矮砧利用已经成为世界苹果生产的主流[1-2]。近年来,随着对矮砧集约栽培模式的深入研究[3-4],已经初步形成了适合我国不同生态区发展的矮化砧木与砧穗组合方案[5],但面对生长较旺、幼树成花难、成龄树大小年结果现象严重、易郁闭,而栽培面积比重又最大的富士品种,矮砧砧穗组合的应用还存在诸多问题,例如长枝富士不易着色、短枝富士易早衰等,因此富士苹果适宜矮砧砧穗组合筛选对我国苹果产业发展意义重大。
目前,英国东茂林试验站收集育成的M系砧木被世界广泛应用,如美国、英国、荷兰主要应用M26、M9[6],意大利、法国主要应用M9 系中选出的优系T337、Pajam2 等[7],日本则主要应用M26 和JM 系[8],我国M26、M9 及其优系T337 占较大比例[9],山西果树研究所自主选育的SH系砧木,具有抗寒能力强、适应性强、易成花的特点,近几年发展较快[10-12]。对于富士系苹果矮砧砧穗组合筛选,各产区从树体发育、易花早果性、果实品质、产量等方面进行了系统的研究。例如,李民吉等[13]发现SH6 作为矮化中间砧嫁接宫藤富士,具有矮化性好、短枝比例高、产量稳定、果实品质优等特点;张东等[14]认为渭北黄土高原有灌溉条件的地区,宜采用M系自根砧和中间砧组合。山东烟台是中国苹果重要产区,但富士苹果矮砧砧穗组合的研究仅见关于M26、M9 的调查报告[15],对于目前普遍使用的M9、M26、T337 及SH 系砧木生产表现,缺乏系统性、多年性评价研究。笔者课题组在本研究中选用M9 及优系T337 自根砧、M9、M26、M7、SH18、SH6 矮化中间砧,嫁接烟富3苹果,2012—2019年从树体发育、枝类组成、果园结构、光照分布、叶片功能、早果性、果实品质、产量等方面进行系统研究,旨在为富士苹果适宜矮化砧木选择利用提供参考。
1.1.1 试验材料 试验于2012—2019年进行,供试材料为烟富3/M9、烟富3/T337、烟富3/M9/八棱海棠、烟富3/M26/八棱海棠、烟富3/M7/八棱海棠、烟富3/SH6/八棱海棠、烟富3/SH18/八棱海棠。所有苗木均为小草沟园艺场自行繁育,2年生苗,选取长势一致的苗木(苗高1.2 m,中间砧长度30 cm,品种嫁接口以上10 cm 处粗度0.8 cm),2010 年春季栽植,株行距1.5 m×4.0 m,随机区组设计,5 株为1 个小区,3次重复,细长纺锤形整形,常规管理。
1.1.2 试验园概况 供试园位于山东省莱州市小草沟园艺场,丘陵地果园,土壤为砂壤土,属暖温带东亚季风大陆气候,平均海拔21.34 m,年均温12.3 ℃,≥10 ℃有效积温4295 ℃,年降水量645 mm,年日照时数2726 h,无霜期209 d。果园土壤0~40 cm土层有机质含量(w,后同)为14.1 g·kg-1、全氮1.2 g·kg-1、有效磷101.6 mg·kg-1、有效钾125.3 mg·kg-1,pH 为6.5。
1.2.1 树体生长发育指标测定 每年9月下旬用卷尺测量树高、干周、冠径。干周为嫁接口上方10 cm处周长;冠径为南北、东西冠径的平均值;单株枝量为5株树1年生枝量的平均数。
1.2.2 枝类组成调查 落叶前调查树冠内叶丛枝(<0.5 cm)、短枝(0.5~5 cm)、中枝(>5~15 cm)、长枝(>15~30 cm)、发育枝(>30 cm)当年生枝条的数量,计算枝类比。
1.2.3 果园结构指标测定 树冠体积:树冠近似椭球体,体积V=4/3πabc(m3),式中a、b、c分别代表椭球体的半径,即分别为冠高、南北冠幅和东西冠幅的一半;果园覆盖率为树冠投影面积与株行距的百分比;行间交接率(%)=(行间冠径-行距)/行距×100。
1.2.4 果园光照分布指标测定 用方格布法统计出透光面积,计算果园透光率和树冠内透光率,取3次测定的平均值。
1.2.5 叶片光合速率、叶绿素含量及百叶厚度测定 光合速率:使用CIRA S-Ⅱ型便携式光合系统测定仪(英国PP-Systems公司生产)测定。每组合选取3株树,于8 月中旬测定距离地面1.5 m 处外围中枝朝向一致的成熟叶片,进行净光合速率测定,每株树测定15枚叶片;叶绿素含量:应用叶绿素仪-502(日本美能达)测定距离地面l.5 m处的外围无果短枝或中枝成熟叶片的SPAD 值,每部位测定25 枚叶片,3次重复,取其平均值;百叶厚度:应用游标卡尺测定。
1.2.6 早果性及产量的测定 自2012 年调查所有组合开花株率,单株产量,判断早果性;用电子台秤称量各组合试验树单株产量,取平均值换算各组合666.7 m2产量。
1.2.7 果实品质指标测定 单果质量用电子台秤称量,果实去皮硬度用GY-1 型果实硬度计测量,可溶性固形物含量用数显糖量计测定。果面着色指数(%)=∑(各级果数×代表级值)/(总果数×最高级值)×100,果实着色分级标准:0 级,着色面积0%~5%;1 级,着色面积>5%~25%;2 级,着色面积>25%~50%;3级,着色面积>50%~75%;4级,着色面积>75%~100%。
随着树龄的不断增长,所有组合定植3~5 a(年)树高、干周、冠径、树冠体积、单株枝量增长迅速,而后趋于平缓,自根砧组合矮化性较好,树高、干周、冠径、树冠体积显著低于中间砧组合,栽植5 a后自根砧组合树高稳定在3.1 m左右,干周24 cm、冠径180 cm左右,自根砧组合T337 和M9 间树体生长参数无显著差异。栽植4 a 自根砧组合单株枝量显著高于矮化中间砧组合,超过65条·株-1,但栽植6 a后单株枝量显著低于矮化中间砧组合。矮化中间砧组合树势控制较差,随着树龄增加,树高、干周、冠径、树冠体积、单株枝量不断增加,其中SH18、M7 组合矮化性较差,栽植6 a 后,树高、干周、树冠体积显著高于其余3个组合,各中间砧组合单株枝量差异不显著(图1)。
图1 不同砧穗组合对树体发育影响
Fig.1 The influence of different rootstock-scion combinations on tree developmen
随着树龄增加,富士苹果不同矮砧砧穗组合枝类组成存在显著差异。T337、M9 矮化自根砧组合的中短枝比例显著高于矮化中间砧组合,矮化自根砧组合T337、M9 定植第3 年中短枝比例分别达到44.4%、41.5%,定植第4 年中短枝比例持续增加,长枝、发育枝不断减少,定植第5~9年枝类结构趋于稳定(进入稳产期),中短枝比例稳定在75%以上,二者间枝类结构无显著差异。矮化中间砧组合定植第3~5年,中短枝比例逐渐增加,其中第4年增幅最大,第6 年所有矮化中间砧树体中短枝比例达到最大,其中M9中短枝比例最高,达68.6%,M7、SH18的中短枝比例较低,分别为53.4%、52.3%。定植第6~10年M9、M26、SH6 矮化中间砧组合枝类组成趋于稳定,定植第10 年,M7、SH18 中短枝比例呈小幅下降(图2)。
图2 2012—2019 年不同矮化砧木嫁接富士苹果枝类组成年变化
Fig.2 Differences in growth dynamics of branch composition among different dwarfing rootstock and interstock Fuji apple trees from 2012 to 2019
叶面积系数、果园覆盖率及行间交接率变化趋势基本一致。定植3~10 a 矮化自根砧组合T337、M9叶面积系数、果园覆盖率及行间交接率显著低于矮化中间砧组合。矮化自根砧组合定植3~5 a 叶面积系数、果园覆盖率、行间交接率增速较快,5~10 a叶面积系数、果园覆盖率、行间交接率变化不大,进入稳定期,T337和M9自根砧组合间无显著差异;矮化中间砧组合定植3~5 a 叶面积系数、果园覆盖率、行间交接率增加较快,6~10 a M9、M26、SH6三组合叶面积系数、果园覆盖率及行间交接率基本保持稳定,且显著低于M7、SH18 组合,而矮化中间砧M7、SH18 组合定植6~7 a 三项指标较稳定,定植8~10 a呈增加趋势,树势偏旺(表1~表3)。
表1 不同矮化砧木嫁接烟台富士苹果行间交接率变化
Table 1 Trunk circumference annual change of Yantai Fuji apples grafted on different dwarf rootstocks %
注:不同小写字母表示经同年份不同砧穗组合Duncana 检验有显著差异(p ≤0.05)。下同。
Note:Different small letters indicate significant difference among different rootstock combinations in the same year(p ≤0.05).The same below.
砧穗组合Rootstock combination烟富3/T337 Yanfu 3/T337烟富3/M9 Yanfu 3/M9烟富3/M9/八棱海棠Yanfu 3/M9/M.robusta烟富3/M26/八棱海棠Yanfu 3/M26/M.robusta烟富3/SH6/八棱海棠Yanfu 3/SH6/M.robusta烟富3/SH18/八棱海棠Yanfu 3/SH18/M.robusta烟富3/M7/八棱海棠Yanfu 3/M7/M.robusta年份Year 2012-67.8±0.22 a-69.0±0.18 a-54.0±0.25 b-57.3±0.27 b-57.8±0.31 b-49.7±0.43 b-51.3±0.38 b 2013-56.5±0.07 a-54.2±0.05 a-48.5±0.05 b-45.0±0.17 b-45.7±0.24 b-42.0±0.17 b-40.0±0.11 b 2014-48.7±0.07 a-48.2±0.07 a-41.4±0.25 a-42.2±0.16 a-40.6±0.04 a-33.6±0.15 b-31.7±0.08 b 2015-46.2±0.05 a-44.8±0.05 a-34.7±0.15 b-33.6±0.17 b-33.1±0.15 b-24.2±0.27 c-21.5±0.25 c 2016-45.5±0.06 a-46.4±0.09 a-28.4±0.05 b-28.8±0.08 b-29.4±0.15 b-20.6±0.36 c-18.8±0.42 c 2017-44.8±0.07 a-43.6±0.04 a-27.1±0.07 b-25.5±0.25 b-26.1±0.05 b-19.5±0.28 c-17.2±0.35 c 2018-44.0±0.15 a-43.5±0.16 a-24.8±0.26 b-26.3±0.18 b-25.3±0.06 b-16.3±0.46 c-14.6±0.35 c 2019-46.3±0.25 a-44.8±0.18 a-29.8±0.32 b-26.7±0.43 b-27.4±0.35 b-18.8±0.58 c-16.5±0.48 c
表2 不同矮化砧木嫁接烟台富士苹果叶面积系数年变化
Table 2 Leaf area coefficient annual change of Yantai Fuji apples grafted on different dwarf rootstocks
砧穗组合Rootstock combination烟富3/T337 Yanfu 3/T337烟富3/M9 Yanfu 3/M9烟富3/M9/八棱海棠Yanfu 3/M9/M.robusta烟富3/M26/八棱海棠Yanfu 3/M26/M.robusta烟富3/SH6/八棱海棠Yanfu 3/SH6/M.robusta烟富3/SH18/八棱海棠Yanfu 3/SH18/M.robusta烟富3/M7/八棱海棠Yanfu 3/M7/M.robusta年份Year 2012 0.97±0.22 c 0.95±0.18 c 1.13±0.25 a 1.16±0.27 a 1.15±0.31 a 1.23±0.43 a 1.28±0.38 a 2013 1.75±0.07 c 1.68±0.05 c 2.07±0.05 a 2.18±0.17 a 2.13±0.24 a 2.17±0.17 a 2.21±0.11 a 2014 2.05±0.07 c 1.96±0.07 c 2.56±0.25 a 2.66±0.16 a 2.54±0.04 a 2.68±0.15 a 2.71±0.08 a 2015 2.16±0.05 c 2.04±0.05 c 2.68±0.15 b 2.76±0.17 b 2.77±0.15 b 2.86±0.27 a 2.95±0.25 a 2016 2.23±0.06 c 2.15±0.09 c 2.71±0.05 b 2.78±0.08 b 2.78±0.15 b 2.87±0.36 a 2.97±0.42 a 2017 2.14±0.07 c 2.25±0.04 c 2.78±0.07 b 2.85±0.25 b 2.81±0.05 b 2.98±0.28 a 3.06±0.35 a 2018 2.26±0.15 c 2.22±0.16 c 2.84±0.26 b 2.91±0.18 b 2.89±0.06 b 3.03±0.46 a 3.15±0.35 a 2019 2.23±0.25 c 2.24±0.18 c 2.92±0.32 b 2.97±0.43 b 2.98±0.35 b 3.06±0.58 a 3.14±0.48 a
表3 不同矮化砧木嫁接烟台富士苹果果园覆盖率年变化
Table 3 Orchard coverage annual change of Yantai Fuji apples grafted on different dwarf rootstocks %
砧穗组合Rootstock combination烟富3/T337 Yanfu 3/T337烟富3/M9 Yanfu 3/M9烟富3/M9/八棱海棠Yanfu 3/M9/M.robusta烟富3/M26/八棱海棠Yanfu 3/M26/M.robusta烟富3/SH6/八棱海棠Yanfu 3/SH6/M.robusta烟富3/SH18/八棱海棠Yanfu 3/SH18/M.robusta烟富3/M7/八棱海棠Yanfu 3/M7/M.robusta年份Year 2012 10.3±0.02 b 10.6±0.02 b 12.6±0.05 a 14.3±0.05 a 12.7±0.11 a 12.7±0.15 a 13.2±0.08 a 2013 29.7±0.05 b 31.8±0.02 b 42.4±0.15 a 45.5±0.15 a 43.6±0.17 a 46.6±0.24 a 49.7±0.27 a 2014 34.8±0.15 b 33.7±0.15 b 48.4±0.08 a 52.9±0.16 a 50.3±0.25 a 54.6±0.08 a 61.3±0.22 a 2015 41.4±0.08 c 41.6±0.14 c 57.8±0.23 b 61.7±1.05 b 59.1±1.76 b 68.2±0.57 a 69.8±1.25 a 2016 43.7±0.03 c 42.4±0.05 c 62.5±0.05 b 63.6±0.01 b 60.8±0.08 b 73.2±0.05 a 79.4±1.00 a 2017 42.6±0.02 c 41.7±0.01 c 66.6±0.05 b 64.3±0.05 b 65.2±1.00 b 74.7±1.05 a 81.3±0.08 a 2018 43.2±0.05 c 42.8±0.08 c 67.4±1.00 b 70.2±1.05 b 70.4±1.05 b 78.4±0.58 a 83.2±1.13 a 2019 41.7±0.02 c 42.2±0.01 c 67.1±0.05 b 71.5±0.02 b 69.3±0.02 b 81.4±0.05 a 84.1±0.05 a
矮化自根砧组合果园透光率、冠内透光率显著高于中间砧组合,矮化自根砧组合果园透光率、冠内透光率定植3~5 a呈下降趋势,定植5~10 a基本保持稳定,而矮化中间砧组合定植3~6 a 果园透光率、冠内透光率呈下降趋势,定植6~8 a 基本保持稳定,定植8~9 a呈下降趋势,其中M7、SH18降幅较大,矮化自根砧间果园透光率、冠内透光率无显著差异,矮化中间砧组合第6年,M9、M26、SH6组合果园透光率、冠内透光率显著高于M7、SH18组合,M9、M26、SH6组合间果园透光率、冠内透光率无显著差异,M7 与SH18组合间无显著差异(表4、表5)。
表4 不同矮化砧木嫁接烟台富士苹果果园透光率年变化
Table 4 Orchard light transmittance annual change of Yantai Fuji apples grafted on different dwarf rootstocks %
砧穗组合Rootstock combination烟富3/T337 Yanfu 3/T337烟富3/M9 Yanfu 3/M9烟富3/M9/八棱海棠Yanfu 3/M9/M.robusta烟富3/M26/八棱海棠Yanfu 3/M26/M.robusta烟富3/SH6/八棱海棠Yanfu 3/SH6/M.robusta烟富3/SH18/八棱海棠Yanfu 3/SH18/M.robusta烟富3/M7/八棱海棠Yanfu 3/M7/M.robusta年份Year 2012 74.2±1.13 a 76.4±1.02 a 70.5±0.57 b 67.2±1.36 b 68.8±0.88 b 67.2±1.24 b 66.8±1.17 b 2013 66.3±1.08 a 69.6±0.87 a 60.6±1.21 b 55.8±1.01 b 57.5±1.15 b 53.4±1.13 b 50.3±0.97 b 2014 60.7±1.15 a 64.2±1.00 a 54.7±1.15 b 48.4±1.73 b 51.3±1.01 b 45.4±1.24 b 38.7±1.15 b 2015 58.5±1.07 a 61.6±1.73 a 50.5±0.87 b 43.1±1.25 b 45.1±1.13 b 36.8±1.00 b 31.2±1.01 c 2016 56.3±0.98 a 58.1±1.00 a 47.2±1.25 b 42.2±1.73 b 43.5±1.00 b 34.5±1.36 b 30.3±1.25 c 2017 55.8±1.35 a 57.5±1.25 a 46.7±1.35 b 40.3±1.16 b 42.4±2.05 b 31.2±2.24 b 27.6±2.35 c 2018 54.6±1.05 a 56.4±1.22 a 45.2±1.16 b 38.3±1.73 b 39.6±1.57 b 24.6±1.85 b 21.8±1.85 c 2019 53.8±1.25 a 51.6±1.00 a 42.3±2.35 b 39.4±1.58 b 40.4±2.11 b 35.7±2.06 b 28.1±2.47 c
表5 不同矮化砧木嫁接烟台富士苹果树冠透光率年变化
Table 5 Intra-crown light transmittance annual change of Yantai Fuji apples grafted on different dwarf rootstocks %
砧穗组合Rootstock combination烟富3/T337 Yanfu 3/T337烟富3/M9 Yanfu 3/M9烟富3/M9/八棱海棠Yanfu 3/M9/M.robusta烟富3/M26/八棱海棠Yanfu 3/M26/M.robusta烟富3/SH6/八棱海棠Yanfu 3/SH6/M.robusta烟富3/SH18/八棱海棠Yanfu 3/SH18/M.robusta烟富3/M7/八棱海棠Yanfu 3/M7/M.robusta年份Year 2012 74.6±1.75 a 76.7±1.55 a 69.3±1.27 b 68.1±1.81 b 68.7±2.05 b 67.4±2.32 b 66.7±2.58 b 2013 63.8±1.14 a 67.4±1.05 a 61.8±1.36 b 58.6±1.08 b 62.5±1.75 b 56.3±2.35 b 56.7±2.35 b 2014 57.4±1.00 a 60.3±0.88 a 54.2±1.25 a 51.3±1.37 a 55.6±1.76 a 46.2±1.42 a 44.6±1.55 a 2015 56.6±1.17 a 58.2±1.25 a 50.3±1.37 b 42.8±1.25 b 46.4±136 b 40.1±1.73 b 38.5±2.06 b 2016 53.2±1.27 a 54.9±1.18 a 48.6±1.05 b 40.5±1.83 b 44.6±2.17 b 38.1±2.25 b 37.3±2.15 b 2017 54.8±1.16 a 55.3±1.24 a 46.5±1.65 b 39.4±1.57 b 44.1±1.88 b 37.5±1.35 b 36.4±2.17 b 2018 53.4±1.08 a 55.7±1.27 a 42.1±1.65 b 35.5±2.15 b 40.2±1.08 b 33.4±2.27 b 31.2±2.66 b 2019 53.6±2.06 a 55.2±2.24 a 39.5±1.67 b 33.2±2.38 b 38.5±2.17 b 30.4±3.04 b 28.6±3.11 b
定植3~10 a 所有组合叶片净光合速率、百叶厚度、叶绿素含量无显著差异,定植第9、10 年,矮化中间砧M7 组合,叶片净光合速率分别为18.6、18.2 μmol·m-2·s-1,显著低于其他组合,其余组合无显著差异(图3)。
图3 不同砧穗组合对叶片光合功能、叶绿素含量及百叶厚的影响
Fig.3 The influence of different rootstock combinations on leaves photosynthesis chlorophyll content and hundred leaves thickness
2.6.1 对早果性的影响 富士苹果不同矮砧砧穗组合早果性差异显著。矮化自根砧组合开花株率、单株产量显著高于矮化中间砧组合;矮化自根砧M9及其优系T337 组合定植第2 年开花株率分别为87.5%、89.7%,且T337 开花株率显著优于M9;矮化中 间 砧 中M9、M26、SH6 成 花 性 显 著 优 于M7、SH18,第2年开花株率分别为65.4%、61.6%、62.3%,其次是SH18,开花株率为51.2%,M7 易成花性最差,开花株率为34.1%;第3 年,除M7 外,开花株率均为100%,第4年M7开花株率达到100%。
定植第2 年,所有组合均能挂果,第3 年形成一定的产量,第4~5年单株产量持续上升,其中自根砧组合单株产量显著高于矮化中间砧的单株产量,其中T337 早果性最好,第3~5 年生单株产量分别为2.83、16.44、30.52 kg,矮化中间砧组合中早果性以M9 最好,第3~5 年单株产量分别为2.64、12.65、24.77 kg,其次是M26、SH6,第3~5年单株产量分别为2.31、9.22、13.22,2.62、13.68、8.17 kg(表6)。
表6 不同矮化砧木嫁接烟富3 苹果幼树开花株率和单株产量年变化
Table 6 Annual flowering plant rate and yield per plant of different young dwarf rootstock grafted to Yanfu 3 apple tree
砧穗组合Rootstock combination烟富3/T337 Yanfu 3/T337烟富3/M9 Yanfu 3/M9烟富3/M9/八棱海棠Yanfu 3/M9/M.robusta烟富3/M26/八棱海棠Yanfu 3/M26/M.robusta烟富3/SH6/八棱海棠Yanfu 3/SH6/M.robusta烟富3/SH18/八棱海棠Yanfu 3/SH18/M.robusta烟富3/M7/八棱海棠Yanfu 3/M7/M.robusta开花株率Flowering plant rate/%第2年The second year 89.70±0.01 a 87.50±0.01 b 65.40±0.01 c 61.60±0.02 e 62.30±0.01 c 51.20±0.03 d 34.10±0.05 e第3年The third year 100.00±0.00 a 100.00±0.00 a 100.00±0.00 a 100.00±0.00 a 100.00±0.00 a 100.00±0.00 a 91.80±0.06 b第4年The fourth year 100.00±0.00 a 100.00±0.00 a 100.00±0.00 a 100.00±0.00 a 100.00±0.00 a 100.00±0.00 a 100.00±0.00 a单株产量Yield per plant/kg第2年The second year 0.86±0.01 a 0.82±0.01 a 0.68±0.02 b 0.15±0.15 d 0.71±0.06 b 0.58±0.17 c 0.18±0.21 d第3年The third year 2.83±0.05 a 2.76±0.02 a 2.64±0.05 b 2.31±0.15 c 2.62±0.27 b 2.45±0.16 c 2.37±0.15 c第4年The fourth year 16.44±0.03 a 15.81±0.06 b 12.65±0.11 c 9.22±0.15 d 13.68±0.08 c 7.14±0.17 e 8.68±0.22 d第5年The fifth year 30.52±0.07 a 29.86±0.05 a 24.77±1.25 b 13.22±0.08 c 8.17±1.02 e 10.51±0.08 d 11.40±0.17 d
2.6.2 对产量的影响 从表7 看出,自根砧组合每666.7 m2产量高于中间砧组合,没有大小年现象,栽植3~5 a 产量迅速增加,第5 年T337、M9 组合每666.7 m2产量为3 387.72、3 314.46 kg,第6~10年,产量趋于稳定,进入盛果期,T337 产量高于M9;中间砧组合中以M9、SH6、M26 盛果期丰产、稳产性最好,第10 年产量分别为4 137.1、4 368.7、4 170.5 kg·666.7 m-2;SH18、M7 盛果期产量低于M9、SH6、M26组合,且有大小年现象。
表7 苹果不同矮砧砧穗组合对烟富3 平均每666.7 m2产量的影响
Table 7 The effect of different dwarf rootstock and ear combinations on the averge yield per 666.7 m2 of Yanfu 3
砧穗组合Rootstock combination烟富3/T337 Yanfu 3/T337烟富3/M9 Yanfu 3/M9烟富3/M9/八棱海棠Yanfu 3/M9/M.robusta烟富3/M26/八棱海棠Yanfu 3/M26/M.robusta烟富3/SH6/八棱海棠Yanfu 3/SH6/M.robusta烟富3/SH18/八棱海棠Yanfu 3/SH18/M.robusta烟富3/M7/八棱海棠Yanfu 3/M7/M.robusta年份Year 2012 314.13 306.36 293.04 256.41 290.82 271.95 263.07 2013 1 824.84 1 754.91 1 404.15 1 023.42 1 518.48 792.54 963.48 2014 3 387.72 3 314.46 2 749.47 1 467.42 906.87 1 165.50 1 265.40 2015 4 361.8 4 172.3 3 551.5 3 549.3 3 783.3 4 405.7 3 317.6 2016 4 931.8 4 451.4 4 074.2 4 117.6 4 056.3 3 155.7 3 765.2 2017 5 229.1 4 637.8 4 367.7 4 226.4 4 048.3 3 971.5 3 665.8 2018 5 304.3 4 855.7 4 261.7 4 233.7 4 448.2 3 213.5 3 008.8 2019 5 264.5 4 772.4 4 137.1 4 170.5 4 368.7 3 507.6 3 802.2
2.6.3 对果实品质的影响 综合2013—2019 年的调查结果,M9、T337自根砧组合平均单果质量显著高于矮化中间砧木组合,所有组合果形指数、着色指数无显著差异,这表明M 系、SH 系不同砧木对富士苹果形状、着色影响很小,但是不同砧木利用形式对果个影响较大;果实去皮硬度和可溶性固形物含量受砧木种类影响较大,果实去皮硬度以M9、T337自根砧和M7、M9、SH6 矮化中间砧的较高,分别为8.6、8.5、8.7、8.2、8.0 kg·cm-2,SH18、M26的果实去皮硬度较低,分别为7.8、7.4 kg·cm-2;可溶性固形物含量以M9、T337自根砧和M9、SH6矮化中间砧较高,分别为15.2%、15.1%、15.0%、15.0%,M7、SH18矮化中间砧果实可溶性固形物含量较低,分别为14.4%、14.6%(图4)。
图4 不同砧穗组合对果实品质的影响
Fig.4 The influence of different rootstock combinations on tree development fruit quality
矮化砧木对营养、激素、水分等的运输具有一定的阻碍作用,因此限制了品种营养生长,达到了控制树势、易于形成花芽[16-17]、早果丰产的效果,同时能够使树型紧凑、树冠矮小,便于管理,果园通风透光良好,果实品质一般较高[18]。矮化砧木的致矮程度,往往用干周、冠径等树体生长指标来衡量[19]。从本研究来看,自根砧M9、T337 组合冠径、干周明显低于中间砧组合,具有更好的致矮性,叶面积系数、果园覆盖率较低,而果园透光率、冠内透光率明显高于中间砧组合,并且2 个自根砧组合较中间砧组合幼树易成形,栽植第4年分枝数达到纺锤形整形要求,第5 年后树冠大小趋于稳定,为早产丰产提供保证。中间砧组合中,随着树龄增加,干周、冠径不断增大,M7、SH18 致矮性较差,定植第6 年冠径、干周显著高于M9、M26、SH6 组合,定植第8 年,M7 组合冠径显著大于SH18 组合,同时叶面积系数、果园覆盖率较高,果园透光率、冠内透光率较低,M9、M26、SH6三组合间致矮性无显著差异,对于土壤瘠薄、不适宜栽植自根砧的地片可以考虑选择。
苹果树的枝类组成直接影响树体的生长势、花芽形成和果实产量、品质。苹果以中短枝结果为主,中短枝比例越高,越容易实现早产丰产,并且中短枝比例与矮化程度呈正相关[20],但是矮化性易使树势衰弱,长枝比例应该保持在10%左右[21],还有人提出对于4 年生高纺锤形富士矮砧苹果园,优质短枝比例应在30%~50%,长枝比例应在5%~10%[22]。本研究中,所有组合中短枝比例随树龄增长不断增加,矮化性较好的自根砧组合的中短枝比例显著高于矮化中间砧木组合,定植第3 年T337、M9 自根砧中短枝比例分别达到44.4%、41.5%,长枝发育枝比例24.6%,第5~10年中短枝比例在75%以上,各枝类组成趋于稳定状态,而中间砧组合在第6 年中短枝比例达到最大,其中M9中短枝比例最高,M7、SH18的中短枝比例较低,之后除M7、SH18 第10 年中短枝比例小幅下降外,其他矮化中间砧组合枝类组成趋于稳定,这一变化规律与前人[23-24]在其他砧木上的研究结果基本一致。综合8 a的结果,自根砧利用形式中短枝比例高,但长枝和发育枝比例较中间砧利用形式偏低,因此生产中,矮化自根砧果园应加大肥水管理,防止树势衰弱。中间砧利用形式中,M9、SH6、M26中短枝比例较高于其他组合,这与它们具有较好的矮化性相关。
光合作用是植物生命活动的基础,与树体生长发育、果实发育息息相关。本研究表明,定植3~8 a所有组合叶片净光合速率无显著差异,定植第9、10年,矮化中间砧M7组合,叶片净光合速率显著低于其他组合,可能是果园透光率下降所致,其余组合无显著差异,所有组合叶片叶绿素含量、百叶厚度无显著差异,说明不同砧木、砧木利用形式并未对叶片功能产生显著影响。
富士苹果成花较难,烟台产区夏季高温多雨,营养生长旺盛,更不利于花芽形成,因此易成花性是砧木选择的重要评价指标。本研究中T337 自根砧成花特性最好,定植第2 年开花株率分别为89.7%,早产性最好,3~5 年生单株产量分别为2.83、16.44、30.52 kg;自根砧组合第5 年产量快速增加,至第7年,产量平稳增加,稳产3 a,较早进入盛果期,自根砧组合产量高于中间砧组合,T337 自根砧产量比M9 自根砧高;矮化中间砧M9、M26、SH6 早花性显著优于M7、SH18,第2 年开花株率分别为65.4%、61.6%、62.3%;第3 年,除M7 外,开花株率均为100%,第4年M7开花株率达到100%。矮化中间砧组合中早期丰产性以M9 最好,3~5 a 单株产量分别为2.64、12.65、24.77 kg,其次是M26、SH6,3~5 a 单株产量分别为2.31、9.22、13.22,2.62、13.68、8.17 kg。中间砧形式下,第4~6年产量逐年增加,第6、7年产量稳定,进入盛果期,稳产2 a,产量以M9、SH6、M26较高。不同矮化砧木对苹果的品质影响较大,本研究表明,矮化自根砧的果个明显大于中间砧组合,M9、M26、M7、SH6、SH18 矮化中间砧对烟富3 苹果果个大小、形状、着色影响很小,果实去皮硬度和可溶性固形物含量受砧木种类影响较大,果实去皮硬度以M9、T337 自根砧和M7、M9、SH6 矮化中间砧较高,可溶性固形物含量以M9、T337自根砧和M9、SH6矮化中间砧较高。
T337 作为自根砧嫁接富士苹果与其他矮化砧木相比,具有树体小、总枝量大、果园通风透光条件好、树势中庸(枝类组成合理,短枝比例高,长枝比例小)、易成花、产量高且稳产性好,大果率高及果实品质好的优势;中间砧利用形式上,M9、SH6、M26 矮化性较好,产量较高,果实品质好,综合表现较好,在生产上,可以结合实践推广应用。
[1] BSLKHOVEN-BAART J M T,WAGENMSKERS P S,BOOTSMA J H,GROOT M J,WERTHEIM S J.Developments in Dutch apple plantings[J].Acta Horticulturae,2000,513:261-269.
[2] ROBINSON T L.Recent advances and future directions in orchard planting systems[J].Acta Horticulturae,2007,732:367-381.
[3] 李宏建,王宏,刘志,于年文,宋哲,张秀美,里程辉.嘎拉苹果不同留果量对枝类组成、果实品质和产量的影响[J].果树学报,2020,37(12):1856-1864.LI Hongjian,WANG Hong,LIU Zhi,YU Nianwen,SONG Zhe,ZHANG Xiumei,LI Chenghui.Effects of fruit load on the composition of branches,fruit quality and yield of Regal Gala apple[J].Journal of Fruit Science,2020,37(12):1856-1864.
[4] 曹辉,杨莹攀,王洪博,蒋富昌,赵栗,王兴鹏.南疆矮砧密植滴灌苹果生长、耗水及产量研究[J].果树学报,2021,38(5):681-691.CAO Hui,YANG Yingpan,WANG Hongbo,JIANG Fuchang,ZHAO Li,WANG Xingpeng.Study on the growth,water consumption and yield of drip-irrigated apple trees with dwarfing rootstock and close planting in South Xinjiang[J].Journal of Fruit Science,2021,38(5):681-691.
[5] 韩明玉.苹果矮砧集约栽培技术模式刍议[J].中国果树,2015(3):76-79.HAN Mingyu.On the intensive cultivation technology model of apple dwarf[J].Chinese Fruits,2015(3):76-79.
[6] 马宝焜,徐继忠,孙建设.关于我国苹果矮砧密植栽培的思考[J].果树学报,2010,27(1):105-109.MA Baokun,XU Jizhong,SU Jianshe.Consideration for high density planting with dwarf rootstocks in apple in China[J].Journal of Fruit Science,2010,27(1):105-109.
[7] 李丙智,张林森,韩明玉.世界苹果矮化砧木应用现状[J].果农之友,2007(7):4-6.LI Bingzhi,ZHANG Linsen,HAN Mingyu.Application status of apple dwarfing rootstocks in world[J].Fruit Growers’Friend,2007(7):4-6.
[8] 葛彦惠.中日苹果生产对比[D].保定:河北农业大学,2003.GE Yanhui.Apple production comparison between China and Japan[D].Baoding:Hebei Agricultural University,2003.
[9] 王金政,薛晓敏,苏桂林,王志刚,于国合.山东省矮砧苹果栽培现状分析[J].山东农业科学,2011(1):41-43.WANG Jinzheng,XUE Xiaomin,SU Guilin,WANG Zhigang,YU Guohe.Analysis of current situation of dwarf apple cultivation in Shandong Province[J].Shandong Agricultural Sciences,2011(1):41-43.
[10] 王红平,董铁,刘兴禄,尹晓宁,孙文泰,牛军强,马明.5 个苹果砧木品种枝条的低温半致死温度及耐寒性评价[J].果树学报,2020,37(4):495-501.WANG Hongping,DONG Tie,LIU Xinglu,YIN Xiaoning,SUN Wentai,NIU Junqiang,MA Ming.A study on the cold resistance and the semi-lethal temperatures for branches of five apple rootstock cultivars[J].Journal of Fruit Science,2020,37(4):495-501.
[11] 刘兴禄,王红平,孙文泰,董铁,牛军强,马明.5 个砧木苹果枝条的抗寒性评价[J].果树学报,2021,38(8):1264-1274.LIU Xinglu,WANG Hongping,SUN Wentai,DONG Tie,NIU Junqiang,MA Ming.Cold resistance evaluation of the shoots of 5 apple rootstocks[J].Journal of Fruit Science,2021,38(8):1264-1274.
[12] 张旭,朱珍珍,孙鲁龙,李凤龙,韦德闯,朱佳顺,樊良栋,赵政阳.陇东地区不同矮化中间砧对‘长富2 号'苹果抗寒性的影响[J].果树学报,2020,37(7):985-996.ZHANG Xu,ZHU Zhenzhen,SUN Lulong,LI Fenglong,WEI Dechuang,ZHU Jiashun,FAN Liangdong,ZHAO Zhengyang.Effects of different dwarfing interstocks on cold resistance of‘Changfu 2’apple in Longdong area[J].Journal of Fruit Science,2020,37(7):985-996.
[13] 李民吉,张强,李兴亮,周贝贝,孙健,张军科,魏钦平.五个SH系矮化中间砧对‘富士’苹果树体生长、产量和品质的影响[J].中国农业科学,2016,49(22):4419-4428.LI Minji,ZHANG Qiang,LI Xingliang,ZHOU Beibei,SUN Jian,ZHANG Junke,WEI Qinping.Effect of five different dwarfing interstocks of SH on growth,yield and quality in‘Fuji’apple trees[J].Scientia Agricultura Sinica,2016,49(2):4419-4428.
[14] 张东,张宝娟,李文强,马娟娟,檀鸣,杜俊兰,韩明玉.渭北黄土高原苹果不同砧穗组合幼树根系发育和分布的特征[J].园艺学报,2016,43(4):623-632.ZHANG Dong,ZHANG Baojuan,LI Wenqiang,MA Juanjuan,TAN Ming,DU Junlan,HAN Mingyu.Characteristics of different scion-rootstock combinations on root development and distribution of apple sapling in the Weibei Loess Highlands[J].Acta Horticulturae Sinica,2016,43(4):623-632.
[15] 王贵平,薛晓敏,路超,聂佩显,王金政.山东省不同地区M26矮化中间砧特性研究与评价[J].山东农业科学,2012(4):49-52.WANG Guiping,XUE Xiaomin,LU Chao,NIE Peixian,WANG Jinzheng.Study and evaluation on characteristics of M26 dwarfing interstocks for apples in Shandong Province[J].Shandong Agricultural Sciences,2012(4):49-52.
[16] 陈杰忠,邹俊渝.不同砧木甜橙幼树生长量及叶片矿质元素含量的研究[J].华南农业大学学报,1993,14(4):84-88.CHEN Jiezhong,ZOU Junyu.Studies on the growth and leaf mineral content of sweet orange young plants on different rootstocks[J].Journal of South China Agricultural University,1993,14(4):84-88.
[17] 赵同生,赵国栋,张朝红,张新生,杨凤秋,陈东玫,赵永波,付友.不同矮化中间砧对‘宫崎短枝富士’树体生长、产量和品质的影响[J].果树学报,2016,33(11):1379-1387.ZHAO Tongsheng,ZHAO Guodong,ZHANG Chaohong,ZHANG Xinsheng,YANG Fengqiu,CHEN Dongmei,ZHAO Yongbo,FU You.Effect of dwarfing interstocks on tree growth,yields and fruit quality of‘Miyazakifuji’apple[J].Journal of Fruit Science,2016,33(11):1379-1387.
[18] WERTHEIM S J,WAGENMAKERS P S,BOOTSMA J H,GROOT M J.Orchard systems for apple and pear:Conditions for success[J].Acta Horticulturae,2001,557:209-227.
[19] 韩振海.苹果矮化密植栽培:理论与实践[M].北京:科学出版社,2011.HAN Zhenhai.Dwarfing and dense planting of apples:Theory and practice[M].Beijing:Science Press,2011.
[20] 徐吉花,赵政阳,王雷存,高华,刘振中,樊红科.苹果果实品质评价因子的选择研究[J].干旱地区农业研究,2011,29(6):269-274.XU Jihua,ZHAO Zhengyang,WANG Leicun,GAO Hua,LIU Zhenzhong,FAN Hongke.Study on selection of apple fruit quality evaluation factors[J].Agricultural Research in the Arid Areas,2011,29(6):269-274.
[21] 束怀瑞.苹果学[M].北京:中国农业出版社,1999.SHU Huairui.Appleology[M].Beijing:China Agricultural Press,1999.
[22] 张强,魏钦平,刘松忠,王小伟,尚志华,路瑾瑾.SH6 矮化中间砧富士苹果幼树至结果初期树冠结构、产量和品质的形成[J].中国农业科学,2013,46(9):1874-1880.ZHANG Qiang,WEI Qinping,LIU Shongzhong,WANG Xiaowei,SHANG Zhihua,LU Jinjin.Formation of canopy structure,yield and fruit quality of‘Fuji’apple with SH6 dwarf interstock from juvenility to fruiting early stage[J].Scientia Agricultura Sinica,2013,46(9):1874-1880.
[23] JACKSON J E.Word-wide development of high density planting in research and practice[J].Acta Horticulturae,1989,243:17-28.
[24] ZAGAJA S W.Performance of two apple cultivars on pseries dwarf rootstocks[J].Acta Horticulturae,1980,114:162-169.
Effects of different rootstock-scion combinations on tree development,photosynthetic production,yield and quality of Fuji apple