中国是桑属植物的重要起源中心之一,种质资源类型极其丰富,桑种占有量为全世界的50%,拥有15 个种及4 变种,共3000 多份资源[1]。桑椹又名桑果、桑枣,是桑树的聚花果穗,作为典型的“药食两用”水果,其色泽鲜艳,味美清甜,具有极高的营养价值和保健功效,深受消费者青睐。同时,桑树根系发达、生命力旺盛、易成林的特点使得它在防沙固土和生态旅游中也发挥着重要作用。目前,果桑产业已在我国四川、广东、湖北、广西、云南等地区呈现规模化发展的趋势,并对果桑嫁接苗的质量及砧穗组合提出了新的挑战。
砧穗组合是接穗与适宜的砧木品种进行组配的方式。砧木作为嫁接苗的基础,对接穗的生长特性、结果能力、果实品质以及抗逆性均有显著影响。在园艺植物柑橘[Citrus sinensis (L.) Osbeck][2]、葡萄(Vitis vinifera)[3]、苹果(Malus domestica Borkh.)[4]、桃[Prunus persica(L.)Batsch][5]等果树中,砧木对接穗果实品质的影响研究较为深入。徐志龙等[6]研究了金柑嫁接在金柑、枳和酸橘等砧木后果实品质的差异,发现酸橘是阳朔金柑的适宜砧木。李玉生等[7]研究了4种不同砧木对甜樱桃红灯(Cerasus avium L.)生长、产量和果实品质的影响,发现ZY-1 砧木嫁接红灯能改善果实品质,其果肉硬度、可溶性固形物含量、可溶性糖含量、糖酸比和总酚含量最高,分别为3.38 kg·cm-2、25.92%、20.98%、13.80 和144.03 mg·100 g-1,综合性状表现最佳。沈碧薇等[3]研究了11 个砧木对瑞都红玉葡萄(V.vinifera)生长结果与果实品质的影响,发现华佳8 号砧木嫁接瑞都红玉能改善果皮着色,且新梢生长势较旺,果粒大,质量达(5.92±0.23)g,可溶性固形物含量达(20.62±0.41)%,固酸比为48.32,口感清爽绵长。李惠等[8]发现中宁强、中宁异、加州黑3 种砧木的绿岭核桃(Juglans regia)单果质量、纵径、横径、侧径均极显著大于核桃砧木;中宁强、中宁异、加州黑砧木绿岭核桃的核仁脂肪含量分别为67.63%、67.14%、68.02%,均极显著高于核桃砧木。
国内外有关桑树砧木的选育及研究起步较晚,目前仅限于对砧木本身抵御外界不良环境条件(干旱、水涝、盐碱等)能力的评价[9-11];而砧穗互作的研究却少有涉及,尤其是砧木对接穗果实品质的影响更是鲜有报道。因此,在以高产和高品质为目的的现代化农业中,不仅需要谨慎选择优良的栽培品种,还需要选择最适宜的砧木[12]。对特定的果桑接穗品种的选择、组配适宜的砧木,使其具有最佳的生产能力,既能满足果树集约化栽培的需求,又为获得更好的经济效益奠定基础,对发挥果桑的产业优势具有重要意义。
目前生产上果桑嫁接苗砧木以广东桑桂桑优12为主,砧穗组合相对固定单一;且沿用传统的“袋接法”繁殖苗木,导致生产栽培中嫁接口埋于地面以下,致使接穗品种产生自生根,弱化了砧木对接穗的影响。不同砧木具有不同生理和生态特性,对气候、土壤环境条件的适应能力也有所差异,砧穗组合搭配是否合理,直接影响接穗的生长结果、果实品质和抵御外界不良环境条件的能力。笔者在本研究中收集了来自于全国不同生态环境地区的8 种桑树砧木,采用“芽接”嫁接方式,系统性地评价了8种砧木对果桑紫晶果实品质的影响,以期为栽培生产中最佳砧穗组合的选择提供参考依据,为进一步了解砧穗互作机制奠定基础。
试验所用的8 种桑树砧木:桑特优2 号(Morus atropurpurea Roxb.× M. atropurpurea Roxb.)、8632(M.multicaulis Perr.)实生苗、桂桑优62(M.atropurpurea Roxb.× M. atropurpurea Roxb.)、鲁 杂1 号(M. multicaulis Perr.×M.Perr.)、浙杂1 号(M.multicaulis Perr.×M.multicaulis Perr.)、浙杂3号(M.multicaulis Perr.×M.multicaulis Perr.)、丰驰桑(M.atropurpurea Roxb.× M. multicaulis Perr.)和 秦 桑1 号(M.multicaulis Perr.×M.multicaulis Perr.)均为1 年生实生苗(直径为0.7 cm 左右),由浙江省农业科学院蚕桑与茶叶研究所提供,于2019年3月25日进行田间定植,每个砧穗组合南北行向定植,株行距为0.5 m×2.0 m。于2019年7月8—11日,分别芽接果桑品种紫晶。该果桑品种是由湖北省农业科学院经济作物研究所从竹山3 号(2x)×粤诱78 号(4x)F1代中选育的三倍体优良单株,果实呈紫色,风味浓郁。2020年开始挂果,均于2021年4月29日进行混合采样,每个砧穗组合选择同一方位的12 株,采摘成熟无病害新鲜桑椹。供试样品各分为两部分,一部分用于果实外观品质和可溶性固形物含量的测定,其余样品迅速用液氮冷冻,并于-80 ℃保存,用于可滴定酸、可溶性糖、维生素C和花青苷含量等果实内在品质的测定。
每个砧穗组合均选取18 株单一主干且无病虫害的植株,植株高度和枝条长度用卷尺测量,在嫁接口上下5 cm 处用游标卡尺分别测定接穗和砧木的直径,并计算周长及两者的比值,在离枝条基部5 cm处测定枝条直径并计算周长。植株生长参数均为平均值,其中枝条长度和粗度分别表示平均每棵植株上每根枝条长度和粗度,枝条数量表示平均每棵树上枝条的总数。
1.3.1 外观品质测定 每个砧穗组合均选择同一方位的12 株进行混合采样,选择成熟无病害新鲜桑果。随机选取48颗成熟桑果,均分成3组,每组为1次重复,共3 次重复。用电子天平测量每一组的果实总质量并计算单果质量;采用数显游标卡尺测量每组果实纵横径,计算果形指数,求每组平均值。
1.3.2 内在品质测定 随机选择5颗成熟无病害桑果,混合挤汁,采用数显糖度计(爱拓Atago PAL-1)测定果汁的可溶性固形物含量,每个砧穗组合均测定9组数据,每3组数据平均值为1次重复,共3次重复。每个砧穗组合随机选取90颗新鲜成熟桑果,液氮速冻后用磨样机研磨成粉末混合取样,用于测定其余内在品质,3次重复。可滴定酸和可溶性糖含量测定参考赵晓晓[13]的方法,并略有改动,准确称取1.0 g粉末,无需先研磨成浆,直接置于15 mL 离心管,加8 mL双蒸馏水,其余步骤均相同,制备好的上清液用于可溶性糖、可滴定酸及还原糖含量的测定,此外,测定可滴定酸所用滴定液改用0.05 mol·L-1氢氧化钠溶液,其余步骤一致。糖酸比=可溶性糖含量/可滴定酸含量;还原糖和可溶性蛋白含量参考李合生[14]的方法测定。花青苷含量参考An等[15]的方法测定;维生素C含量采用南京建成公司的维生素C试剂盒测定。
采用SPSS 26软件对数据显著性分析和主成分分析,其中主成分分析参考Wang等[16]的方法。主成分分析中各项指标数据的标准化处理采用模糊数学隶属函数[17-18]。
不同砧穗组合的紫晶嫁接成活率均为100%(数据未展示),且嫁接口均愈合良好(图1)。如表1所示,不同砧木的紫晶植株生长势具有显著差异。其中紫晶/浙杂3 号的砧木粗度最大,为167.67 mm,紫晶/秦桑1 号次之,两者无显著差异,均显著高于砧木粗度最小的紫晶/桑特优2 号(132.31±15.40 mm)。紫晶/秦桑1 号的接穗粗度最大,为145.00 mm,显著高于紫晶/桑特优2号和紫晶/浙杂1 号。此外,不同砧穗组合的穗砧粗度比值也存在一定差异,其中紫晶/桂桑优62 的穗砧粗度比值显著高于其他砧穗组合,为0.95,最接近于1,表明其嫁接亲和性较好。每株树上平均枝条长度和粗度大小表现出相同的规律,两者呈极显著正相关(r=0.922,p=0.000),其中紫晶/桑特优2号的枝条长度和粗度均最小,分别为73.43 mm 和27.67 mm,均显著低于其他砧穗组合。平均每株树的枝条总数无显著性差异。
表1 不同砧木对3 年生紫晶植株生长势的影响
Table 1 Effects of different rootstocks on the vegetative growth of three-year-old Zijing grafted plants
注:不同小写字母表示不同砧木之间差异显著(p <0.05)。下同。
Note:The different small letters in each column indicate significant difference among means within each rootstock at p <0.05 (Duncan test).The same below.
枝条数量/根Number of branches 4.28±1.73 a 5.00±1.70 a 5.44±1.43 a 5.17±1.61 a 5.22±1.93 a 5.00±1.15 a 4.94±1.47 a 4.83±1.74 a砧木Rootstock桑特优2号Sangteyou 2 8632实生苗8632 seedling桂桑优62 Guisangyou 62鲁杂1号Luza 1浙杂1号Zheza 1浙杂3号Zheza 3丰驰桑Fengchisang秦桑1号Qinsang 1砧木粗度Stock girth/mm 132.31±15.40 d 158.63±34.30 ab 137.15±19.12 cd 152.40±27.88 abc 142.98±28.27 bcd 167.67±16.87 a 150.59±22.14 abcd 167.59±28.79 a接穗粗度Scion girth/mm 116.19±13.66 c 134.34±27.27 abc 130.93±22.36 abc 134.30±26.30 abc 123.23±31.90 bc 137.94±19.45 ab 132.62±19.08 abc 145.00±28.55 a穗砧粗度比Scion/stock girth ratio 0.88±0.08 b 0.85±0.08 b 0.95±0.09 a 0.88±0.06 b 0.86±0.08 b 0.82±0.07 b 0.88±0.06 b 0.87±0.11 b枝条长度Branch length/cm 73.43±20.46 b 96.05±22.47 a 88.55±17.11 a 90.40±16.89 a 91.82±18.89 a 94.53±14.31 a 98.71±14.78 a 101.10±21.63 a枝条粗度Branch girth/mm 27.67±4.70 b 32.88±5.27 a 31.61±4.86 a 31.96±4.36 a 31.12±5.22 a 31.89±4.01 a 32.83±4.19 a 34.79±5.95 a
图1 不同砧穗组合嫁接口愈合情况
Fig.1 The healing investigation of graft conjunction in different rootstocks in the third year after grafting
红色箭头表示嫁接口(Bar=2 cm)。
Red arrows indicate graft joint(Bar=2 cm).
如表2 所示,不同砧木的紫晶果实大小存在显著差异。果实单果质量的变化幅度最大。其中紫晶/鲁杂1 号单果质量最大(3.03±0.06 g),与紫晶/8632实生苗、紫晶/浙杂1号和紫晶/浙杂3号无显著差异,且上述砧木果实纵横径之间亦无显著差异,而紫晶/桑特优2号单果质量及果实大小(纵径和横径)数值最低,均显著低于上述4种砧木,不同砧木对紫晶果实的果形指数影响较小,数值在1.65~1.77 之间,均为长圆形。
表2 不同砧木对紫晶果实外观品质的影响
Table 2 Effects of different rootstocks on fruit external quality of Zijing mulberry
砧木Rootstock桑特优2号Sangteyou 2 8632实生苗8632 seedling桂桑优62 Guisangyou 62鲁杂1号Luza 1浙杂1号Zheza 1浙杂3号Zheza 3丰驰桑Fengchisang秦桑1号Qinsang 1单果质量Fruit weight/g 2.17±0.09 e 2.94±0.10 ab 2.53±0.13 d 3.03±0.06 a 2.96±0.04 ab 2.95±0.14 ab 2.76±0.05 bc 2.69±0.10 cd纵径Vertical diameter/mm 22.06±0.40 c 25.72±0.89 a 23.44±0.37 bc 24.79±1.33 ab 23.94±1.66 abc 25.87±0.90 a 25.23±0.74 ab 24.50±0.52 ab横径Transverse diameter/mm 13.37±0.17 c 14.54±0.67 ab 14.13±0.17 bc 14.90±0.27 ab 14.54±0.91 ab 15.34±0.22 a 14.70±0.53 ab 14.60±0.26 ab果形指数Fruit shape index 1.65±0.05 b 1.77±0.03 a 1.66±0.05ab 1.66±0.06 ab 1.65±0.03 b 1.69±0.06 ab 1.72±0.03 ab 1.68±0.06 ab
由表3、表4 可知,嫁接在不同砧木上的紫晶果实的各项内在品质存在显著差异。不同砧穗组合之间维生素C含量和可溶性固形物含量变化幅度最大,维生素C含量变化范围在0.30~0.50 mg·g-1,其中紫晶/8632实生苗的维生素C 含量最高(0.50±0.012 mg·g-1),紫晶/秦桑1 号的维生素C 含量最低(0.30±0.015 mg·g-1),但与紫晶/浙杂1 号无显著差异。可溶性固形物含量变化范围为11.46%~16.10%,紫晶/浙杂3 号的可溶性固形物含量显著高于其他砧木品种,紫晶/桑特优2 号的最低,但与紫晶/丰驰桑和紫晶/秦桑1号无显著差异。
表3 不同砧木对紫晶果实可溶性固形物和糖酸含量的影响
Table 3 Effects of different rootstocks on total soluble solid,sugar and acid contents of Zijing mulberry fruit
砧木Rootstock桑特优2号Sangteyou 2 8632实生苗8632 seedling桂桑优62 Guisangyou 62鲁杂1号Luza 1浙杂1号Zheza 1浙杂3号Zheza 3丰驰桑Fengchisang秦桑1号Qinsang 1 w(可溶性固形物)Total soluble solid content/%11.46±0.74 e 13.76±0.16 b 13.02±0.38 bcd 13.58±0.15 bc 12.79±0.25 cd 16.10±0.37 a 11.72±0.20 e 12.21±0.31 de w(可滴定酸)Titratable acidity/%1.08±0.01 d 1.16±0.00 c 1.21±0.02 c 1.58±0.06 a 1.17±0.01 c 1.16±0.03 c 1.19±0.02 c 1.29±0.02 b w(糖酸比)Soluble sugar/TA 7.42±0.08 a 7.23±0.17 ab 7.37±0.21 a 5.20±0.26 c 6.67±0.28 b 6.97±0.06 ab 6.99±0.25 ab 6.86±0.42 ab w(可溶性糖)Soluble sugar content/%8.01±0.03 c 8.41±0.20 abc 8.92±0.21 a 8.22±0.40 bc 7.84±0.32 c 8.06±0.26 c 8.33±0.35 abc 8.88±0.41 ab w(还原糖)Reducing sugar content/%7.17±0.19 c 7.77±0.03 b 7.85±0.26 b 6.86±0.15 c 6.01±0.10 d 8.09±0.09 ab 6.98±0.43 c 8.47±0.49 a
表4 不同砧木对紫晶果实可溶性蛋白和抗氧化活性物质含量的影响
Table 4 Effects of different rootstocks on soluble protein content and antioxidant components in Zijing mulberry fruit
砧木Rootstock桑特优2号Sangteyou 2 8632实生苗8632 seedling桂桑优62 Guisangyou 62鲁杂1号Luza 1浙杂1号Zheza 1浙杂3号Zheza 3丰驰桑Fengchisang秦桑1号Qinsang 1 w(可溶性蛋白)Soluble protein content/(mg·g-1)0.35±0.007 a 0.28±0.006 c 0.28±0.001 c 0.27±0.020 c 0.28±0.011 c 0.29±0.004 bc 0.27±0.004 c 0.31±0.011 b w(维生素C)Vitamin C content/(mg·g-1)0.42±0.006 bc 0.50±0.012 a 0.38±0.022 de 0.40±0.013 cd 0.33±0.016 f 0.44±0.013 b 0.36±0.006 e 0.30±0.015 f b(花青苷)Anthocyanin content/(nmol·g-1)2 477.46±44.78 a 2 256.16±42.42 bc 2 010.62±29.94 d 2 043.29±53.76 d 2 435.67±79.45 ab 2 421.59±182.86 abc 2 343.67±9.09 abc 2 239.77±63.63 c
不同砧木对果实糖酸含量也有较大影响。表3结果显示,紫晶/桂桑优62可溶性糖含量最高(8.92±0.21)%,与紫晶/秦桑1号、紫晶/丰驰桑和紫晶/8632实生苗无显著差异,含量最低的是紫晶/浙杂1 号。紫晶/秦桑1号和紫晶/浙杂3号还原性糖含量最高,分别为8.47%和8.09%,两者无显著差异,紫晶/浙杂1号的最低。可滴定酸含量最低的是紫晶/桑特优2号,最高的是紫晶/鲁杂1号,分别为1.08%和1.58%,差异显著。糖酸比是综合反映果实风味的指标,不同砧木对其影响较大,表现为紫晶/桑特优2 号糖酸比最高(7.42),与紫晶/8632实生苗、紫晶/桂桑优62、紫晶/浙杂3号、紫晶/丰驰桑和紫晶/秦桑1号无显著差异,紫晶/鲁杂1号最低(5.20)。
此外,不同砧木对桑果可溶性蛋白和花青苷含量也有一定影响。如表4 所示,紫晶/桑特优2 号可溶性蛋白含量最高(0.35±0.007 mg·g-1),显著高于其他砧木,紫晶/鲁杂1 号的最低。花青苷含量最高的是紫晶/桑特优2号,为2 477.46 nmol·g-1,与紫晶/浙杂1号、紫晶/浙杂3号和紫晶/丰驰桑无显著差异,紫晶/鲁杂1号和紫晶/桂桑优62的花青苷含量最低,分别为2 043.29 nmol·g-1和2 010.62 nmol·g-1,两者无显著差异。
根据单一或少数几个指标难以选择适宜的砧穗组合,需通过主成分分析对植株生长和果实品质性状进行综合评价。不同指标单位不一致,主成分分析需对原始数据进行标准化处理,即通过模糊数学隶属函数计算出相应的隶属函数值,如表5所示。由表6 可知,前5 个主成分累计贡献率可达94.286%。第一主成分的贡献率为42.811%,其中砧木粗度、接穗粗度、枝条长度、枝条粗度、枝条数量、单果质量、纵径、横径和可溶性固形物、可溶性蛋白含量的系数绝对值大于其他变量的系数绝对值,所以第一主成分是这10个指标的综合反映,它反映了树体长势和果实大小。第二个主成分的贡献率为18.713%,主要包括穗砧粗度比和花青苷含量,综合反映了砧穗亲和性和果实颜色。第三主成分主要包括糖酸比、可溶性糖和还原糖含量,综合反映果实甜度,第四和第五主成分则分别反映果实维生素C 含量和果实酸度。
表5 各项植株生长和果实品质指标隶属函数值
Table 5 The standardized values of the plant growth and fruit quality parameters by using subordinate function
注:X1~X18依次为砧木粗度、接穗粗度、穗砧粗度比、枝条长度、枝条粗度、枝条数量、单果质量、纵径、横径、果形指数、可溶性固形物含量、可滴定酸含量、糖酸比、可溶性蛋白含量、维生素C 含量、花青苷含量、可溶性糖含量、还原糖含量。
Note:X1-X18represented stock girth,scion girth,scion/stock girth ratio,branch length,branch girth,number of branches,fruit weight,vertical diameter,transverse diameter,fruit shape index,soluble solid content,titratable acid content,ratio of sugar to acid,soluble protein content,vitamin C content,anthocyanin content,soluble sugar content,and reducing sugar content.
砧木Rootstock桑特优2号Sangteyou 2 8632实生苗8632 seedling桂桑优62 Guisangyou 62鲁杂1号Luza 1浙杂1号Zheza 1浙杂3号Zheza 3丰驰桑Fengchisang秦桑1号Qinsang 10.9981.0000.3461.0001.0000.4760.6030.6410.6260.2640.1630.5710.7510.4200.0000.4910.967 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 0.0000.0000.4500.0000.0000.0000.0000.0000.0000.0350.0001.0001.0001.0000.5791.0000.1570.470 0.7440.6300.2280.8180.7320.6190.8960.9590.5971.0000.4950.8330.9130.0951.0000.5260.5250.716 0.1370.5121.0000.5460.5531.0000.4170.3620.3890.1010.3370.7380.9760.0800.4000.0001.0000.750 0.568 0.302 1.000 0.517 0.629 0.244 0.755 0.570 0.442 0.268 0.000 0.462 0.613 0.665 0.763 0.913 0.602 0.484 0.593 0.725 0.762 0.810 0.619 0.571 1.000 0.915 0.898 0.679 0.715 0.494 1.000 0.833 0.779 0.592 1.000 0.677 0.125 0.000 0.326 0.574 0.457 0.287 1.000 0.057 0.000 0.810 0.845 0.774 0.000 0.663 0.794 0.804 0.000 0.041 0.222 0.000 0.511 0.109 0.679 0.306 0.070 0.910 0.880 0.713 0.351 0.000 0.202 0.459 0.345 0.000 0.845 0.393 1.000
表6 主成分的累计方差贡献率、特征值及因子载荷矩阵
Table 6 The contribution rate and accumulative of contribution rate to total variance with eigenvalues and factor loading array generated by PCA
性状Character砧木粗度Stock girth接穗粗度Scion girth穗砧粗度比Scion/stock girth ratio枝条长度Branch length枝条粗度Branch girth枝条数量Number of branches单果质量Fruit weight纵径Vertical diameter横径Transverse diameter果形指数Fruit shape index可溶性固形物含量Total soluble solid content可滴定酸含量Titratable acidity content糖酸比Soluble sugar/TA可溶性蛋白含量Soluble protein content维生素C含量Vitamin C content花青苷含量Anthocyanin content可溶性糖含量Soluble sugar content还原糖含量Reducing sugar content特征值Eigenvalues累积贡献率Accumulative contribution ratio/%主成分Principal component 1 0.837 0.872-0.340 0.888 0.870 0.579 0.849 0.915 0.913 0.480 0.586-0.477-0.417-0.750 0.042-0.374 0.276 0.318 7.706 42.811 2 3 4 5 0.348-0.106-0.854-0.018-0.193-0.503 0.132 0.338 0.191 0.404 0.387 0.537 0.289 0.280 0.483 0.811-0.625 0.037 3.368 18.713 0.244 0.389 0.194 0.194 0.319-0.268-0.472-0.004-0.241 0.393-0.158 0.410 0.693 0.343 0.060-0.071 0.727 0.842 2.934 16.301-0.278-0.208 0.290-0.235-0.239 0.352 0.057 0.117-0.077 0.373 0.367 0.134 0.194-0.274 0.783-0.346 0.042 0.038 1.606 8.922-0.199-0.174 0.108 0.336 0.170 0.311 0.103 0.082-0.021 0.214-0.303 0.483 0.416-0.403-0.317 0.262-0.031-0.377 1.357 7.539
由综合评价值和排名可知(表7),8种不同砧穗组合植株生长和果实品质性状的综合得分由高到低为:紫晶/8632实生苗>紫晶/浙杂3号>紫晶/秦桑1号>紫晶/丰驰桑>紫晶/鲁杂1 号>紫晶/桂桑优62>紫晶/浙杂1号>紫晶/桑特优2号。
表7 不同砧穗组合综合评分和排序
Table 7 The score and rank of the comprehensive parameters among different rootstock-scion combinations
砧木Rootstock桑特优2号Sangteyou 2 8632实生苗8632 seedling桂桑优62 Guisangyou 62鲁杂1号Luza 1浙杂1号Zheza 1浙杂3号Zheza 3丰驰桑Fengchisang秦桑1号Qinsang 1 Y1 Y2 Y3 Y4 Y5 Component 1-0.698 1.851 0.996 1.847 0.996 1.982 1.479 1.807 Component 2 0.951 1.104-0.416 0.048 0.696 1.463 0.618 0.300 Component 3 1.180 1.434 1.474 0.270 0.241 1.064 1.127 1.831 Component 4 0.260 0.919 0.856 0.409 0.097 0.408 0.230-0.360 Component 5 0.386 0.740 0.735 0.104 1.180 0.413 1.136 0.490综合得分Score 0.124 1.370 0.721 0.888 0.693 1.363 1.038 1.133排序Order 81657243
本研究结果表明,不同砧木对紫晶树体长势及果实品质有一定影响。本试验所用8种砧穗组合均栽植在同一地理位置,气候条件、土壤环境及栽培管理水平一致,因此,紫晶树体长势及果实品质差异主要取决于所选择的砧木。
植株生长势往往与果实产量息息相关,树干横截面积(即接穗横截面积)作为树体长势的重要指标之一,与砧木活力呈正相关[19]。因此,本研究中砧木秦桑1 号的活力最高,桑特优2 号活力最低。Layne[20]在桃树上研究发现不同砧木显著影响果实单果质量,且以中等活力为砧木的单果质量比高等活力砧木的高,这与本研究结果基本一致,即供试的绝大部分中等活力桑树砧木的果实单果质量比砧木活力最高的秦桑1 号大。因此,在实际生产应用中尽量选择中等活力的砧木。此外,穗砧粗度比是衡量砧木和接穗亲和力的重要指标,本研究结果显示所有嫁接组合的穗砧粗度比均大于0.82,嫁接口处光滑,无明显凹凸现象,说明不同砧木嫁接亲和性虽有差异但亲和性均较好,其主要原因是本研究所用8 种砧木为广东桑(M. atropurpurea Roxb.)和鲁桑(M.multicaulis Perr.)或其杂交F1代,接穗品种紫晶为鲁桑竹山3号(M.multicaulis Perr.)和广东桑粤诱78号(M.atropurpurea Roxb.)的杂交F1代,砧木和接穗亲缘关系较近。
可溶性固形物含量、糖酸含量、花青苷含量和维生素C含量是影响果实内在品质的重要指标。本研究表明不同砧穗组合果实的内品质存在显著差异,其中紫晶/浙杂3 号可溶性固形物含量超过16%,显著高于其他砧穗组合,紫晶/桑特优2 号的则不足12%。类似的结果在柑橘[2,6]、苹果[4]、葡萄[3]、樱桃[7]等果树中均有报道。沈碧薇等[3]报道了华佳8 号砧木嫁接葡萄瑞都红玉能改善果皮着色,且可溶性固形物含量达(20.62±0.41)%,显著高于其余10 个砧穗组合和自根树。此外,糖酸含量是影响果实整体风味和营养价值的重要因素,高浓度的糖和相对较高浓度的酸会形成最佳的果实风味[21]。本研究中不同砧穗组合的可溶性糖、还原糖和可滴定酸含量存在显著差异,以桂桑优62、秦桑1 号和8632 实生苗为砧木的果实可溶性糖含量、还原性糖含量和糖酸比分别大于已报道的常用砧木桂桑优12 的8.12%、7.31%和6.16,而滴定酸含量均小于桂桑优12 的1.32%[22]。前人研究发现,以本溪山樱(C. sachalinensis)、ZY-1(Prunus cerasus)、吉塞拉6 号(P. cerasus×P.canescens)和兰丁2号(P.avium×P.pseudocerasus)4种砧木嫁接的红灯,结果显示ZY-1砧木嫁接红灯能改善果实品质,果肉硬度、可溶性固形物含量、可溶性糖含量、糖酸比均显著高于其他砧木[7]。花青苷和维生素C 含量具有抗氧化活性,本试验中紫晶/桑特优2号的花青苷含量最高,紫晶/8632实生苗的维生素C含量显著高于其他砧穗组合,高达0.50 mg·g-1,高含量的花青苷和维生素C均有利于桑果酒和桑葚汁质量的提高。
砧穗互作是一个复杂多元的过程,除了受品种基因型特性影响之外,还受外界气候、土壤环境的影响,因此,在筛选适宜的砧木时要综合全面评价砧木对接穗的影响,如砧木对植株生长量、果实品质和抗性等方面的影响。此外,果实性状为多基因控制的数量性状,因此,单一的果实品质性状虽无法反映果实的综合品质,且有的指标单位不一致,不能一概而论。主成分分析法是一种很好的多指标综合评价方法,目前这种方法已在猕猴桃(Actinidia deliciosa)[23]、龙眼(Dimocarpus longan L.)[24]、葡萄(V.vinifera)[3]、甜樱桃(Cerasus avium L.)[25]等果树的果实品质综合评价中广泛应用。笔者利用主成分分析法综合评价了8种砧穗组合对紫晶植株生长和果实品质的影响,将18个果实性状指标简化成5个相对独立的综合性状指标,分别为植株长势和果实大小、砧穗亲和力和花青苷含量(果实颜色)、果实甜度、维生素C含量、果实酸度。此外,通过主成分分析法求得的综合评价值是一个无量纲的纯数,从而使不同砧穗组合植株生长和果实品质性状之间的差异具有可比性[26],本研究综合评价结果显示8362实生苗为砧木的紫晶综合表现最佳,值得推广。
本试验首次对优良果桑品种紫晶的砧木搭配组合进行了系统的评价,结果显示8 种不同砧木对该品种树体长势和果实品质性状有显著影响。其中紫晶/8362 实生苗的植株生长势较强,果实单果质量、大小、可溶性固形物含量、还原糖含量及糖酸比(可溶性糖/可滴定酸)、花青苷含量均较高,且可滴定酸含量较低,综合性状最好,是较为理想的砧穗组合。
[1] 刘利,张林,赵卫国,潘一乐.桑树种质资源的国内外现状比较[J].植物遗传资源学报,2004,5(3):285-289.LIU Li,ZHANG Lin,ZHAO Weiguo,PAN Yile.Comparison of mulberry germplasm resources between China and overseas[J].Journal of Plant Genetic Resources,2004,5(3):285-289.
[2] 郑永强,邓烈,何绍兰,周志钦,易时来,毛莎莎,赵旭阳.几种砧木对哈姆甜橙植株生长、产量及果实品质的影响[J].园艺学报,2010,37(4):532-538.ZHENG Yongqiang,DENG Lie,HE Shaolan,ZHOU Zhiqin,YI Shilai,MAO Shasha,ZHAO Xuyang.Effect of seven rootstocks on tree growth,yield and fruit quality of‘Hamlin’sweet orange in south China[J].Acta Horticulturae Sinica,2010,37(4):532-538.
[3] 沈碧薇,魏灵珠,崔鹏飞,程建徽,向江,吴江.不同砧木对‘瑞都红玉’葡萄生长结果与果实品质的影响[J].果树学报,2020,37(3):350-361.SHEN Biwei,WEI Lingzhu,CUI Pengfei,CHENG Jianhui,XIANG Jiang,WU Jiang.Effects of different rootstocks on the growth and berry quality in‘RuiduHongyu’grapevines[J].Journal of Fruit Science,2020,37(3):350-361.
[4] 袁仲玉,樊良栋,韦德闯,张琦卓,赵政阳,钱加乐.不同砧穗组合对“瑞雪”苹果树体生长、产量和品质的影响[J].北方园艺,2021(20):53-58.YUAN Zhongyu,FAN Liangdong,WEI Dechuang,ZHANG Qizhuo,ZHAO Zhengyang,QIAN Jiale.Effects of dwarfing rootstockson tree growth,yield and fruit quality of‘Ruixue’apple[J].Northern Horticulture,2021(20):53-58.
[5] GULLO G, MOTISI A, ZAPPIA R, DATTOLA A, DIAMANTI J, MEZZETTI B.Rootstock and fruit canopy position affect peach[Prunus persica(L.)Batsch](cv.Rich May)plant productivity and fruit sensorial and nutritional quality[J].Food Chemistry,2014,153:234-242.
[6] 徐志龙,苏士莹,伊华林.不同砧木对金柑树体和果实品质的影响[J].华中农业大学学报,2014,33(5):32-35.XU Zhilong,SU Shiying,YI Hualin.Effects of different rootstocks on tree growth and fruit quality of kumquat[J].Journal of Huazhong Agricultural University,2014,33(5):32-35.
[7] 李玉生,吴永杰,陈龙,赵艳华,吴雅琴,程和禾.不同砧木对甜樱桃红灯生长、产量及果实品质的影响[J].南方农业学报,2021,52(4):1073-1081.LI Yusheng,WU Yongjie,CHEN Long,ZHAO Yanhua,WU Yaqin,CHENG Hehe.Effects of different rootstocks on the growth,yield and fruit quality of sweet cherry Hongdeng[J].Journal of Southern Agriculture,2021,52(4):1073-1081.
[8] 李惠,梁曼曼,赵爽,李保国,李寒,张雪梅,齐国辉.不同砧木对‘绿岭’核桃生长和果实品质的影响[J].西北林学院学报,2017,32(6)113-118.LI Hui,LIANG Manman,ZHAO Shuang,LI Baoguo,LI Han,ZHANG Xuemei,QI Guohui.Effects of different rootstocks on the growth and kernel quality of Juglans regia cv.Lüling[J].Journal of Northwest Forestry University,2017,32(6):113-118.
[9] 莫荣利,李勇,董朝霞,朱志贤,于翠,胡兴明,邓文.2 种桑树砧木实生苗对干旱和淹水的生理生化响应特征[J].蚕业科学,2021,47(2):127-137.MO Rongli,LI Yong,DONG Zhaoxia,ZHU Zhixian,YU Cui,HU Xingming,DENG Wen.Physiological and biochemical response of two mulberry rootstock seedlings to drought and waterlogging stress[J].Acta Sericologica Sinica,2021,47(2):127-137.
[10] 张和禹,王建林,林青松.桑树砧木耐盐性比较[J].经济林研究,2005,23(3):46-48.ZHANG Heyu,WANG Jianlin,LIN Qingsong.Study on salt-tolerance of mulberry stock[J].Nonwood Forest Research,2005,23(3):46-48.
[11] 张鸿,胡兴明.砧木对桑树耐旱性的影响[J].湖北农业科学,2010,49(4):891-893.ZHANG Hong,HU Xingming.Effect of stocks on the drought resistance of mulberry[J].Hubei Agricultural Sciences,2010,49(4):891-893.
[12] SOSNA I,LICZNAR-MAŁAŃCZUK M.Growth,yielding and tree survivability of several apricot cultivars on myrobalan and‘Wangenheim Prune’seedlings[J].Acta Scientiarum Polonorum-Hortorum Cultus,2012,11(1):27-37.
[13] 赵晓晓.桑椹果实内源激素变化及其与果实发育成熟关系的研究[D].杨凌:西北农林科技大学,2019.ZHAO Xiaoxiao.Study on the changes of endogenous hormones in mulberry fruit and its relationship with fruit development and maturity[D].Yangling:Northwest Agriculture and Forestry University,2019.
[14] 李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2003:184-185.LI Hesheng.Experimental principles and techniques of plant physiology and biochemistry[M].Beijing:Higher Education Press,2003:184-185.
[15] AN X H,TIAN Y,CHEN K Q,WANG X F,HAO Y J.The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation[J].Journal of Plant Physiology,2012,169(7):710-717.
[16] WANG X K,XING Y Y.Evaluation of the effects of irrigation and fertilization on tomato fruit yield and quality:A principal component analysis[J].Science Reports,2017,7:1-13.
[17] 陶向新.模糊数学在农业科学中的初步应用[J].沈阳农学院学报,1982,13(2):96-107.TAO Xiangxin.Preliminary application of fuzzy mathematics in agricultural science[J].Journal of Shenyang Agricultural College,1982,13(2):96-107.
[18] 谢季坚,刘承平.模糊数学方法及其应用[M].武汉:华中科技大学出版社,2013.XIE Jijian,LIU Chengping.Method of fuzzy mathematics in agricultural science[M].Wuhan:Huazhong University of Science and Technology Press,1983.
[19] ROBINSON T L.Interaction of fertilization,rootstock and irrigation on growth,thinning efficiency,yield and fruit quality of‘Empire’apple[J].Acta Horticulturae,2006,721:41-47.
[20] LAYNE R E C. Prunus rootstocks affect long-term orchard performance of‘Redhaaven’peach on brookston clay loam[J].HortScience,1994,29(3):167-171.
[21] ATHERTON J G.RUDICH J.The tomato crop:A scientific basis for improvement[M].London:Chapman and Hall,1986:241-280.
[22] MO R L,ZHANG N,ZHOU Y,DONG Z X,ZHU Z X,LI Y,ZHANG C,JIN Q,YU C.Influence of eight rootstocks on fruit quality of Morus multicaulis‘Zijing’and the comprehensive evaluation of fruit quality traits[J].Notulae Botanicae Horticulture Agrobotanici Cluj-Napoca,2022,50(1):12598.
[23] 刘科鹏,黄春辉,冷建华,陈葵,严玉平,辜青青,徐小彪.‘金魁’猕猴桃果实品质的主成分分析与综合评价[J].果树学报,2012,29(5):867-871.LIU Kepeng,HUANG Chunhui,LENG Jianhua,CHEN Kui,YAN Yuping,GU Qingqing,XU Xiaobiao.Principal component analysis and comprehensive evaluation of the fruit quality of‘Jinkui’kiwifruit[J].Journal of Fruit Science,2012,29(5):867-871.
[24] SHI S Y,CHEN D L,FU J X,LIU L Q,WEI Y Z,SHU B,LI W C,LIANG Q Z,LIU C J,LIU C M.Comprehensive evaluation of fruit quality traits in longan‘Fengliduo’בDawuyuan’sexual progenies[J].Scientia Horticulturae,2015,192:54-59.
[25] 李玉生,程和禾,吴永杰,赵艳华,吴雅琴,陈龙.砧木影响甜樱桃果实品质主成分分析[J].北方园艺,2021(12):27-34.LI Yusheng,CHENG Hehe,WU Yongjie,ZHAO Yanhua,WU Yaqin,CHEN Long.Principal component analysis of fruit quality of sweet cherry grafted on different rootstocks[J].Northern Horticulture,2021(12):27-34.
[26] 王军,周美学,许如根,吕超,黄祖六.大麦耐湿性鉴定指标和评价方法研究[J].中国农业科学,2007,40(10):2145-2152.WANG Jun,ZHOU Meixue,XU Rugen,LÜ Chao,HUANG Zuliu.Studies on selecting indices and evaluation methods for barley’s (Hordeum vulgare L.) waterlogging tolerance[J].Scientia Agricultura Sinica,2007,40(10):2145-2152.
Influence of different rootstocks on tree growth and fruit quality of Morus multicaulis‘Zijing’