梨树是我国主要果树之一,2020年全国梨园面积124.46 万hm2,产量1 781.5 万t,分别占全国水果总面积的9.02%、总产量的7.11%,面积和产量均居世界之首[1]。随着人类对健康土壤的重视,减少化肥的施用已成为农业清洁生产和可持续发展的重要组成部分,有机替代模式作为土壤地力提升的主要途径之一,在果树栽培中得到了广泛应用。近年来,中国相继出台《开展果菜茶有机肥替代化肥行动方案》、《关于加快畜禽养殖废弃物资源化利用的意见》等相关化肥减量政策,有力促进了有机肥在梨园生产中的推广应用。
有机肥替代部分化肥是提升作物品质、产量[2-4],增加土壤养分,减少环境污染的有效途径之一[5],也是实现国家“两减”政策最有效的措施之一。当前,许多学者针对有机替代模式进行了相关研究,也不乏在梨上的研究,并获得了一些成果。童盼盼等[6]研究不同有机肥和菌肥处理对库尔勒香梨果实品质及香气的影响,结果表明有机肥和菌肥均能提高果实品质,尤其能显著增加单果质量、可溶性固形物含量、可溶性糖含量等指标。徐超等[7]研究结果表明,单施生物有机肥及与化肥混施均能提高果实可溶性糖含量,分别提高15.58%和17.75%,有机酸含量则均有不同程度的下降。施用有机肥不仅对果实品质有提升作用,对土壤质量提升作用也明显优于化肥[8]。谢凯等[9]研究表明,施用有机肥可以促进树体生长,增加土壤微生物数量,改善土壤供氮特性。豆渣有机肥主要由豆制品加工业的废弃物以及污水处理过程中产生的沉淀残渣经发酵堆肥而成,富含蛋白质、碳水化合物、氨基酸、膳食纤维以及磷、钙、铁等养分。猪粪有机肥是目前产量最大、应用最广的一种畜禽养殖源有机肥,是绿色种养循环农业重要组成部分。这两种有机肥作为食品工业和养殖业废弃物资源化利用的典型代表,研究其在梨园的应用效果具有重要意义。笔者在本研究中采用两种有机肥、三种梯度的替代模式,以南方主栽品种翠玉梨为研究对象,研究不同有机肥替代模式对梨产量、品质、中微量元素吸收和土壤理化性状、微生物多样性的影响,探索梨园不同类型有机肥替代化肥的最佳施用量,以期为南方梨园优质高效种植和有机肥替代化肥施用技术提供理论依据。
试验地点位于浙江省安吉县天子湖镇高庄村安吉富民生态农业开发有限公司的梨园(119.565 441°E,30.801 067°N),地处于长三角腹地。降雨多集中在7—9 月,多年平均降水量1 423.4 mm,年平均气温16.1 ℃,年日照时数1 771.1 h,平均海拔68 m,无霜期226~231 d,属亚热带海洋性季风气候。试验于2019—2020年选择地力较为均匀的4年树龄的梨园进行小区试验。供试品种为南方主栽品种翠玉梨,株行距3 m×4 m。梨园土壤类型为红黄壤,梨园表层土壤(0~20 cm)基本理化性状为pH 4.25,有机质含量(w,后同)23.18 g·kg-1,全氮2.34 g·kg-1,有效磷176.96 mg·kg-1,速效钾665.00 mg·kg-1。
试验设7 个处理:纯化肥(CF),7.5、15.0、22.5 t·hm-2三个水平的豆渣有机肥处理(DZ1、DZ2、DZ3)和猪粪有机肥处理(ZF1、ZF、ZF3)。每个处理设3个小区重复,完全随机排列,4株梨树为1个小区,头尾各1株作保护行。纯化肥处理(CF)施用复合肥,养分施用量为N 461.3 kg·hm-2、P2O5 422.4 kg·hm-2和K2O 527.9 kg·hm-2。有机肥各处理与纯化肥处理氮施用量相同,有机肥养分按当年矿化率50%计,不足部分用复合肥补充。各处理的肥料投入量及化肥养分含量见表1。化肥全年分4 次施用,60%作为基肥施用,所有有机肥均作基肥施用。基肥在每年的11月份施用,均匀施于环形沟内,以树冠下内径离树干30~50 cm、外径以树冠滴水处之环形带内为好,施肥深度20~40 cm,施后覆土。
表1 试验处理的肥料实物投入量
Table 1 The amount of fertilizer inputs for the experimental treatments (kg·hm-2)
注:复合肥1 养分含量为N 15%、P2O5 15%、K2O 15%、复合肥2养分含量为N 15%、P2O5 8%、K2O 27%。
Note: The nutrient contents of compound fertilizer 1 are N 15%,P2O5 15%,K2O 15%,and the nutrient contents of compound fertilizer 2 are N 15%,P2O5 8%,K2O 27%.
复合肥2 Compound fertilizer 2采前肥Pre-harvest fertilizer 555 555 555 555 555 555 555处理Treatment有机肥Organic fertilizer CF DZ1 DZ2 DZ3 ZF1 ZF2 ZF3 0 7 500 15 000 22 500 7 500 15 000 22 500复合肥1 Compound fertilizer 1冬肥Winter fertilizer 1860 1305 765 210 1455 1065 660坐果肥Fruit set fertilizer 330 330 330 330 330 330 330膨大肥Expansion fertilizer 330 330 330 330 330 330 330
试验所用豆渣有机肥为安吉富民有机肥料有限公司生产,原料来源于安吉祖名豆制食品有限公司豆制品生产过程中的废弃物以及污泥,其N、P2O5、K2O养分含量分别为2.20%、3.27%和1.19%,pH 8.68,有机质含量51.11%。猪粪有机肥为安吉正新牧业有限公司生产,原料为猪粪,N、P2O5、K2O 养分含量分别为1.60%、3.00%和1.37%,pH 8.80,有机质含量81.02%。复合肥1 和复合肥2 均采用市售复合肥。各施肥处理养分供应量及有机替代率如表2所示。
表2 试验处理养分供应量以及有机替代率
Table 2 Nutrient supply and organic replacement rate of the experimental treatments
注:当季供氮量,豆渣有机肥按1.10%、猪粪有机肥按0.80%算;NPK 表示总养分。
Note: Nitrogen supply in current season is calculated at 1.10% for soybean residue organic fertilizer and 0.80% for pig manure organic fertilizer.NPK indicates the total nutrient.
处理Treatment化肥养分量Chemical fertilizer nutrient amount/(kg·hm-2)有机替代率Organic replacement rate for chemical fertilizers/%有机肥供氮量Nitrogen supply from organic fertilizer/(kg·hm-2)0 82.5 165.0 247.5 60.0 120.0 180.0 NPK 0 17.7 34.9 52.6 12.9 25.3 38.3 N CF DZ1 DZ2 DZ3 ZF1 ZF2 ZF3 461.3 378.0 297.0 213.8 400.5 342.0 281.3 P2O5 422.4 339.2 258.2 174.9 361.7 303.2 242.4 K2O 527.9 444.6 363.6 280.4 467.1 408.6 347.9 N 0 17.9 35.8 53.7 13.0 26.0 39.0
梨果实成熟时(2020 年7 月中旬),在每棵梨树的两侧中部各采1个梨,每个小区采集8个梨混合作为样品,及时去皮、去核和打浆,用于测定梨品质和中、微量营养元素。同时,多点采集梨树主干四周施肥区域附近表层土壤(0~20 cm)作为混合样品,将一部分新鲜土样过2 mm筛后立即置于4 ℃冰箱冷藏,3 d 内用于测定微生物多样性等指标。其余部分土样风干研磨后,分别过0.149 mm 筛和0.25 mm 筛,用于测定土壤理化指标。
1.4.1 梨果实产量与品质 果实采收时,每个小区单独称量计产。单果质量、可溶性固形物含量、可溶性糖含量、维生素C 含量和有机酸含量的测定分别采用电子分析天平、手持折射仪、蒽酮比色法、钼蓝比色法、酸碱中和滴定法[10],糖酸比以可溶性糖含量和有机酸含量的比值表示。果实中、微量元素铜、铁、锌、钙、镁、锰含量采用硝酸-高氯酸消解、电感耦合等离子质谱仪(ICP-MS,PlasmaQuant MS Elite,德国耶拿分析仪器股份公司)[11]测定。
1.4.2 土壤肥力 土壤肥力指标参考鲍士旦[12]主编的《土壤农化分析》中的方法进行测定。土壤pH 采用玻璃电极法(土水体积比为1∶2.5)进行测定;土壤有机质含量采用元素分析仪(德国Elementar)进行测定;土壤全氮含量采用半微量开氏法测定;土壤碱解氮含量采用碱解扩散法测定;土壤有效磷含量采用0.5 mol·L-1 NaHCO3浸提-钼锑抗比色法测定;土壤速效钾含量采用1 mol·L-1 NH4Ac浸提-火焰光度计法测定。土壤微生物Shannon-Winner 指数和Pielou指数利用MicroRespTM技术分析[13]。
所有数据均采用Microsoft Excel 2019 和IBM SPSS Statistics 25.0软件进行统计分析与作图,利用SAS(Statistical Analysis System)9.4 软件进行主成分分析。采用Duncan 法对试验数据进行方差分析和显著性检验。
与纯化肥(CF)处理相比,施用豆渣和猪粪有机肥均显著提高梨产量,豆渣有机肥处理提高产量29.4%~46.7%,猪粪有机肥处理提高产量30.3%~55.7%(图1)。豆渣有机肥不同用量处理间梨产量差异不显著,猪粪有机肥处理中ZF3 具有最高产量,显著高于ZF1 和ZF2。
图1 不同有机肥施肥处理对梨果实产量的影响
Fig.1 The effect of different organic fertilizer application treatments on the yield of pear
不同小写字母表示处理间差异显著(p<0.05)。下同。
Different small letters indicate significant differences among treatments(p<0.05).The same below.
可溶性总糖、维生素C、可溶性固形物含量及糖酸比和单果质量等是评价梨果实品质的综合性指标。如图2所示,与CF相比,除DZ1和ZF2外,其他各有机肥处理均显著提高梨果实可溶性总糖含量。DZ1、ZF2、ZF3 处理有机酸含量与CF 相差不明显,但DZ2、DZ3和ZF1处理显著高于CF。糖酸比是表征梨果实酸甜口感的一类指标,是影响梨果实食用口感的主要成分,该指标值越高,食用口感越佳。DZ1 和ZF3 处理梨果实糖酸比显著高于CF 和其他有机肥处理,CF 与其他有机肥处理之间差异不明显。施用有机肥对梨果实维生素C、可溶性固形物含量没有显著影响。与纯化肥相比,有机肥处理均可提高梨果实的单果质量,其中DZ1和DZ3处理达到显著水平,分别提高20.61%和18.42%。结果表明,在总施氮水平相同时,施用有机肥能改善梨的品质,但不同类型有机肥、不同施用量对梨品质的影响不同。
图2 不同有机肥施肥处理对梨果实品质的影响
Fig.2 Effect of different organic fertilizer application treatments on pear fruit quality
从表3 中可看出,ZF3 处理梨果实Cu 含量显著高于其他施肥处理,其他施肥处理之间差异不明显。施用有机肥对梨果实Zn含量影响不明显。ZF3处理梨果实Fe 含量显著高于CF 和DZ2、DZ3;ZF3和DZ1 处理梨果实Mn 含量显著高于CF 和其他有机肥处理。豆渣有机肥各处理梨果实Ca 含量均显著高于CF,猪粪有机肥只有ZF3 处理的Ca 含量显著高于CF。豆渣有机肥处理只有DZ2 梨果实Mg含量显著高于CF,猪粪有机肥ZF2 和ZF3 处理Mg含量均显著高于CF。结果表明,施用有机肥能促进梨树对中、微量营养元素的吸收,显著提高梨果实中、微量元素的积累,豆渣有机肥更有利于梨对钙的吸收,猪粪有机肥更有利于梨对铜、锰、镁的吸收,特别是施用高用量猪粪有机肥显著促进梨果实对中、微量元素的吸收。
表3 不同有机肥施肥处理对梨果实中、微量营养元素含量的影响
Table 3 Effect of different organic fertilizer application on the content of medium and micro elements in pear fruit
处理Treatment CF DZ1 DZ2 DZ3 ZF1 ZF2 ZF3 w(Cu)/(mg·kg-1)0.137±0.014 b 0.157±0.015 b 0.155±0.032 b 0.191±0.067 b 0.121±0.005 b 0.134±0.046 b 0.388±0.002 a w(Zn)/(mg·kg-1)0.569±0.085 a 0.528±0.063 a 0.655±0.027 a 0.678±0.064 a 0.578±0.040 a 0.667±0.087 a 0.525±0.015 a w(Fe)/(mg·kg-1)1.26±0.072 bc 1.38±0.091 ab 1.22±0.251 bc 1.08±0.139 c 1.39±0.055 ab 1.35±0.107 abc 1.61±0.089 a w(Mn)/(mg·kg-1)0.639±0.050 b 0.648±0.030 b 0.673±0.056 b 0.615±0.082 b 0.666±0.083 b 0.711±0.024 b 0.863±0.003 a w(Ca)/(mg·kg-1)21.6±0.016 b 29.7±0.627 a 27.8±2.09 a 28.3±1.25 a 23.5±0.928 b 23.1±2.61 b 30.2±0.618 a w(Mg)/(g·kg-1)0.051±0.002 b 0.050±0.005 b 0.058±0.003 a 0.049±0.002 b 0.051±0.003 b 0.060±0.003 a 0.058±0.005 a
与纯化肥(CF)处理相比,施用有机肥的DZ2、DZ3 和ZF2 处理显著提高酸性土壤的pH 值(图3)。施用两种有机肥均能提高梨园土壤中有机质含量,高用量有机肥处理(DZ3和ZF3)显著高于CF和低、中用量有机肥处理。与CF 相比,2 种有机肥的中、高用量有机肥处理均能提高土壤全氮含量,并有随着有机肥施肥量增加而提高的趋势,高用量有机肥处理(DZ3、ZF3)达到显著水平。豆渣有机肥处理随着用量增加而提高土壤碱解氮含量,DZ2 和DZ3 显著高于CF 和DZ1;ZF2 土壤碱解氮含量最高,显著高于CF 和ZF1、ZF3。2 种有机肥替代部分化肥对土壤有效磷含量影响不明显。除了DZ1、DZ3 和ZF3外,其余各有机肥处理土壤速效钾含量与CF差异也不明显。结果表明,施用有机肥能有效缓解南方梨园土壤由长期施用化肥导致的酸化趋势,还能培肥土壤;有机肥替代部分化肥也能供应与纯化肥处理同等的土壤速效养分,甚至更高,不会导致梨园土壤当季养分供应不足。
图3 不同有机肥施肥处理对梨园土壤理化性状的影响
Fig.3 Effect of different organic fertilizer application on the soil physicochemical properties of pear orchard
微生物多样性指数是衡量微生物类型数与均匀度的一个重要指标,一个群落中物种类型数越多,且各类型间分布比例越均匀,则该群落的生物多样性指数就越高[14-15]。采用MicroRespTM技术分析土壤微生物的香农指数和均匀度指数(表4)。各有机肥处理香农指数均显著高于纯化肥处理,豆渣有机肥处理DZ1、DZ2、DZ3香农指数分别比CF提高12.01%、15.36%、17.78%,猪粪有机肥处理ZF1、ZF2、ZF3 香农指数分别比CF 提高4.33%、12.98%、28.65%。除ZF1 处理外,其他各有机肥处理的均匀度指数显著高于纯化肥处理。豆渣有机肥处理DZ1、DZ2、DZ3均匀度指数分别比CF 提高13.18%、29.15%、25.73%,猪粪有机肥处理ZF1、ZF2、ZF3香农指数分别比CF 提高28.52%、32.83%、19.14%。总体来看,施用有机肥有助于提高土壤微生物多样性指数,土壤微生物香农指数随着有机肥施用量的增加而提高,有机肥施用15 t·hm-2时,土壤微生物均匀度指数更高。
表4 不同有机肥施肥处理对梨园土壤微生物多样性的影响
Table 4 Effect of different organic fertilizer application treatments on the soil microbial diversity
处理Treatment CF DZ1 DZ2 DZ3 ZF1 ZF2 ZF3香农指数Shannon-Wiener index 3.606±0.220 d 4.039±0.223 bc 4.160±0.148 bc 4.247±0.086 ab 3.762±0.031 cd 4.074±0.048 bc 4.639±0.281 a均匀度指数Pielou index 0.789±0.001 c 0.893±0.000 bc 1.019±0.053 ab 0.992±0.002 ab 1.014±0.042 ab 1.048±0.089 a 0.940±0.074 ab
对梨果实品质和土壤肥力的13 个性状指标进行主成分分析,得到主成分的特征向量、特征值、贡献率和累积贡献率,提取特征值大于1的主成分5个(表5)。结果显示,第1、第2、第3、第4和第5主成分的特征值大于1,分别为3.186、2.683、1.874、1.344和1.063,分别代表7种施肥处理的13个果实品质和土壤肥力指标24.51%、20.64%、14.42%、10.34%和8.18%的信息。前5 个主成分累计贡献率达到78.08%,说明这5 个主成分反映了13 个原始变量78.08%的信息。因此,提取前5 个主成分代替原13个果实品质和土壤肥力指标对不同有机肥处理效果进行综合评价。对不同施肥处理评价的指标由最初的13 个指标降为5 个彼此不相关的主成分,达到了降维目的。根据主成分综合得分模型,可计算出不同有机肥施肥处理对果实品质和土壤肥力影响的综合得分和排序(表6),综合得分由高到低依次为:DZ3>DZ2>ZF1>ZF2>DZ1>ZF3>CF。
表5 主成分分析表
Table 5 Results of the principal component analysis
项目Item梨园土壤Soil梨果实Fruits指标Index pH有机质含量Orgnic matter content全氮含量Total nitrogen content碱解氮含量Alkali-hydrolyzable nitrogen content有效磷含量Available phosphate content速效钾含量Available potassium content单果质量Single fruit weight content产量Yield可溶性糖含量SSC content维生素C含量Vitamin C content可溶性固形物含量TSS content糖酸比Sugar-acid rate有机酸含量TA content特征值Eigenvalue贡献率Contribution rates/%累计贡献率Cumulative contribution rate/%主成分1 Principal component 1 0.638-0.048 0.053 0.677 0.174 0.519 0.102-0.264 0.488 0.267 0.474-0.776-0.894 3.186 24.51 24.51主成分2 Principal component 2 0.362 0.544 0.513 0.023 0.355-0.646 0.781 0.724 0.272 0.175 0.308 0.332-0.077 2.683 20.64 45.15主成分3 Principal component 3-0.315-0.639-0.658-0.229 0.538 0.013 0.304 0.040 0.302-0.006 0.569 0.284-0.050 1.874 14.42 59.56主成分4 Principal component 4-0.269 0.342 0.243-0.558-0.257 0.380-0.136 0.087 0.585-0.329 0.301-0.057-0.060 1.344 10.34 69.90主成分5 Principal component 5-0.419-0.014 0.159-0.199 0.192 0.016-0.192 0.173 0.072 0.794-0.181-0.190-0.120 1.063 8.18 78.08
表6 不同施肥处理的主成分分析得分、综合得分及排序
Table 6 Principal component analysis score,comprehensive score and ranking of different fertilization treatments
处理Treatment CF DZ1 DZ2 DZ3 ZF1 ZF2 ZF3主成分1得分P1-1.290 2-5.076 9 4.985 0 5.802 9 1.734 4 1.171 4-6.260 6主成分2得分P2-8.853 1 3.045 3 1.667 7 3.891 7-2.784 5 0.168 8 4.024 1主成分3得分P3-0.394 9 2.110 4-2.074 2-0.270 7 2.829 5-0.989 2-1.729 7主成分4得分P4-0.438 7-1.889 8 1.583 5-1.799 0 1.216 0-1.291 6 1.511 0主成分5得分P5-0.123 2-0.075 7-0.859 0 0.423 0 0.350 2-0.808 0 0.617 4综合得分P-2.889 3-0.657 0 1.742 3 2.606 4 0.528 3-0.025 9-0.955 9排序Rank 7521346
有机肥施用能显著提升果蔬产量与品质[2-4]。本研究发现,与纯化肥处理相比,施用豆渣有机肥和猪粪有机肥均显著提高梨产量,豆渣有机肥处理提高29.4%~46.7%,猪粪有机肥处理提高30.3%~55.7%,这与童盼盼等[6]在库尔勒香梨上施用有机肥的研究结果相似。据文献报道,施用有机肥能够改善果实品质[6-7,16-17]。本研究结果也表明施用有机肥能提高梨果实的品质:显著提高梨可溶性糖、有机酸含量和糖酸比,也提高单果质量。但不同类型的有机肥表现不同,同一种类型的有机肥施用量不同,增产提质的效果也会不同。曹钢等[8]研究发现,枝条堆肥混合生物有机肥对梨果实品质和土壤肥力的提升作用优于羊粪和单纯的枝条堆肥。说明不同类型的有机肥除了本身养分含量、性质不同外,矿化速率和对土壤微生物的激发效应也均不同,会导致有机肥对作物的养分供应状况有差异。研究显示,有机肥通过早期促进无机氮的固定及后期促进有机氮的再矿化过程提高作物对无机氮的吸收[18]。如果有机肥替代化肥比例过高,早期微生物固定养分较多,就会导致矿质养分含量降低,影响土壤氮素的早期供应和作物的氮素吸收[19]。因此,不同有机肥替代化肥需要确定一个最佳有机肥施用量和替代比例,其评判标准需要兼顾产量、品质、土壤肥力指标以及经济成本和环境效应。
植物体内中、微量元素影响果树生长发育,不可缺少[20],施用有机肥能促进梨树对中、微量营养元素的吸收[17,21]。本研究表明,施用有机肥能促进梨树对钙、铜、锰、镁等中、微量营养元素的吸收,施用豆渣有机肥更有利于梨对钙的吸收,猪粪有机肥更有利于梨对铜、锰、镁的吸收。这与李水祥等[22]研究发现有机肥替代可提高果实中钙、镁含量的结果基本一致。不同类型有机肥导致梨果实中、微量元素含量的差异可能与肥源的性质不同有关,豆渣有机肥主要原料豆渣是豆制品生产过程中的副产物,富含蛋白质、膳食纤维等营养元素,钙含量相对较高;而猪粪有机肥主要由猪粪发酵而成,有机质、腐殖酸含量较高,矿质营养元素种类更丰富。
大量研究表明[23-27],施用有机肥料后,可通过促进有机质含量的提升来改善土壤理化性质及微生物活性,为植物生长发育提供优质的土壤条件。本研究结果中施用有机肥能有效缓解南方梨园土壤由长期施用化肥导致的酸化趋势,还能培肥土壤,不会降低土壤中碱解氮、有效磷、速效钾等速效养分而导致梨园土壤当季养分供应不足,这与Li 等[28]研究结果基本相似。高用量有机肥处理(DZ3和ZF3)的土壤有机质和全氮含量显著高于纯化肥处理;除ZF3外,其余有机肥处理的碱解氮含量与纯化肥相比无显著差异;有机肥处理的土壤有效磷含量与纯化肥无明显差异;部分有机肥处理会降低土壤速效钾含量。整体来讲,有机肥替代化肥处理能在当季为作物供应与纯化肥相同的速效养分,但不同类型有机肥不同替代比例的供应水平会有差异。有机肥作为土壤微生物的营养物质和能量的来源,能够调控土壤微生物群落的代谢功能和结构[29-31]。本研究中施用2种有机肥均能显著提高土壤微生物香农指数,且随着用量增加而提高,22.5 t·hm-2猪粪有机肥处理香农指数最高;各有机肥处理也显著提高土壤微生物群落的均匀度。这与李可等[32]的研究结果一致。有机肥所提供的大量养分既能满足土壤中微生物代谢活动的物质与能量所需[33],同时又可改善土壤酸碱度、物理性状,提供更有利于微生物生长的环境条件[34];此外,伴随有机肥的施用,大量外源微生物进入土壤,在一定程度上增加了土壤微生物的多样性[35]。
在上述梨果实品质和梨园土壤肥力多个单项指标分析的基础上,再结合主成分分析法,对各施肥处理的效果进行综合评估。结果显示,施用有机肥处理对果实品质和土壤肥力的提升作用均优于纯化肥,施用量为22.5、15 t·hm-2豆渣有机肥处理分别排序第一、第二,效果最好;7.5 t·hm-2猪粪有机肥排序第三。豆渣有机肥对果实品质和土壤肥力的提升效果要优于猪粪有机肥,豆渣有机肥的提升效果随着施用量增加而逐渐提高;而猪粪有机肥具有相反的趋势,施用量越大,提升效果越低。主要原因可能是豆渣有机肥的原料为大豆食品生产过程的副产物,含有较高的蛋白质和有机质,且没有被生物系统吸收利用过,进入土壤容易被微生物分解利用。而猪粪有机肥原料是豆粕、玉米等饲料经过猪消化系统被消化吸收利用后的排泄物,被微生物再次分解利用相对要困难、缓慢些,有机质含量更高一些,其养分矿化速率明显慢于豆渣有机肥。猪粪有机肥替代化肥量过多会导致作物前期速效养分供应不足,无法满足作物生长需要,从而影响农作物产量和品质。因此,豆渣有机肥高替代量处理在整个生育期养分供应充足,有利于提高梨的品质,而猪粪有机肥替代量过多导致土壤速效养分供应不足,则不利于梨品质的提高和土壤培肥。但长期施用猪粪有机肥可能会产生不一样的效果,笔者团队开展的水稻油菜有机肥长期施用定位试验结果表明,猪粪有机肥连续施用4~5 a(年)后,中、高替代量处理对农作物产量、品质的提升效果均优于低替代量处理,对土壤的培肥效果也更好(结果尚未发表)。因此,随着施用年限增长,两种有机肥对梨品质的提升效果可能会有所变化,对有机肥长期施用效果评估需要在更长周期内进行。但有机肥的施用量过高可能带来重金属、抗生素残留等污染物在土壤中积累的环境风险,需要兼顾增产培肥效应和环境效应。根据果实品质和土壤肥力数据综合评估,豆渣有机肥施用量在22.5 t·hm-2时提升效果最佳,猪粪有机肥施用量在7.5 t·hm-2时效果最佳。但过多施用有机肥可能导致土壤磷养分过高而产生面源污染风险,同时施用有机肥的经济成本相对较高,综合考虑下梨园豆渣有机肥推荐用量以15 t·hm-2为宜,猪粪有机肥推荐用量仍以7.5 t·hm-2为宜。
施用豆渣有机肥和猪粪有机肥替代部分化肥均显著提高梨产量,分别提高29.4%~46.7%、30.3%~55.7%。施用有机肥提高梨果实中、微量元素含量,豆渣有机肥更有利于梨对钙的吸收,猪粪有机肥更有利于梨对铜、锰、镁的吸收。根据果实品质和土壤肥力指标主成分分析结果,豆渣有机肥的提升效果要优于猪粪有机肥,有机替代率也高于猪粪有机肥。综合考虑效果、成本以及环境风险,梨园豆渣有机肥施用量以15 t·hm-2(氮肥有机替代率为35.8%)为宜,猪粪有机肥施用量以7.5 t·hm-2(氮肥有机替代率为13.0%)为宜。
[1] 国家统计局.中国统计年鉴[M].北京:中国统计出版社,2021.National Bureau of Statistics.China statistical yearbook [M].Beijing:China Statistics Press,2021.
[2] 周喜荣,张丽萍,孙权,王锐,马蕾,郭鹏飞,左达,焦敏娜.有机肥与化肥配施对果园土壤肥力及鲜食葡萄产量与品质的影响[J].河南农业大学学报,2019,53(6):861-868.ZHOU Xirong,ZHANG Liping,SUN Quan,WANG Rui,MA Lei,GUO Pengfei,ZUO Da,JIAO Minna.Effects of combined organic fertilizer with chemical fertilizer on soil fertility in orchard and yield and quality of table grape[J].Journal of Henan Agricultural University,2019,53(6):861-868.
[3] 孙晓,姜学玲,崔玉明,庄舜尧,张占田,江丽华.有机肥替代对设施番茄产量、品质与土壤性质的影响[J].中国瓜菜,2021,34(4):46-52.SUN Xiao,JIANG Xueling,CUI Yuming,ZHUANG Shunyao,ZHANG Zhantian,JIANG Lihua.Effects of partial chemical fertilizer substitution by organic fertilizer on the yield,quality and soil properties of facility tomato[J].Chinese Cucurbits and Vegetables,2021,34(4):46-52.
[4] 邬刚,严从生,袁嫚嫚,王家宝,陈俊阳,葛治欢,孙义祥.化肥减量配施有机肥对叶菜类蔬菜产量、品质和养分吸收的影响[J].中国瓜菜,2021,34(12):58-62.WU Gang,YAN Congsheng,YUAN Manman,WANG Jiabao,CHEN Junyang,GE Zhihuan,SUN Yixiang.Effects of chemical fertilizer reduction and organic manure application on yield,quality and nutrient uptake of leafy vegetables[J].Chinese Cucurbits and Vegetables,2021,34(12):58-62.
[5] YE L,ZHAO X,BAO E,LI J S,ZOU Z R,CAO K.Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality[J].Scientific Reports,2020,10:177.
[6] 童盼盼,王龙,张亚若,袁海波,卢治文,刘园,张红艳,徐娟,吴翠云,王江波.有机肥和菌肥对库尔勒香梨果实品质及香气的影响[J].华中农业大学学报,2021,40(4):114-122.TONG Panpan,WANG Long,ZHANG Yaruo,YUAN Haibo,LU Zhiwen,LIU Yuan,ZHANG Hongyan,XU Juan,WU Cuiyun,WANG Jiangbo.Effects of different combination of organic fertilizer and bacterial manure on fruit quality and aroma of Korla fragrant pear[J].Journal of Huazhong Agricultural University,2021,40(4):114-122.
[7] 徐超,巴热江·买买提,古丽皮叶·艾乃吐拉,艾克拜尔·伊拉洪.生物有机肥对库尔勒香梨产量及品质的影响[J].新疆农业科学,2016,53(11):2055-2061.XU Chao,Barejiang·Maimaiti,Gulipiye·Ainaitula,Aikebaier·Yilahong.Effects of bio-organic fertilizers on the yield and quality of Korla fragrant pear[J].Xinjiang Agricultural Sciences,2016,53(11):2055-2061.
[8] 曹刚,赵明新,胡霞,曹继礼,王玮,曹素芳,毕淑海,李红旭.施用枝条堆肥对梨果和土壤质量影响效应的综合评价[J].果树学报,2021,38(8):1285-1295.CAO Gang,ZHAO Mingxin,HU Xia,CAO Jili,WANG Wei,CAO Sufang,BI Shuhai,LI Hongxu.Comprehensive assessment of effects on fruit and soil quality of application of branch compost in a pear orchard[J].Journal of Fruit Science,2021,38(8):1285-1295.
[9] 谢凯,宋晓晖,董彩霞,徐阳春.不同有机肥处理对黄冠梨生长及果园土壤性状的影响[J].植物营养与肥料学报,2013,19(1):214-222.XIE Kai,SONG Xiaohui,DONG Caixia,XU Yangchun.Effects of different organic fertilizers on tree growth and soil property in Huangguan pear orchard[J].Plant Nutrition and Fertilizer Science,2013,19(1):214-222.
[10] 王学奎,黄见良.植物生理生化实验原理和技术[M].3 版.北京:高等教育出版社,2015.WANG Xuekui,HUANG Jianliang.Principles and techniques of plant physiological and biochemical experiments[M].3 ed.Beijing:China Higher Education Press,2015.
[11] AVULA B,WANG Y H,SMILLIE T J,DUZGOREN-AYDIN N S,KHAN I A.Quantitative determination of multiple elements in botanicals and dietary supplements using ICP-MS[J].Journal of Agricultural and Food Chemistry,2010,58(16):8887-8894.
[12] 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.BAO Shidan.Soil and agricultural chemistry analysis [M].Beijing:China Agriculture Press,2000.
[13] CAMPBELL C D,CHAPMAN S J,CAMERON C M,DAVIDSON M S,POTTS J M.A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil[J].Applied and Environmental Microbiology,2003,69(6):3593-3599.
[14] 陈汝,王海宁,姜远茂,魏绍冲,陈倩,葛顺峰.不同苹果砧木的根际土壤微生物数量及酶活性[J].中国农业科学,2012,45(10):2099-2106.CHEN Ru,WANG Haining,JIANG Yuanmao,WEI Shaochong,CHEN Qian,GE Shunfeng.Rhizosphere soil microbial quantity and enzyme activity of different apple rootstocks[J].Scientia Agricultura Sinica,2012,45(10):2099-2106.
[15] KLOSE S,ACOSTA-MARTÍNEZ V,AJWA H A.Microbial community composition and enzyme activities in a sandy loam soil after fumigation with methyl bromide or alternative biocides[J].Soil Biology and Biochemistry,2006,38(6):1243-1254.
[16] 杜少平,马忠明,薛亮.有机无机肥配施对砂田西瓜产量、品质及水氮利用率的影响[J].果树学报,2020,37(3):380-389.DU Shaoping,MA Zhongming,XUE Liang.Effect of manure combined with chemical fertilizers on fruit yield,fruit quality and water and nitrogen use efficiency in watermelon grown in gravel-mulched field[J].Journal of Fruit Science,2020,37(3):380-389.
[17] 潘丽珊,任春光,杨瑞,苏文文,吴佳伟,吴迪,李苇洁.增施有机肥和菌肥对猕猴桃果实品质的影响[J].经济林研究,2021,39(2):140-147.PAN Lishan,REN Chunguang,YANG Rui,SU Wenwen,WU Jiawei,WU Di,LI Weijie.Effects of adding organic fertilizer and bacterial fertilizer on fruit quality of kiwifruit[J].Nonwood Forest Research,2021,39(2):140-147.
[18] CHOI W J,RO H M,CHANG S X.Recovery of fertilizer-derived inorganic-15N in a vegetable field soil as affected by application of an organic amendment[J].Plant and Soil,2004,263:191-201.
[19] 李菊梅,徐明岗,秦道珠,李冬初,宝川靖和,八木一行.有机肥无机肥配施对稻田氨挥发和水稻产量的影响[J].植物营养与肥料学报,2005,11(1):51-56.LI Jumei,XU Minggang,QIN Daozhu,LI Dongchu,YASUKAZU H,KAZUYUKI Y.Effects of chemical fertilizers application combined with manure on ammonia volatilization and rice yield in red paddy soil[J].Plant Nutrition and Fertilizer Science,2005,11(1):51-56.
[20] 武松伟,梁珊珊,谭启玲,陈敏,王诗慧,彭柱青,胡佳玉,胡承孝.柑橘营养特性与“以果定肥”[J].华中农业大学学报,2021,40(1):12-21.WU Songwei,LIANG Shanshan,TAN Qiling,CHEN Min,WANG Shihui,PENG Zhuqing,HU Jiayu,HU Chengxiao.Nutritional characteristics and determining amount of fertilizer by fruit nutrients removal in citrus[J].Journal of Huazhong Agricultural University,2021,40(1):12-21.
[21] 赵佐平,同延安,刘芬,王小英,曾艳娟.渭北旱塬苹果园施肥现状分析评估[J].中国生态农业学报,2012,20(8):1003-1009.ZHAO Zuoping,TONG Yan’an,LIU Fen,WANG Xiaoying,ZENG Yanjuan.Assessment of current conditions of household fertilization of apples in Weibei Plateau[J].Chinese Journal of Eco-Agriculture,2012,20(8):1003-1009.
[22] 李水祥,佘文琴,吴世涛,陈晶英,马文,孙宇晨,王杰.有机肥替代部分化肥改善‘三红蜜柚’树体营养及果实品质[J].热带作物学报,2020,41(4):649-654.LI Shuixiang,SHE Wenqin,WU Shitao,CHEN Jingying,MA Wen,SUN Yuchen,WANG Jie.Partial substitution of chemical fertilizer by organic fertilizer improving nutrition and fruit quality of‘Sanhong-miyou’[J].Chinese Journal of Tropical Crops,2020,41(4):649-654.
[23] EL-NAGGAR A,LEE S S,RINKLEBE J,FAROOQ M,SONG H,SARMAH A K,ZIMMERMAN A R,AHMAD M,SHAHEEN S M,OK Y S.Biochar application to low fertility soils:A review of current status,and future prospects[J].Geoderma,2019,337:536-554.
[24] BHUNIA S,BHOWMIK A,MALLICK R,MUKHERJEE J.Agronomic efficiency of animal- derived organic fertilizers and their effects on biology and fertility of soil:A review[J].Agronomy,2021,11(5):823.
[25] MEENA R S,DAS A,YADAV G S,LAL R.Legumes and sustainable use of soils[M]//Legumes for Soil Health and Sustainable Management.Singapore:Springer,2018:1-31.
[26] ITELIMA J U,BANG W J,ONYIMBA I A,SILA M D,EGBERE O J.Biofertilizers as key player in enhancing soil fertility and crop productivity:A review[J].Direct Research Journal of Agriculture and Food Science,2018,6(3):73-83.
[27] MEDDICH A,OUFDOU K,BOUTASKNIT A,RAKLAMI A,TAHIRI A,BEN-LAOUANE R,AIT-EL-MOKHTAR M,ANLI M,MITSUI T,WAHBI S,BASLAM M.Use of organic and biological fertilizers as strategies to improve crop biomass,yields and physicochemical parameters of soil [M]//Nutrient Dynamics for Sustainable Crop Production.Singapore:Springer,2020:247-288.
[28] LI J,WEN Y C,LI X H,LI Y T,YANG X D,LIN Z A,SONG Z Z,COOPER J M,ZHAO B Q.Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China plain[J].Soil and Tillage Research,2018,175:281-290.
[29] ZHANG S N,WANG Y,SUN L T,QIU C,DING Y Q,GU H L,WANG L J,WANG Z S,DING Z T.Organic mulching positively regulates the soil microbial communities and ecosystem functions in tea plantation[J].BMC Microbiology,2020,20(1):103.
[30] ZHOU G X,XU X F,QIU X W,ZHANG J B.Biochar influences the succession of microbial communities and the metabolic functions during rice straw composting with pig manure[J].Bioresource Technology,2019,272:10-18.
[31] 任凤玲,张旭博,孙楠,徐明岗,柳开楼.施用有机肥对中国农田土壤微生物量影响的整合分析[J].中国农业科学,2018,51(1):119-128.REN Fengling,ZHANG Xubo,SUN Nan,XU Minggang,LIU Kailou.A meta-analysis of manure application impact on soil microbial biomass across China’s croplands[J].Scientia Agricultura Sinica,2018,51(1):119-128.
[32] 李可,孙彤,孙涛,徐应明,孙约兵.施用鸡粪有机肥对种植小油菜土壤微生物群落结构多样性的影响[J].农业环境科学学报,2020,39(10):2316-2324.LI Ke,SUN Tong,SUN Tao,XU Yingming,SUN Yuebing.Effects of applying organic fertilizer from chicken excrement on the microbial community structural diversity in soils planted with Chinese cabbage (Brassica chinensis)[J].Journal of Agro-Environmental Science,2020,39(10):2316-2324.
[33] SIVOJIENE D,KACERGIUS A,BAKSIENE E,MASEVICIENE A,ZICKIENE L.The Influence of organic fertilizers on the abundance of soil microorganism communities,agrochemical indicators,and yield in east Lithuanian light soils[J].Plants,2021,10(12):2648.
[34] 蔡泽江,孙楠,王伯仁,徐明岗,黄晶,张会民.长期施肥对红壤pH、作物产量及氮、磷、钾养分吸收的影响[J].植物营养与肥料学报,2011,17(1):71-78.CAI Zejiang,SUN Nan,WANG Boren,XU Minggang,HUANG Jing,ZHANG Huimin.Effects of long-term fertilization on pH of red soil crop yields and uptakes of nitrogen phosphorous and potassium[J].Plant Nutrition and Fertilizer Science,2011,17(1):71-78.
[35] WU J Q,SHA C Y,WANG M,YE C M,LI P,HUANG S F.Effect of organic fertilizer on soil bacteria in maize fields[J].Land,2021,10(3):328.
Effects of different application rates of organic fertilizers derived from soybean residue and pig manure on yield,quality of pear and soil fertility