot and leaf growth, chlorophyll content and photosynthetic rates, fruit weight, yield per plant and the best fruit quality.Therefore, in order to ensure high quality and stable yield continuously, the reasonable leaf/fruit ratio of Hongmeiren citrus under protected cultivation should be about 80.

Key words:Citrus;Leaf/fruit ratio;Shoot and leaf growth;Photosynthetic characteristics;Fruit quality

中图分类号:S666

文献标志码:A

文章编号:1009-9980(2022)10-1857-07

DOI:10.13925/j.cnki.gsxb.20220187

收稿日期2022-04-12

接受日期:2022-05-16

基金项目国家重点研发计划课题(2020YFD1000102);国家现代农业(柑橘)产业技术体系建设专项(CARS-26-02A)

作者简介王鹏,男,副研究员,博士,从事柑橘栽培生理及品质调控研究。Tel:18205862926,E-mail:peter_wang81@163.com

*通信作者Author for correspondence.Tel:0576-84228622,E-mail:425666615@qq.com