自然冷驯化对酿酒葡萄抗寒性的影响

张晓煜1,2,冯 蕊3,陈仁伟4,杨 豫3,丁 琦1,李芳红5,王 静1,2,李红英1,2*

1中国气象局旱区特色农业气象灾害监测预警与风险管理重点实验室,银川 750002;2宁夏气象科学研究所,银川 750002;3宁夏大学农学院,银川 750021;4中国农业大学资源与环境学院,北京 100094;5宁夏农林科学院,银川 750021)

摘 要目的】冷驯化是植物获得抗寒能力的重要生理过程,研究葡萄自然冷驯化对低温的响应过程,对揭示葡萄抗寒力的形成过程及生理机制具有重要意义。【方法】以贺兰山东麓赤霞珠和北红1年生成熟枝条为试验材料,在2020—2021年,通过测定自然冷驯化过程中的生理生化响应指标,包括过冷却点SD、结冰点FP、可溶性糖含量、可溶性蛋白含量、电导率Con、Ca2+含量、蔗糖Su含量、ABA含量等,构建了抗寒力指数反映葡萄枝条冷驯化过程,运用方差分析、t检验和数值模拟方法,分析葡萄生理生化参数对低温的响应过程,定量评价自然冷驯化过程对葡萄枝条抗寒性的影响。【结果】(1)最低气温是冷驯化过程的主导因子;低温引发葡萄枝条含水率降低,Ca2+含量增加,改善枝条渗透调节能力;随着冷驯化温度降低,葡萄枝条蔗糖含量增加,抗寒性提高。枝条的ABA含量与日照时间(光周期)存在显著的正相关关系,但与低温关系不显著;降水(灌溉)降低了葡萄枝条抗寒力。(2)北红枝条抗寒力强于赤霞珠,年际间赤霞珠过冷却点SD和电导率Con均存在显著差异,北红过冷却点SD存在显著差异,其他因子差异不显著。(3)葡萄冷驯化过程是渐进累积的,葡萄抗寒力随着冷驯化气温的降低而增强,葡萄抗寒力指数与低温存在典型的Logistic非线性关系,在气温低于18.0 ℃时,葡萄启动冷驯化过程,抗寒力随温度降低而增强;在气温低于12.0 ℃后,葡萄抗寒能力迅速增大;在气温低于3.0 ℃时,葡萄枝条的抗寒力增大趋缓,至埋土前,葡萄抗寒力趋于最大。【结论】随着夏末日照时间缩短,葡萄枝条ABA含量逐步增加;低温在冷驯化过程中起主导作用,随着气温降低,葡萄枝条含水率下降,Ca2+和蔗糖含量增加。随气温降低,葡萄枝条抗寒力呈Logistic非线性渐进累积增大。

关键词酿酒葡萄;冷驯化;抗寒性;最低气温;光照时间;过冷却点;Ca2+;ABA

越冬冻害是中国北方酿酒葡萄最主要的气象灾害之一,是葡萄与葡萄酒产业的主要限制性因素。葡萄越冬冻害的发生取决于葡萄品种、栽培管理和冬前冷驯化水平[1-2]。大量的研究表明,不同品种葡萄的抗寒性不同[3-6],山葡萄的抗寒性最强,其次是美洲种,欧亚种的葡萄最不耐冻;同为欧亚种,西拉的抗寒性明显弱于赤霞珠和马瑟兰[6-8]。不同的栽培管理如砧木嫁接、产量水平、病虫害等对葡萄抗寒性有明显的影响[9-12]

植物获得抗寒性的适应过程称为冷驯化(Cold acclimation,CA)[1],冷驯化是植物提高抗寒性和安全越冬的重要策略。植物在长期的进化和适应过程中,逐渐演化出一套高效且复杂的机制来应对低温胁迫。葡萄枝条ABA 可能参与了触发整个植物组织不同部位的冷驯化过程[13]。ABA 及其信号传导途径参与葡萄芽的冷驯化和去驯化[14]。ABA 在适应过程和抗冻能力方面似乎很重要,与特定基因表达相关,大量研究证实了COR基因的表达对于植物抗寒性和冷驯化十分关键[15]。Ca2+是低温下参与调节冷驯化应答机制中信号转导途径重要的第二信使[16-17]。Koussa 等[18]在不同的葡萄组织中观察到最高ABA 水平在葡萄休眠阶段。低温诱导下葡萄渗透调节物质增多,植物抗氧化酶活性升高,降低细胞质膜受伤害程度[19]。冷驯化过程除受低温影响外,还受光周期的影响[20],Welling等[21]试验证据说明,低温和光在诱导植物冷驯化时是相互独立的。Mullins 等[22]发现,暴露于-5 ℃后,植物的抗寒性达到最强,冷驯化程度最完全。冷驯化过程是累积性的,它可能被停止、逆转和重启,所有这些都取决于温度的波动[1]。冷驯化过程在温度升高到一定程度(10 ℃以上)并维持一段时间后,植物抗寒性可以恢复到冷驯化以前的水平,称为去驯化[17]。灌溉也可能部分解除冷驯化,对葡萄抗寒性也有重要影响[23]

葡萄获得抗寒性的冷驯化过程因气候的多变性,不同年份、地域冬前的冷驯化水平相差很大。目前,对自然冷驯化过程中葡萄抗寒力增强过程还不清楚,冷驯化开始、增强、结束的温度指标还没有建立起来。开展葡萄冷驯化对葡萄抗寒性研究中揭示越冬冻害形成机制,完善葡萄越冬冻害防御技术体系,减轻中国北方葡萄埋土越冬区冻害具有重要意义。本文拟通过大田试验取样,检测自然冷驯化过程中葡萄枝条的渗透调节物质、保护酶、电导率和过冷却点,揭示葡萄抗寒性对低温的响应过程,建立葡萄抗寒性与低温的关系模型,解析葡萄冷驯化低温指标,为摸清葡萄冬前抗寒力形成机制奠定基础。

1 材料和方法

1.1 材料

供试材料选择欧亚种酿酒品种赤霞珠(Vitis vinifera‘Cabernet Sauvignon(CS)’,种植在银川市永宁县玉泉营立兰酒庄)和北红(‘Beihong’Vitis vinifera × V. amurensis,‘Beihong’(BH),种植在银川市永宁县玉泉营西夏王葡萄基地)的枝条(芽)作为实验材料。赤霞珠原产于波尔多,是长相思(Sauvignon Blanc)与品丽珠(Cabernet Franc)杂交的后代,是世界上最著名的红葡萄品种,在中国北方种植比例最高,其抗寒力相对较弱,代表了欧亚种葡萄的抗寒水平。北红是中国科学院植物所选用欧亚种玫瑰香(Vitis vinifera)与山葡萄(Vitis amurensis)杂交品种,抗寒力强,可以在贺兰山东麓产区露地越冬。采样树树龄5~7 a,南北行向种植,行距3.0 m,株距0.5 m,露地厂字形栽培,植株健壮,无病虫害,产量水平为4.5 t·hm-2。实验材料取自葡萄转色后1 a 生成熟枝条,每年自8 月份开始枝条取样,以后每隔5~9 d 采集1次样品,每个品种每次各采集10根枝条,3次重复;枝条要求粗度在0.5~1 cm。样品枝条经保鲜膜(石蜡)封两端后,置于样品袋中于4 ℃下存放待测。

1.2 试验方法

1.2.1 过冷却点和结冰点检测 以各供试品种枝条表皮作为测定部位,置于人工霜冻试验箱(型号:SDX-20)内,在待测部位固定T(K)-G 0.32 型热电偶温度传感器,FrosTem40 V2.0 数据采集系统与温度传感器连接,每10 s扫描采集1次数据,温度控制精度为±0.3 ℃。将监测的热电偶温度实时传输给电脑专业软件,自动连续绘制枝条温度变化曲线。每个处理枝条均取30个样本,分3组进行测定。

设置温度曲线模拟自然降温过程,枝条以3.0 ℃·h-1的速率从室温降至-25.0 ℃。

1.2.2 相对电导率的测定 将供试材料先用蒸馏水冲洗干净,用干纱布擦干后,避开芽眼,削成2~3 mm的薄片,混合均匀,称取2.00 g放入50 mL具塞试管中(每个处理3次重复),加20 mL去离子水,摇匀后在室温条件下静置24 h,在测定前再次摇匀,略微静置一段时间后用DDSJ-308F型电导仪测定初电导率R1,测定完毕后用玻璃塞封口,置于水浴锅中沸水浴30 min,取出冷却至室温,摇匀略微静置后测定终电导率R2。3次重复,采用(1)式计算相对电导率(RC)。

1.2.3 枝条含水量的测定 将供试品种的一年生枝条切成3~5 mm 的薄片混匀后,称取1.00 g,之后放入烘箱在110 ℃的温度下将枝条烘干至恒重。

1.2.4 其他生理指标的测定 剩余枝条避开芽眼,用切片机切成1~2 mm 厚的薄片,每个温度处理薄片平均分成3 份,混合均匀后迅速用液氮冷冻,放入-78 ℃超低温冰箱中保存。随机取样3次作为3次重复,测定其相关指标。

称取1.00 g 枝条放入预冷好的研钵中,加入适量pH=7.8 的预冷磷酸缓冲液,在冰浴上研磨成浆,加缓冲液冲洗研钵2~3次,使终体积为10 mL,将匀浆倒入离心管中,4 ℃条件下10 000 r·min-1 离心10 min,收集上清液保存在4 ℃冰箱中。所得残渣再用pH=7.8 的预冷磷酸缓冲液10 mL 提取1 次,合并两次上清液,提取液总体积为20 mL。使用此提取液测定以下生理指标[24]

采用微波消解法测定Ca2+含量[25],采用间苯二酚比色法测定枝条蔗糖含量[26],采用ABA 试剂盒测定ABA含量(货号CSB-E09159P1)。

1.2.5 葡萄抗寒力指数(Cold resistance of grape)用以下公式计算。

式中,CR为葡萄枝条抗寒力指数,SDmax 为葡萄过冷却点最大值,SDmin 为过冷却点最小值。

1.3 气象数据及处理方法

气象数据来源于宁夏气象信息中心,基于2018—2021 年立兰酒庄和巴格斯酒庄区域自动气象站小时气象数据,分别整理成日平均气温(T)、最低气温(Tn)、降水量(R)等,日照时数(S)来自银川国家气候基准站同时段数据,分别整理成日日照时数(S),为统计分析需要,将平均气温、最低气温、降水量、日照时数等气象因子做了膨化处理,分别整理成节点日期前1、3、5、7、10 d 内平均气温,分别记为T1、T3、T5、T7、T10;节点日期当天和前3、5、7、10 d内平均最低气温,分别记为Tn、Tn-3 Tn-5、Tn-7、Tn-10;节点日期3、5、7、10 d 内最低气温,分别记为Tn3、Tn5、Tn7、Tn10;节点日期前1、3、5、7、10 d 内降水量,分别记为R1、R3、R5、R7、R10,节点日期前1、3、5、7、10 d 内平均日照时数,分别记为S1、S3、S5、S7、S10

1.4 分析方法

数据分析使用SPSS 22.0软件,方差分析为单因素方差分析(One Way-ANOVA);Logistics 方程采用DPS软件拟合;制图采用Origin 2018。

2 结果与分析

2.1 冷驯化过程中葡萄枝条生理指标与气象因子的相关性

分析阶段平均气温、阶段最低气温(Tn)、阶段平均最低气温(Tn-)、阶段降水量(R)、阶段平均日照时数(S)与枝条ABA、Ca2+、蔗糖(Sucrose,Su)、可溶性蛋白(Soluble protein,SP)含量,以及电导率(Conductivity,Con)、枝条过冷却点(Supercooling disadvantages,SD)、枝条结冰点(Freezing point,FP)、枝条含水率(Branch moisture content,BMC)的相关关系,制作了相关关系热图(图1)。结果表明,枝条过冷却点(SD)与枝条含水率(BMC)存在显著相关关系,随着BMC减少,SD降低,北红的枝条更耐冻。枝条过冷却点(SD)与10 d内平均气温(T10)、平均最低气温(Tn-10)呈极显著相关,其中Tn-10与SD关系最为密切(北红最大决定系数(R2)达到0.484 4,n=32,p=0.000 01;赤霞珠R2=0.323 8,n=30,p=0.001),说明葡萄抗寒力的增强是渐进的,随着低温的累计逐渐加强;北红枝条电导率(Con)与1~5 d最低气温存在显著正相关关系,最低气温越低,枝条电导率越大,其中Tn-3 与Con 关系最为密切(R2=0.135 4,n=33,p=0.035),但赤霞珠Tn与Con 并无显著相关关系。北红枝条BMC 与10 d 内最低气温Tn-10存在极显著正相关关系,其中10 d平均最低气温Tn-10与BMC关系最为密切(R2=0.443 6,n=33,p=0.000 023);与7~10 d最低气温存在显著正相关关系,最低气温越低,枝条电导率越大,可见通过前期低温驯化,枝条的含水率随最低气温下降而降低。降水(R)和日照时数(S)与SD、Con和BMC无显著相关关系。

图1 2020—2021 年葡萄生化指标与气象因子的相关性
Fig.1 Heat map of correlation between grape biochemical indicators and meteorological factors in 2020—2021

A.2020—2021 年北红;B.2020—2021 年赤霞珠;C.2021 年北红;D.2021 年赤霞珠。
A.2020—2021 Beihong;B.2020—2021 Cabernet Sauvignon;C.2021 Beihong;D.2021 Cabernet Sauvignon.

统计分析发现,北红ABA与前7日平均日照时数(S7)有显著的负相关关系(R2=0.291 6,n=17,p=0.025),随着日照时间的减少,ABA 含量增加,有助于通过落叶回流养分提高抗寒性。而赤霞珠与日照时数相关不显著。ABA 与枝条蔗糖含量(Su)存在显著的负相关关系(R2=0.294 8,n=17,p=0.024)。而北红Su与10 d内平均气温、最低气温均存在显著的负相关关系,其中与T10相关性最显著(R2=0.360 0,n=17,p=0.011),说明蔗糖参与了冷驯化过程,并随着T10降低,蔗糖含量增加。研究还发现Ca2+参与了北红冷驯化过程,与Tn-5呈极显著的负相关关系(R2=0.434 3,n=17,p=0.004),随着5 日平均最低气温降低,Ca2+含量增加。降水量与ABA、Su和Ca2+含量相关不显著。

2.2 葡萄冷驯化过程中生理指标对低温的响应

2.2.1 过冷却点SD 和电导率Con 及枝条含水量对低温的响应 图2 显示,赤霞珠和北红枝条过冷却点(SD)能敏感地捕捉冷驯化信号,SD 随着近10 d平均最低气温Tn-10下降,至10 月25 日达到最大(图2),10 月29 日前后因农田大量灌水,影响了枝条过冷却点SD进一步下降,SD有所回升。SD对自然冷驯化过程较敏感,其变化过程与Tn-10降低过程非常一致。

图2 2020年枝条过冷却点随自然冷驯化变化
Fig.2 Variation of branch supercooling point with natural cold acclimation and low temperature in 2020

A.赤霞珠;B.北红。下同。
A.Cabernet Sauvignon;B.Beihong.The same below.

图3显示,随自然冷驯化过程气温降低,枝条电导率(Con)波动较大,2020年赤霞珠Con逐步升高,在9 月23 日近10 日平均最低气温Tn-10降到10 ℃左右达到最大,之后枝条Con 迅速降低,在经历了10月2日霜冻天气后又在波动中缓慢上升。北红则是随气温下降,先出现上升,在Tn-10低于10 ℃时达到最大值,后因霜冻天气影响枝条Con迅速下降,直到10 月20 日,Tn-10接近0 ℃后Con 降至最低,之后随Tn-10降低,葡萄果实采收,Con 逐步回升。Con 能较好地反映自然冷驯化过程。

图3 2020 年枝条电导率随自然冷驯化变化
Fig.3 Changes of branch conductivity with natural cold domestication in 2020

图4 显示,随着平均最低气温Tn-10降低,赤霞珠枝条含水率(BMC)呈波动下降趋势,9月23日BMC降到较低水平,后因出现降水(9月22日立兰酒庄降水达到7.8 mm,玉泉营10.3 mm)BMC又开始增加,直至10月25日Tn-10下降到2.5 ℃左右,BMC降至最低,之后随着灌水,BMC略有回升。北红BMC对低温的响应趋势与赤霞珠相似。

图4 2020 年葡萄枝条含水率率随自然冷驯化变化
Fig.4 Changes of water content of grape branches with natural cold domestication in 2020

2.2.2 蔗糖和Ca2+含量对低温的响应 图5显示,北红枝条蔗糖含量(Su)与10 d平均最低气温Tn-10密切相关(R2=0.442 2,n=17,p=0.004),随着平均最低气温降低,Su含量缓慢上升至9月13日开始下降(9月22日有大的降水),至10月20日达到最低,在Tn-10下降至5.0 ℃以下时,Su迅速增加。北红枝条Ca2+含量对5 d 平均气温T5有一定的响应(R2=0.418 6,n=17,p=0.005),随着T5降低,枝条Ca2+含量波动中上升,Ca2+含量波动可能受降水和灌溉的影响。Ca2+对Tn-5有较好的响应,说明Ca2+作为信使参与了冷驯化过程,可作为冷驯化程度的指示计。

图5 2021 北红枝条Su(A)与Ca2+(B)对低温的响应
Fig.5 Responses of sucrose(A)and Ca2+(B)to low temperature in 2021 Beihong branches

2.2.3 ABA对日照时间的响应 图6显示,ABA对7 d 内日照时数S7有很好的响应,当立秋日照减少,ABA含量在上升,至10月29日达到最大值(10月25日下降主要受10月24日灌溉影响),此时葡萄处于休眠期,贺兰山东麓大部分葡萄园开始埋土越冬;之后随日照时数上升,ABA含量下降到初始水平。

图6 2021 北红ABA 对日照时间的响应
Fig.6 Response of Beihong ABA to sunshine duration in 2021

2.3 冷驯化过程中抗寒力与低温的关系

2.3.1 不同冷驯化过程对葡萄抗寒力的影响 采用独立样本t检验对2020—2021年冷驯化过程中赤霞珠、北红的Tn-10(℃)、电导率(%)、过冷却点(℃)、枝条含水率(%)等参数进行显著性分析。结果表明,赤霞珠年际间过冷却点有显著性差异(p=0.004),电导率有显著性差异(p=0.006),其他指标无显著性差异;年际间北红过冷却点有显著性差异(p=0.019),其他指标无显著性差异。2020 和2021 年赤霞珠和北红品种间各指标无显著性差异(图7)。因此,选用SD表述葡萄品种和年际间抗寒力指标,构建抗寒力指数反映葡萄的冷驯化过程。

图7 2020—2021 赤霞珠和北红冷驯化参数年际差异
Fig.7 Interannual differences in cold domestication parameters of Cabernet Sauvignon and Beihong from 2020 to 2021

2.3.2 冷驯化过程中抗寒力与低温的关系模型 选用过冷却点建立与最低气温的关系模型,按照(1)式构建葡萄抗寒力指数,建立抗寒力指数CR 与10 d平均最低气温Tn-10的关系模型,结果列入表1。

表1 抗寒力CR 与Tn-10间的关系模拟
Table 1 Simulation of the relationship between cold resistance CR and Tn-10

品种Variety北红Beihong赤霞珠Cabernet Sauvignon时间Date 2020 2020关系模型Simulation model CR=7.608 4/[1+EXP(-1.978 1+0.268 770 Tn-10)](3)CR=4.752 5/[1+EXP(-4.336 5+0.448 2 Tn-10)](4)R2 n 0.919 9 0.697 9 12 12显著性检验Significance test 0.000 1 0.000 4

对(3)、(4)式求二阶导数,解出2020 年北红和赤霞珠模型的两个拐点(渐升期)和(缓升期),说明赤霞珠在最低气温低于12.61 ℃后,过冷却点迅速降低(抗寒力迅速增大),在最低气温降低至6.74 ℃后,过冷却点趋于最低(抗寒力趋于最大),以后随气温降低,过冷却点抗寒力缓慢降低。北红则在10.73 ℃后抗寒力迅速增大,在气温降到2.97 ℃后,抗寒力增加趋缓。北红的抗寒力上界大于赤霞珠,且对低温的响应快于赤霞珠,说明北红更抗寒(图8)。两年同品种葡萄抗寒力有一定差异,可能与2021年7—8月高温干旱的影响有关。

图8 最低气温与葡萄枝条抗寒力指数的关系
Fig.8 The relationship between the minimum temperature and the cold resistance of grape branches

为了找寻冷驯化过程的开始日期,建立了2020年北红和赤霞珠过冷却点与Tn-10的关系模型(图9)。两者满足二次曲线关系,对建立的关系模型求极值,当最低气温降低至17.7 ℃时,赤霞珠过冷却点有极大值。对应的最低气温出现日期为2020 年8 月15日(8月7日立秋)。同样,当最低气温降低到17.5 ℃时,北红过冷却点有极大值。对应的最低气温出现日期为2020年8月15日。因此,可以认为酿酒葡萄赤霞珠和北红都是在立秋天气转凉后启动冷驯化,北红和赤霞珠冷驯化启动温度基本相当。

图9 赤霞珠(A)和北红(B)过冷却点SD 与Tn-10的关系
Fig.9 Relationship between SD and Tn-10 of supercooling point of Cabernet Sauvignon(A)and Beihong(B)

3 讨 论

葡萄自然冷驯化过程非常复杂,受多种环境因素影响,光周期、低温等诱导下均可能启动冷驯化过程。为了检测葡萄冷驯化过程,需要对比分析研究期日长、低温、降水(灌溉)的变化,同时检测葡萄枝条生理生化指标,分析两者的响应关系,分析影响冷驯化过程的主导因子和冷驯化敏感生理生化指标,建立抗寒力与关键影响因子的关系模型,用于表征冷驯化过程开始、加强和结束时间及环境条件。

冷驯化过程是渐进的,低温是冷驯化过程的主导因子,低温与SD、Con、BMC、Su 含量和Ca2+含量关系密切;光照时间与ABA含量关系密切;降水(灌溉)降低了葡萄枝条的抗寒力。

生理生化指标对几天内温度、光照的响应关系比1 d内的更强,说明冷驯化过程是累积性的。葡萄枝条的过冷却点SD、电导率Con、枝条含水率BMC、蔗糖含量Su和Ca2+含量与最低气温,尤其是Tn-10有密切的相关关系,与光照时间关系不密切,说明最低气温是推动冷驯化过程的主导因子,宜作为冷驯化启动的初级信使。光照时间(光照周期)与ABA含量关系密切,与其他指标如SD、Con、BMC、Su含量、Ca2+含量等没有显著相关关系,日照时长对冷驯化过程的影响可能是通过日长变化诱导ABA产生,又通过ABA诱导抗寒相关基因和酶的表达,提高糖的合成和促进叶片养分的回流,从而提高葡萄抗寒性[14-15]。外源ABA可提高糖合成酶基因表达,也间接证实了上述结果[27]。值得一提的是,低温与ABA含量无显著相关关系,这与Chen等[28]的研究结果不一致,可能是光周期与低温对冷驯化的作用途径不同有关,低温和光周期独立参与了冷驯化过程[21]。也可能与不同树种对光周期和低温响应机制不同有关[20]。降水(灌溉)与冷驯化生理生化参数无显著相关关系,但降水(灌溉)会影响冷驯化过程中BMC、Ca2+含量、ABA 含量、Su 含量、SD、Con 等,主要通过稀释作用影响其渗透调节物质、激素等浓度水平,David[23]也观察到灌溉减低了葡萄抗寒性。Ca2+作为信号通过低温诱导从质外体Ca2+重新分配到共质体中参与了冷驯化过程[1]。低温还促进枝条含水率降低,与陈佰鸿等[29]的研究结果一致。随着温度降低,蔗糖含量上升,蔗糖含量升高与蔗糖合成酶(SS)、蔗糖磷酸合成酶(SPS)的低温诱导相关,通过诱导蔗糖含量增加提高抗寒性,这与周兰兰等[26]研究结果一致。

SD能反映冷驯化过程的年际差异,对低温比较敏感,可以作为衡量冷驯化程度的生理指标。

2020—2021 试验结果表明,冷驯化过程中Su、ABA、Ca2+含量等呈上升趋势,BMC、SD 呈下降趋势,Con则趋势不明显。年际间赤霞珠SD和Con有显著差异,北红SD 年际间有显著差异,但Con 无显著差异。其他生理生化指标年际间无显著差异。因此,过冷却点SD对冷驯化过程的响应最敏感,不论品种、年份,SD 都能反映植物抗寒力随温度降低而增大的过程;电导率Con对冷驯化响应关系次之;枝条含水率BMC与冷驯化过程存在一定的响应关系,但BMC受降水和灌溉的影响较大。因此,采用过冷却点构建抗寒力指数CR反映葡萄枝条抗寒性最合适,其兼具年际稳定性和敏感性[30],这与David[20]评价光周期对葡萄冷驯化影响所采用的指标相似。

冷驯化始于夏末天气转凉,气温低于18 ℃后冷驯化过程启动,最低气温与葡萄枝条抗寒力指数CR存在Logistics非线性关系。

过冷却点SD与Tn-10存在显著的二次曲线关系,求解方程发现,2020冷驯化过程始于立秋天气转凉以后,当Tn-10低于18 ℃,北红和赤霞珠陆续启动冷驯化过程。葡萄枝条抗寒力指数CR 与Tn-10存在明确的Logistics 关系,当Tn-10低至10~13 ℃时(2020 年约在秋分时节),葡萄枝条抗寒力迅速增大。当Tn-10降至2.0~3.0 ℃时(2020年约在霜降时节),葡萄抗寒力增强趋于平缓。其后随着气温继续降低,枝条抗寒力趋于最大。本项试验没有发现去驯化过程[31],可能与2020—2021年气温整体呈波动中下降趋势,没有大幅度的回暖现象有关。

2021 年7—8 月的高温干旱对试验结果有一定影响,明显提高了前期葡萄枝条的ABA含量和SD;试验过程中葡萄园灌溉和自然降水等对试验结果也有一定的干扰。2020—2021 年自然冷驯化降温过程比较相似,还不能完全反映贺兰山东麓不同气候年型下自然冷驯化过程。实事上,不同地域和枝条的高度对其冷驯化过程也有一定的影响[31]。限于试验条件,本研究没有涉及葡萄枝条冷驯化过程的分子机制[32]。因此,葡萄自然冷驯化过程及影响的研究3有待今后继续深入展开。

4 结 论

葡萄冷驯化过程是一个非常复杂的生理过程,冷驯化强度受到葡萄遗传特性、光周期、低温、降水(灌溉)等外界因子共同影响。低温作为冷驯化的主导因子参与了葡萄冷驯化过程,随着立秋气温降低,葡萄枝条含水率下降,Ca2+和蔗糖含量增加。过冷却点能反映冷驯化过程的年际差异,对低温比较敏感,可以作为衡量葡萄枝条冷驯化程度的生理指标。葡萄枝条的抗寒力是渐进累积的,以Logistic非线性曲线形式增加。日照时间(光周期)对冷驯化过程有重要影响,与枝条ABA含量存在显著的正相关关系。降水(灌溉)降低了葡萄枝条的抗寒力。

参考文献References:

[1] KELLER M.葡萄学:解剖学与生理学[M].王军,段长青,何非,朱宝庆,译.北京:科学出版社,2016.KELLER M.The science of grapevines:Anatomy and physiology[M].WANG Jun,DUAN Changqing,HE Eei,ZHU Baoqing,Translated.Beijing:Science Press,2016.

[2] LIU B,WANG X Y,CAO Y,ARORA R,ZHOU H,XIA Y P.Factors affecting freezing tolerance:A comparative transcriptomics study between field and artificial cold acclimations in overwintering evergreens[J].The Plant Journal,2020,103(6):2279-2300.

[3] 高振,翟衡,臧兴隆,朱化平,杜远鹏.利用低温放热法分析8个葡萄砧木和6 个栽培品种芽的抗寒性[J].园艺学报,2014,41(1):17-25.GAO Zhen,ZHAI Heng,ZANG Xinglong,ZHU Huaping,DU Yuanpeng.Using differential thermal analysis to analyze grape buds cold hardiness of 8 rootstocks and 6 cultivars[J].Acta Horticulturae Sinica.2014,41(1):17-25.

[4] 高振,翟衡,张克坤,党园,杜远鹏.LT-I 分析7 个酿酒葡萄品种枝条的抗寒性[J].中国农业科学,2013,46(5):1014-1024.GAO Zhen,ZHAI Heng,ZHANG Kekun,DANG Yuan,DU Yuanpeng.A study on cold hardiness of seven wine grape canes by LT-I analysis[J].Scientia Agricultura Sinica.2013,46(5):1014-1024.

[5] 王文举,张亚红,牛锦凤,王振平.电导法测定鲜食葡萄的抗寒性[J].果树学报,2007,24(1):34-37.WANG Wenju,ZHANG Yahong,NIU Jinfeng,WANG Zhenping.Study on cold tolerance of table grape cultivars by measuring the conductivity[J].Journal of Fruit Science,2007,24(1):34-37.

[6] 杨豫,张晓煜,陈仁伟,刘兆宇,李芳红,冯蕊,王静,李红英.不同品种酿酒葡萄根系抗寒性鉴定[J].中国生态农业学报,2020,28(4):558-565.YANG Yu,ZHANG Xiaoyu,CHEN Renwei,LIU Zhaoyu,LI Fanghong,FENG Rui,WANG Jing,LI Hongying.Comparing the cold resistance of roots of different wine grape varieties[J].Chinese Journal of Eco-Agriculture,2020,28(4):558-565.

[7] 陈仁伟,张晓煜,丁琦,杨豫,南学军,胡宏远,冯蕊,李芳红,张亚红.基于差热分析技术对4 种酿酒葡萄不同部位抗寒性综合评价[J].中国生态农业学报,2020,28(7):1022-1032.CHEN Renwei,ZHANG Xiaoyu,DING Qi,YANG Yu,NAN Xuejun,HU Hongyuan,FENG Rui,LI Fanghong,ZHANG Yahong.Comprehensive evaluation of cold resistance in different parts of four wine grape varieties based on different thermal analysis[J].Chinese Journal of Eco-Agriculture,2020,28(7):1022-1032.

[8] 牛立新,贺普超.电导法不同计量单位鉴定葡萄抗寒性研究[J].果树学报,1989,6(3):l59-164.NIU Lixin,HE Puchao.Study on the identification of grape cold resistance with different measurement units by conductivity method[J].Journal of Fruit Science,1989,6(3):159-164.

[9] 付晓伟,张倩,刘崇怀,樊秀彩,姜建福,郭大龙,曹亚平.评价葡萄根系抗寒性指标的确定[J].果树学报,2014,31(1):52-59.FU Xiaowei,ZHANG Qian,LIU Chonghuai,FAN Xiucai,JIANG Jianfu,GUO Dalong,CAO Yaping.Index for the evaluation of grape root cold-resistance[J].Journal of Fruit Science,2014,31(1):52-59.

[10] 范宗民,孙军利,赵宝龙,刘怀锋,于坤,章智钧,刘晶晶.不同砧木‘赤霞珠’葡萄枝条抗寒性比较[J].果树学报,2020,37(2):215-225.FAN Zongmin,SUN Junli,ZHAO Baolong,LIU Huaifeng,YU Kun,ZHANG Zhijun,LIU Jingjing.Evaluation of cold resistance of one-year shoots from‘Cabernet Sauvignon’grape vine grafted on different rootstocks[J].Journal of Fruit Science,2020,37(2):215-225.

[11] 鲁金星,姜寒玉,李唯.低温胁迫对砧木及酿酒葡萄枝条抗寒性的影响[J].果树学报,2012,29(6):1040-1046.LU Jinxing,JIANG Hanyu,LI Wei.Effects of low temperature stress on the cold resistance of rootstock and branch of wine grapes[J].Journal of Fruit Science,2012,29(6):1040-1046.

[12] 王丽雪,张福仁,李荣富,梁艳荣,刘艳.葡萄枝条中淀粉粒形态结构与抗寒力的关系[J].园艺学报,2000,27(2):85-89.WANG Lixue,ZHANG Furen,LI Rongfu,LIANG Yanrong,LIU Yan.The morphologic characteristics of starch grain in grape shoots and its relationship to cold resistance[J].Acta Horticulturae Sinica,2000,27(2):85-89.

[13] 沈漫,王明庥,黄敏仁.植物抗寒机理研究进展[J].植物学通报,1997,14(2):l-8.SHEN Man,WANG Mingxiu,HUANG Minren.Research progress of plant cold resistance mechanism[J].Botany Bulletin,1997,14(2):l-8.

[14] RUBIO S,FRANCISCO J,PÉREZ.ABA and its signaling pathway are involved in the cold acclimation and deacclimation of grapevine buds[J].Scientia Horticulturae,2019,256:1-10.

[15] 徐燕,薛立,屈明.植物抗寒性的生理生态学机制研究进展[J].林业科学,2007,43(4):88-94.XU Yan,XUE Li,QU Ming.Physiological and ecological mechanisms of plant adaptation to low temperature[J].Cientia Silvae Sinicae.2007,43(4):88-94.

[16] HOWELL G S.Grapevine cold hardiness:Mechanisms of cold acclimation,midwinter hardiness maintenance,and spring deacclimation[C].In Proceedings of the ASEV 50th Anniversary Annual Meeting,2000:35-48.

[17] 曹琴,孔维府,温鹏飞.植物耐寒及其基因表达研究进展[J].生态学报,2004,24(4):806-811.CAO Qin,KONG weifu,WEN Pengfei.Plant freezing tolerance and genes express in cold acclimation:a review[J].Acta Ecolgica Sinica,2004,24(4):806-811.

[18] KOUSSA T,ZAOUI D,BROQUEDIS M.Relationship between the levels of abscisic acid in latent buds in leaves and in intemodes of vitis vinifera L.cv.Merlot during the dormancy phase[J].OENO One,vine and wine open access journal,1998,32(4):203-210.

[19] 柴凤梅.葡萄种质资源抗寒性评价及抗寒候选基因挖掘[D].北京:中国科学院大学,2018.CHAI Fengmei.Evaluation of cold hardiness in grape germplasm resources and screening of candidate genes related to cold[D].Beijing:University of Chinese Academy of Sciences,2018.

[20] DAVID B S.Photoperiod effects on cold acclimation of grape rootstocks[D].Lubbock:Graduate Faculty of Texas Tech University,1996.

[21] WELLING A,MORITZ T,PALVA E T,JUNTTILA O.Independent activation of cold acclimation by low temperature and short photoperiod in hybrid aspens[J].Plant Physiology,2002,129(4):1633-1641.

[22] MULLINS M G,BOUQUET A,WILLIAMS L E.Biology of the grapevine[M].New York:Cambridge University Press.1992.

[23] DAVID B S.Evaluation of the effects of two deficit irrigation strategies on vinifera 'Cabernet Sauvignon' yield,fruit composition,cold acclimation,and hardiness[D].Lubbock:Graduate Faculty of Texas Technology University.2004.

[24] 赵世杰,苍晶.植物生化实验原理和技术[M].北京:中国农业出版社,2015.ZHAO Shijie,CANG Jing.The principle and technology of plant biochemical experiment[M].Beijing:China Agricultural Press,2015.

[25] 郭楠楠,段秋虹.微波消解-浓度直读法快速测定马兰中的4种阳离子[J].食品工业,2020,41(2):292-295.GUO Nannan,DUAN Qiuhong.Rapid determination of four cations in malan by microwave Digestion Direct-reading concentration method[J].Food Industry,2020,41(2):292-295.

[26] 周兰兰,栗孟飞,孙萍,杨光,李甜甜,李唯.酿酒葡萄枝条生长发育过程中蔗糖代谢及相关酶活性的变化[J].植物生理学报,2015,51(6):962-968.ZHOU Lanlan,LI Mengfei,SUN Ping,YANG Guang,LI Tiantian,LI Wei.Changes of sucrose metabolism and enzyme activities in wine grape branches at growth stages[J].Plant Physiology Journal.2015,51(6):962-968.

[27] WANG H R,JOSHUA J B,MICHELLE L J,LAURA J C,IMED E D.Exogenous abscisic acid enhances physiological,metabolic,and transcriptional cold acclimation responses in greenhouse grown grapevines[J].Plant Science,2020,293(1):1-13.

[28] CHEN T H H,HOWE G T,BRADSHAW H D.Molecular genetics analysis of dormancy-related traits in poplars[J].Weed Science,2002,50(2):232-240.

[29] 陈佰鸿,张彪,毛娟,郝燕,杨瑞,蔡学海,齐尚友.葡萄枝条水分含量变化与抗寒性关系[J].植物生理学报,2014,50(4):535-541.CHEN Baihong,ZHANG Biao,MAO juan,HAO Yan,YANG Rui,CAI Xuehai,QI Shangyou.Relationship between changes of water content in grape branches and cold resistance[J].Plant Physiology Journal,2014,50(4):535-541.

[30] 侯加林,党园,高振,翟衡.葡萄根和枝条抗寒性能测试仪的研制与试验[J].农业工程学报,2012,28(24):41-46.HOU Jialin,DANG Yuan,GAO Zhen,ZHAI Heng.Development and experiment of cold resistance tester for grape roots and branches[J].Transactions of the Chinese Society of Agricultural Engineering,2012,28(24):41-46.

[31] BASIL G S,GORDON S,HOWELL G S.Effect of site on cold acclimation and deacclimation of concord grapevines[J].American Journal of Enology and Viticulture,1977,28(1):43-48.

[32] CHAI F M,LIU W W,XIANG Y,MENG X B,SUN X M,CHENG C,LIU G T,DUAN L X,XIN H P,LI S H.Comparative metabolic profiling of vitis amurensis and vitis vinifera during cold acclimation[J].Horticulture Research,2019,6(1):1-12.

Effect of natural cold acclimation on the cold resistance in wine grapes

ZHANG Xiaoyu1,2, FENG Rui3, CHEN Renwei4,YANG Yu3, DING Qi1, LI Fanghong5, WANG Jing1,2,LI Hongying1,2*

(1Key Laboratory of Agricultural Meteorological Disaster Monitoring and Early Warning and Risk Management of Characteristic Agriculture in Arid Regions, China Meteorological Administration, Yinchuan 750002, Ningxia, China;2Ningxia Institute of Meteorological Sciences, Yinchuan 750002, Ningxia, China;3Agricultural College of Ningxia University, Yinchuan 750021, Ningxia, China;4School of Resources and Environment,China Agricultural University,Beijing 100094,China;5Ningxia Academy of Agriculture and Forestry,Yinchuan 750021,Ningxia,China)

Abstract:【Objective】Cold acclimation is an important physiological process for plants to increase cold resistance.The individual impact on the grape cold resistance from gene heredity and cultivation practice is quite stable,while the cold resistance of grape gained from cold acclimation in winter changes as the weather condition naturally varies with different years or places.Study on the responsive process of natural grape cold acclimation to low temperature and photoperiod is of great significance to reveal the formation process and physiological mechanism of grape cold resistance.It needs to build the relationship model between the cold resistance of grape and low temperature in order to analyze the low temperature indices for cold acclimation of grape.【Methods】In this paper,the annual ripe grape canes of Cabernet Sauvignon and Beihong at the eastern foot of Helan Mountain were taken and used as test materials to measure the physiological and biochemical response indicators,such as supercooling point,freezing point, soluble sugar, soluble protein, conductivity, Ca2+, sucrose,ABA, etc.Thereafter, the effect of natural cold acclimation on grape cold resistance was quantitatively evaluated by analyzing the response process of physiological and biochemical parameters to low temperature with the methods of variance analysis, t test and numerical simulation.The supercooling point and the freezing point were measured in the experimental frost box of SDX-20,in which the temperature sensors were fixed on the canes and data were taken once every 10 seconds.The supercooling point and the freezing point were determined according to the heat releasing process of tested canes.The dropping process of temperature was set as referring to the natural process with a decreasing rate of 3.0 ℃·h-1 from the room temperature to-25 ℃.Conductivity was measured with DDSJ-308F conductivity meter firstly and then it was put in the boiling water for 30 minutes after it was sealed with glass stopper.After it cooled down to room temperature, the conductivity was measure again under the condition where it kept still after it was shaken slightly.The water content in canes was measured with the heating and weighing method.Ca2+ content was measured by following the microwave digestion method.Cane sucrose content was measured with the method of resorcinol colorimetry.The ABA concentration was measured with ABA test toolkit.【Results】The results showed that: (1) The lowest temperature was the dominant factor in the cold acclimation process; Under the low temperature condition, grapes could reduce the water content in canes, increase Ca2+ content, and improve the osmotic regulation ability of the canes; Under the low temperature condition,grapes could also improve the cold resistance by increasing the sucrose content in canes.There was a significantly positive correlation between ABA content in canes and sunlight duration (photoperiod), but not closely related to the low temperature.Precipitation (irrigation) also played a significant role in the cold resistance of grape canes so that it reduced cold resistance of grape canes.(2) The indictor of cold resistance, which was calculated from the absolute difference value of maximum and minimum supercooling point values, showed that the cold resistance of Beihong canes was stronger than that of Cabernet Sauvignon.However, there was no significant difference in cold resistance for the physiological indicators between Cabernet Sauvignon and Beihong varieties in the same year, like supercooling points, conductivity and cane water content.There were significant differences in the supercooling point and the conductivity of Cabernet Sauvignon between different years,and there was a significant difference in the supercooling point of Beihong but there were no significant differences for other indicators, like conductivity and cane water content.(3) The grape cold acclimation was gradually accumulated, and the grape cold resistance increased as the cold acclimation temperature dropped.There was a typical nonlinear logistic relationship between the grape cold resistance and the low temperature.When the temperature was lower than 18.0 ℃, grapes triggered the cold acclimation process.The cold resistance increased with the decrease of temperature.When the temperature was lower than 12.0 ℃, the grape cold resistance increased rapidly.When the temperature was lower than 3.0 ℃, the increase of the cold resistance of grape canes slowed down, and the grape cold resistance reached the strongest before grapes were buried in the soil.【Conclusion】It was very complex physiological process of cold acclimation of grape as the intensity of cold acclimation was determined jointly by indicators,like grape gene heredity,photoperiod,low temperature,precipitation or irrigation and other environmental factors.The low temperature was a major determinate factor in the cold acclimation of grape.With the decrease of temperature at the beginning of autumn, the cold resistance of grape canes increased logistically rather than linearly and this process was evolving gradually and cumulatively.Sunshine was the secondary factor to play a role in the process of grape cold acclimation by inducing ABA generation.It seemed that temperature and sunshine independently played roles in the process of grape cold acclimation.

Key words:Wine grape; Cold acclimation; Cold resistance; Minimum temperature; Sunshine duration;Supercooling point;Ca2+;ABA

中图分类号:S663.1

文献标志码:A

文章编号:1009-9980(2022)10-1845-12

DOI:10.13925/j.cnki.gsxb.20220106

收稿日期2022-03-28

接受日期:2022-05-11

基金项目国家自然科学基金项目(41675114);宁夏回族自治区重点研发计划(2022BBF2014,2018BFH03012)

作者简介张晓煜,男,研究员,博士,主要从事葡萄气象与灾害风险管理研究。Tel:13895076317;E-mail:zhang_xynet@163.com

*通信作者Author for correspondence.E-mail:hongyinglhy@126.com