121份西瓜材料幼苗期耐盐性鉴定

高博文,孙德玺,袁高鹏,安国林,李卫华,刘君璞*,朱迎春*

(中国农业科学院郑州果树研究所,郑州 450009)

摘 要:目的】评价西瓜材料苗期耐盐性,筛选耐盐西瓜种质。【方法】以121 份西瓜材料为试材,分别进行苗期150 mmol·L-1NaCl处理,8 d后测定地上部分鲜质量、地上部分干质量、茎粗、SPAD、根长、根表面积等指标。运用相关性分析、主成分分析筛选西瓜苗期耐盐鉴定指标,并结合隶属函数分析对西瓜材料进行综合评价。【结果】150 mmol·L-1 NaCl处理后各西瓜材料间均存在不同程度的耐盐性差异。相关性分析表明,地上部分干质量与地上部分鲜质量、茎粗存在极显著正相关关系;根表面积与地上部分鲜质量、地上部分干质量、根长存在极显著正相关关系;主成分分析表明,地上部分鲜质量、根长在3个主成分中特征向量较大,可以作为西瓜苗期耐盐性评价的指标。结合隶属函数分析对121份西瓜材料进行耐盐级别划分:Ⅰ.重度盐敏感材料3份;Ⅱ.轻度盐敏感材料81份;Ⅲ.中间型材料34份;Ⅳ.耐盐材料3 份。【结论】地上部分鲜质量、根长可作为西瓜苗期耐盐性鉴定的指标。重度盐敏感材料(PI186489、PI494532、大红籽)及耐盐材料(中石红、PI490377、早花),为耐盐西瓜品种培育和耐盐基因的挖掘提供材料支撑。

关键词:西瓜;幼苗期;耐盐性鉴定

土壤盐碱化严重制约着农业经济的发展。据调查统计,全世界范围内约10亿hm2的土地受到盐胁迫的影响[1],预计到2050年,土壤盐碱化面积将超过全球耕地面积的50%[2]。西瓜是我国重要的蔬菜作物之一,目前全国西瓜播种面积约154 万hm2,总产量达6324 万t[3]。但西瓜是一种中度盐敏感作物[4],在盐胁迫下先后发生渗透胁迫和离子毒害,生理代谢紊乱,导致西瓜的产量和品质严重下降。因此,提高盐碱地西瓜的产量和品质成为一个亟需解决的难题。通过筛选耐盐西瓜种质,对于改善和利用盐碱化土壤、提高西瓜耐盐性具有重要意义。迄今为止,关于西瓜苗期耐盐性的研究主要集中在耐盐砧木的鉴定[5-8]和施用外源物质[9-11]等方面,对于西瓜苗期耐盐种质筛选的报道却很少。仅韩志平等[12]通过水培对16个小型西瓜品种的幼苗期形态、生理指标进行鉴定,得到4 个耐盐性较强品种、7 个耐盐性中等品种和5 个耐盐性较弱品种。笔者在本研究中选取121 份西瓜材料进行苗期耐盐性筛选,以期为西瓜耐盐品种的改良和培育提供丰富的材料支撑。

1 材料和方法

1.1 试验材料

选用的121 份西瓜材料(表1)来源于中国农业科学院郑州果树研究所。

表1 西瓜种质资源来源及类型
Table 1 Sources and classification of watermelon

编号No.1 2 3 4 5 6 7 8 9种质资源Germplasm PI494530 PI254723 PI186975 PI185636 PI494532 PI595203 PI179240 PI186489编号No.25 26 27 28 29 30 31 32种质资源Germplasm郑州籽瓜Zhengzhouzigua信白91-2 Xinbai 91-2白瓜籽Baiguazi大阪红瓜籽Dabanhongguazi皋兰籽瓜Gaolanzigua廊坊籽瓜Langfangzigua红瓜子Hongguazi磴口籽瓜Dengkouzigua类型Classification籽瓜Citrullus var.megalospermus籽瓜Citrullus var.megalospermus籽瓜Citrullus var.megalospermus籽瓜Citrullus var.megalospermus籽瓜Citrullus var.megalospermus籽瓜Citrullus var.megalospermus籽瓜Citrullus var.megalospermus籽瓜Citrullus var.megalospermus PI457916 10 PI490377 11 PI490381 12 PI532722籽瓜Citrullus var.megalospermus地方品种Landrace地方品种Landrace地方品种Landrace 13 PI532726 14 PI532732 15 PI559997 16 PI542119 17 PI482322 18 19北京野生Beijingyesheng PI632751 33 34 35 36 37 38 39 40 41 42 43 20 21 22 23 24 Grif16135 PI386014 PI386015 PI537277道县红籽瓜Daoxianhongzigua来源Source尼日利亚Nigeria塞内加尔Senegal加纳Ghana加纳Ghana尼日利亚Nigeria印度India土耳其Turkey尼日利亚Nigeria利比里亚Liberia马里Mali马里Mali刚果Congo刚果Congo刚果Congo尼日利亚Nigeria博茨瓦纳Botswana津巴布韦Zimbabwe中国北京Beijing,China纳米比亚Namibia纳米比亚Namibia伊朗Iran伊朗Iran巴基斯坦Pakistan中国安徽Anhui,China类型Classification黏籽西瓜Citrullus ssp.mucosospermus黏籽西瓜Citrullus ssp.mucosospermus黏籽西瓜Citrullus ssp.mucosospermus黏籽西瓜Citrullus ssp.mucosospermus黏籽西瓜Citrullus ssp.mucosospermus黏籽西瓜Citrullus ssp.mucosospermus黏籽西瓜Citrullus ssp.mucosospermus黏籽西瓜Citrullus ssp.mucosospermus黏籽西瓜Citrullus ssp.mucosospermus黏籽西瓜Citrullus ssp.mucosospermus黏籽西瓜Citrullus ssp.mucosospermus黏籽西瓜Citrullus ssp.mucosospermus黏籽西瓜Citrullus ssp.mucosospermus黏籽西瓜Citrullus ssp.mucosospermus黏籽西瓜Citrullus ssp.mucosospermus饲用西瓜Citrullus var.citroides饲用西瓜Citrullus var.citroides饲用西瓜Citrullus var.citroides野生西瓜Wild watermelon热迷西瓜C.rehmii药西瓜C.colocynthis药西瓜C.colocynthis药西瓜C.colocynthis籽瓜Citrullus var.megalospermus 44 45 46 47宁夏红籽瓜Ningxiahongzigua抚州瓜Fuzhougua马铃瓜Malinggua三义Sanyi手巾条Shoujintiao周至红Zhouzhihong大红甜Dahongtian糖炮弹Tangpaodan喇嘛瓜Lamagua梨皮Lipi核桃纹Hetaowen胎里红Tailihong宿县小籽Suxianxiaozi青抱筋Qingbaojin陕西白Shaanxibai来源Source中国郑州Zhengzhou,China中国江西Jiangxi,China中国北疆Beijiang,China日本Japan中国甘肃Gansu,China中国河北Hebei,China中国宁夏Ningxia,China中国内蒙古Inner Mongolia,China中国宁夏Ningxia,China中国江西Jiangxi,China中国山东Shandong,China中国武汉Wuhan,China中国新疆Xinjiang,China中国陕西Shaanxi,China中国陕西Shaanxi,China中国新疆Xinjiang,China中国山东Shandong,China中国山东Shandong,China中国山东Shandong,China中国山东Shandong,China中国安徽Anhui,China中国河北Hebei,China陕西Shaanxi地方品种Landrace地方品种Landrace地方品种Landrace地方品种Landrace地方品种Landrace地方品种Landrace地方品种Landrace地方品种Landrace地方品种Landrace地方品种Landrace地方品种Landrace

续表Continued Table

编号No.48 49 50 51 52 53 54 55 56 57 58 59 60种质资源Germplasm偃师一号Yanshi 1槟榔皮Binlangpi齐头黄Qitouhuang 2000B57 板叶2000B57 Banye吐白皮Tubaipi呼图壁早熟Hutubizaoshu卡拉其怕Kalaqipa大红籽Dahongzi阿拉克孜外Alakeziwai陕西红籽Shaanxihongzi透心红Touxinhong宁县西瓜Ningxianxigua桃尖Taojian类型Classification地方品种Landrace地方品种Landrace地方品种Landrace地方品种Landrace地方品种Landrace地方品种Landrace地方品种Landrace地方品种Landrace地方品种landrace地方品种landrace地方品种Landrace地方品种Landrace地方品种Landrace 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84小红籽Xiaohongzi奎克塔吾孜Kuiketawuzi卡拉塔吾孜Kalatawuzi阜阳1号Fuyang 1黑皮Heipi鸡爪瓜Jizhuagua尉氏西瓜Weishixigua花玲Hualing早密矮Zaomiai塔车红Tachehong冻瓜Donggua小麻籽Xiaomazi美丽Meili广州花皮Guangzhouhuapi顶心红Dingxinhong黑崩筋Heibengjin金包银Jinbaoyin香久山Xiangjiushan小西瓜-4 Xiaoxigua-4无杈西瓜Wuchaxigua朱小黑小子Zhuxiaoheixiaozi长灰Changhui AB系Ab xi琼露Qionglu来源Source中国河南Henan,China中国山西Shanxi,China中国上海Shanghai,China中国河南Henan,China中国新疆Xinjiang,China中国新疆Xinjiang,China中国南疆Nanjiang,China中国北疆Beijiang,China中国南疆Nanjiang,China中国陕西Shaanxi,China中国辽宁Liaoning,China中国陕西Shaanxi,China中国山东Shandong,China中国北疆Beijiang,China中国南疆Nanjiang,China中国南疆Nanjiang,China中国安徽Anhui,China中国安徽Anhui,China中国北疆Beijiang,China中国河南Henan,China中国北京Beijing,China中国北疆Beijiang,China中国北疆Beijiang,China中国河南Henan,China中国河南Henan,China苏联Soviet Union中国广州Guangzhou,China中国辽宁Liaoning,China中国北京Beijing,China中国江西Jiangxi,China中国沈阳Shenyang,China中国郑州Zhengzhou,China中国新疆Xinjiang,China中国新疆Xinjiang,China中国新疆Xinjiang,China中国河南Henan,China中国上海Shanghai,China地方品种Landrace地方品种Landrace地方品种Landrace地方品种Landrace地方品种Landrace地方品种Landrace地方品种Landrace地方品种Landrace地方品种Landrace地方品种Landrace地方品种Landrace地方品种Landrace地方品种Landrace地方品种Landrace地方品种Landrace地方品种Landrace地方品种Landrace改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety编号No.85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121种质资源Germplasm罗菲林Luofeilin红1号Hong 1旭大和Xudahe美国短蔓Meiguoduanman Tomato seed新大和Xindahe PI161375浓冲Nongchong郑州1号Zhengzhou 1郑州2号Zhengzhou 2连小-5 Lianxiao-5香小瓜Xiangxiaogua短蔓Duanman小青皮Xiaoqingpi苏联2号Sulian 2斯拉夫怕卡Silafupaka美好Meihao大西瓜Daxigua中石红Zhongshihong中育3号Zhongyu 3兴城红Xingchenghong 2002D80郑州YCL Zhengzhou YCL墨西哥黑皮Moxigeheipi Sugarlee Calhoun Gray Black diamond Dixielee火洲1号Huozhou 1无杈早Wuchazao早花Zaohua汴梁1号Bianliang 1 74-5-1苏蜜1号Sumi 1小籽4号Xiaozi 4开杂5号Kaiza 5华东26号Huadong 26来源Source罗马尼亚Luomaniya日本Japan日本Japan美国America美国America日本Japan韩国Korea韩国Korea中国郑州Zhengzhou,China中国郑州Zhengzhou,China日本Japan日本Japan日本Japan中国吐鲁番Turpan,China苏联Soviet Union苏联Soviet Union乌克兰Ukraine中国上海Shanghai,China中国广东Guangdong,China中国北京Beijing,China中国辽宁Liaoning,China中国郑州Zhengzhou,China中国郑州Zhengzhou,China墨西哥Mexico美国America美国America美国America美国America中国郑州Zhengzhou,China中国新疆Xinjiang,China中国辽宁Liaoning,China中国开封Kaifeng,China中国新疆Xinjiang,China中国新疆Xinjiang,China中国新疆Xinjiang,China中国河南Henan,China中国江苏Jiangsu,China类型Classification改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety改良品种Improved variety

1.2 试验方法

试验于2020年4月—2021年6月在中国农业科学院郑州果树研究所智能温室进行。将试验材料浸种催芽,播于直径为2~4 mm的陶粒中培养,待西瓜幼苗子叶展开时,选取子叶展开较好、生长整齐一致的材料移栽至Hoagland’s 营养液中培养(水培盆的规格为31.5 cm× 25.5 cm× 10.0 cm),每盆15 株,每2 d 更换1 次营养液。设对照组(CK,Hoagland’s营养液)和盐胁迫组(Hoagland’s 营养液中添加150 mmol·L-1 NaCl)2 个处理,每个处理3个重复,每个重复15株。盐胁迫期间,每2 d更换1次营养液和NaCl,处理8 d后测定其指标。

1.3 指标测定

地上部分生物量:选择受胁迫程度一致的西瓜幼苗用清水冲洗干净并迅速擦干,从根茎结合处划分地上部分和地下部分,用电子天平称地上部分鲜质量(shoot fresh weight,SFW),105 ℃杀青1 h,65 ℃下烘至恒质量,称干质量(shoot dry weight,SDW),设置6个生物学重复。

茎粗(stem diameter,SD):用数显游标卡尺测定西瓜幼苗茎底端往上1 cm处的宽度,分别测定同一植株的最大值和最小值,取平均数。

根部指标:根系迅速用自来水冲洗,再用去离子水冲洗3次,用吸水纸吸干后,用根系分析仪(LA-S,杭州万深检测科技有限公司)测定根长(root length,RL)、根表面积(root surface area,RSA)。

叶绿素含量:避开叶脉,用SPAD仪分别测定新鲜叶片的左、右、上部3 个位置的读数,取平均值作为该叶片的SPAD值,用来代表叶绿素含量。

各指标均用其相对值表示,各指标相对值=处理值/对照值。

1.4 数据处理与分析

采用Microsoft Excel 2019 软件进行数据处理,使用Origin 2019 进行绘图,使用SPSS 19.0 进行相关性分析、主成分分析和隶属函数分析[13]

2 结果与分析

2.1 西瓜苗期对盐胁迫的响应

150 mmol·L-1 NaCl 处理后,121 份西瓜材料各耐盐指标均受到不同程度的影响(图1)。其中,地上部分干鲜质量、根长、根表面积与对照相比均有所下降,表明盐胁迫对西瓜幼苗的地上部分生物量、根长和根表面积产生不同程度的抑制作用。部分材料茎粗比对照高,可能是由于幼苗通过增加茎粗、降低株高的方式来响应盐胁迫。SPAD与对照相比均有所增加,表明150 mmol·L-1 NaCl 处理对西瓜幼苗的叶绿素积累有促进作用,这可能与处理的盐浓度有关。

图1 150 mmol·L-1 NaCl 处理下121 个西瓜材料幼苗期各指标相对值
Fig.1 Relative values of all indexes of 121 watermelon materials under150 mmol·L-1NaCl

121 个材料按照相对值从小到大进行排序(从左到右),误差线表示标准差,虚线表示该指标121 个材料的均值。
Materials are sorted according to the increasing relative values(from left to right);error bars indicate standard deviations;dashed lines indicate 121 materials means.

地上部分鲜质量的相对值为0.132~0.979,均值为0.509;地上部分干质量的相对值为0.156~0.967,均值为0.611;茎粗的相对值为0.721~1.103,均值为0.917;根长的相对值为0.193~0.989,均值为0.745;根表面积的相对值为0.204~0.985,均值为0.646;SPAD 的相对值为1.052~1.494,均值为1.201。表明121 个西瓜材料各指标的变化幅度存在差异,因此无法采用单项指标评价西瓜耐盐性。

2.2 相关性分析

相关性分析可以定量描述不同指标间的相关程度,相关系数的绝对值越大表明指标间的相关性越强。由表2可知,150 mmol·L-1NaCl胁迫下,西瓜幼苗地上部分干质量和地上部分鲜质量、茎粗存在极显著正相关关系,相关系数分别为0.828、0.247;根表面积和地上部分鲜质量、地上部分干质量、根长存在极显著正相关关系,相关系数分别为0.299、0.238、0.437。这说明各指标提供的信息存在冗余,为简化评价流程,需要做进一步分析。

表2 150 mmol·L-1NaCl 处理下西瓜幼苗各指标的相关系数矩阵
Table 2 Correlation matrix of each index of watermelon seedlings under 150 mmol·L-1 NaCl

注:**表示在0.01 水平(双侧)上显著相关。
Note:**indicates a significant correlation at the level of 0.01(bilateral).

指标Index地上部分鲜质量SFW地上部分干质量SDW茎粗SD根长RL根表面积RSA SPAD地上部分鲜质量SFW 1 0.828**0.173 0.177 0.299**0.121地上部分干质量SDW茎粗SD根长RL根表面积RSA SPAD 1 0.247**0.105 0.238**0.123 1 0.122 0.165 0.160 1 0.437**0.043 1 0.061 1

2.3 主成分分析

运用主成分分析可以消除各指标间的相关影响,排除次要指标的干扰作用,提高分析的准确性。由表3 可知,前3 个主成分的贡献率分别为30.685%、24.245%、19.490%,累积贡献率达到74.420%,且特征值均大于1,表明可以将原来6个相关的单项指标转换为3个彼此独立的主成分且覆盖了原始指标绝大部分的信息。其中地上部分鲜质量、地上部分干质量在第Ⅰ主成分中载荷(绝对值)较大,是主成分Ⅰ的重要变量,反映了盐胁迫下西瓜幼苗的地上部分生物量;第Ⅱ主成分中根长、根表面积的载荷(绝对值)较大,反映了盐胁迫下西瓜幼苗根部的生长情况,第Ⅲ主成分中SPAD的载荷(绝对值)较大,反映了盐胁迫下西瓜幼苗叶的生理变化。综合相关性分析的结果,选择载荷(绝对值)较大的2 个指标:地上部分鲜质量(载荷值为0.945)、根长(载荷值为0.865)作为西瓜苗期的耐盐评价指标。

表3 3 个主成分的特征值、贡献率及载荷矩阵
Table 3 Eigen value,contribution and loading matrix of 3 principal components

指标Index ⅡⅢ载荷矩阵Loading matrix地上部分鲜质量SFW地上部分干质量SDW茎粗SD根长RL根表面积RSA SPAD特征值Eigen value贡献率Contribution/%累积贡献率Cumulative contribution/%主成分Principal componentⅠ0.945 0.935 0.170 0.004 0.213 0.010 1.841 30.685 30.685 0.068 0.157 0.174 0.865 0.803-0.053 1.455 24.245 54.930 0.134 0.079 0.649 0.051 0.072 0.846 1.169 19.490 74.420

2.4 隶属函数分析

隶属函数分析是基于模糊集合理论,对受到多种指标影响的事物进行综合评价的方法。由表4可知,试验材料的D 值范围为0.165~0.566,说明供试材料间存在着广泛的耐盐性差异。根据D 值大小将121 个西瓜材料划分为4 类:第1 类为重度盐敏感材料(D 值<0.3),包括PI186489、PI494532、大红籽共3 份材料;第2 类为轻度盐敏感材料(0.3 ≤D 值<0.6),包括郑州YCL、火洲1 号、偃师一号、郑州1 号、PI482322、郑州籽瓜、PI532726、喇嘛瓜、青抱筋、黑崩筋、三义、PI185636、PI457916、2002D80、齐头黄西瓜、PI595203、大阪红瓜籽、斯拉夫怕卡、浓冲、香久山、郑州2 号、手巾条、PI186975、美丽、冻瓜、PI537277、卡拉塔吾孜、香小瓜、小红籽、PI386014、宁县西瓜、琼露、小青皮、金包银、大西瓜、鸡爪瓜、连小-5、朱小黑小子、PI386015、花玲、梨皮、卡拉其怕、汴梁1 号、信白91-2、Calhoun Gray、尉氏西瓜、陕西红籽、PI490381、短蔓、磴口籽瓜、宿县小籽、新大和、大红甜、苏联2 号、无杈西瓜、PI179240、阜阳1 号、道县红籽瓜、桃尖、阿拉克孜外、PI494530、PI532732、Dixielee、开杂5 号-1、Sugarlee、周至红、黑皮、小籽4号、PI632751、AB系、美国短蔓、长灰、陕西白、无杈早、宁夏红籽瓜、广州花皮、早密矮、糖炮弹、苏蜜1 号、顶心红、红瓜子共81 份材料;第3 类为中间型材料(0.6 ≤D 值<0.7),包括罗菲林、Grif16135、奎克塔吾孜、小麻籽、PI161375、27150、Tomato seed、美好、抚州瓜、塔车红、Black diamond、北京野生、兴城红、廊坊籽瓜、PI532722、小西瓜-4、华东26 号、2000B57 板叶、透心红、红1 号、吐白皮西瓜、核桃纹、胎里红、PI542119、白瓜籽、皋兰籽瓜、墨西哥黑皮、PI254723、PI559997、中育3 号、旭大和、呼图壁早熟、槟榔皮西瓜、马铃瓜共34份材料;第4类为耐盐材料(D 值≥0.7),包括早花、PI490377、中石红共3份材料。其中两端型材料分布较少,中间类型材料分布较多,符合正态分布,可以说明这种分级比较合理。

表4 各材料综合指标值、μ(x)值和D
Table 4 Value of each variety’s comprehensive indexes[CI(x)],μ(x)and D value

编号No.D D 123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 CI(1)0.815 1.741-0.356-1.054-4.070-1.531-0.792-1.428-0.615 2.487-0.765 0.630-0.531-1.547 1.464 1.269-0.924 0.696 3.098-0.367 2.272 0.337-0.468 1.760-1.911-0.854 3.905-0.967 1.204 1.274 0.859-0.062-0.875 0.629 1.724-1.261-0.842 0.099-0.769 0.254-1.757-1.535 1.991-0.189 0.392 1.170-0.655-1.949 0.503-0.836 1.502 1.917 3.098-1.552-1.465-1.023-0.967 0.749-0.514 0.404-1.039 CI(2)-2.406 0.672-0.479-0.030-0.719-0.828 0.793-2.905-1.800 1.023 0.502 0.793-3.880 0.885 0.623 0.175-0.323 1.671-2.126 0.562-2.766-0.910 0.075 0.253-1.270 0.748-0.345-1.746 0.521 1.094-1.214-0.678 1.162 0.905-0.946-0.477-0.432 0.265 0.713 1.212-1.437-0.078-0.305 0.227-0.172-3.520-0.959-1.086 1.326-1.682-0.583-0.014 0.291 0.900-3.068 1.226 0.317 0.649 0.787 0.862 0.544 CI(3)2.328 0.018-0.781-1.553-1.030 0.218 0.347-1.968-0.086 0.963 0.020 0.355 1.292 1.425 0.511 0.842-2.454-0.719-0.274 1.199-0.750-0.274-0.923-1.802-0.295-0.522-1.435 0.582 0.660-0.723 1.707 0.614 0.861-0.057 2.574-0.882-0.401 0.416 0.379-0.301 0.143 0.900 0.532 2.372-0.323-0.633 2.797-0.861 1.414 0.268 1.002 0.233-0.473-0.065-0.622 0.280 0.424 0.529-1.433-0.933-0.721 μ(X1)0.613 0.729 0.466 0.378 0.000 0.318 0.411 0.331 0.433 0.822 0.414 0.589 0.444 0.316 0.694 0.669 0.394 0.598 0.899 0.464 0.795 0.553 0.452 0.731 0.271 0.403 1.000 0.389 0.661 0.670 0.618 0.503 0.401 0.589 0.727 0.352 0.405 0.523 0.414 0.542 0.290 0.318 0.760 0.487 0.560 0.657 0.428 0.266 0.573 0.406 0.699 0.751 0.899 0.316 0.327 0.382 0.389 0.604 0.446 0.561 0.380 μ(X2)0.228 0.703 0.525 0.595 0.488 0.471 0.722 0.151 0.321 0.757 0.677 0.722 0.000 0.736 0.695 0.626 0.549 0.857 0.271 0.686 0.172 0.459 0.611 0.638 0.403 0.715 0.546 0.330 0.680 0.768 0.412 0.495 0.779 0.739 0.453 0.526 0.533 0.640 0.709 0.786 0.377 0.587 0.552 0.634 0.573 0.056 0.451 0.432 0.804 0.339 0.509 0.597 0.644 0.738 0.125 0.789 0.648 0.699 0.721 0.732 0.683 μ(X3)0.915 0.496 0.351 0.211 0.306 0.532 0.556 0.136 0.477 0.667 0.496 0.557 0.727 0.751 0.585 0.646 0.048 0.362 0.443 0.710 0.357 0.443 0.325 0.166 0.439 0.398 0.232 0.598 0.612 0.362 0.802 0.604 0.649 0.482 0.960 0.333 0.420 0.568 0.561 0.438 0.519 0.656 0.589 0.923 0.434 0.378 1.000 0.337 0.749 0.541 0.675 0.535 0.407 0.481 0.380 0.544 0.570 0.589 0.233 0.324 0.362 0.566 0.659 0.455 0.405 0.239 0.424 0.550 0.221 0.408 0.760 0.521 0.624 0.373 0.567 0.666 0.649 0.354 0.621 0.575 0.601 0.477 0.493 0.470 0.553 0.358 0.503 0.651 0.425 0.654 0.621 0.599 0.527 0.589 0.610 0.698 0.404 0.450 0.573 0.549 0.595 0.378 0.494 0.648 0.649 0.531 0.388 0.586 0.338 0.695 0.420 0.631 0.644 0.687 0.497 0.275 0.557 0.521 0.631 0.480 0.555 0.474排名Order 58 10 96 107 120 103 63 121 106 2 71 23 112 57 9 14 114 26 50 36 89 80 93 61 113 75 13 102 12 24 38 69 44 29 4 108 97 53 66 41 111 78 16 15 68 110 46 116 5 104 20 17 6 77 119 59 72 19 88 60 90编号No.62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 CI(1)1.314-1.467-1.870 1.290-2.884-0.081-0.787-0.740 0.188-1.473 1.527 0.016 1.089-0.918-1.457-0.790-1.024-0.267 0.114-0.541 0.079 0.101 1.032-2.269-0.633 1.259-0.770 0.469-0.433 1.313-1.314-1.239-0.164-0.546 0.303 0.160-0.574 0.165 0.217 1.019-0.049 2.446 0.517 1.496 0.004-3.094 1.920 0.975 0.084-0.848 0.476-1.075 2.383 0.449-1.005-0.809 1.798-0.627-0.010 2.777 CI(2)-0.593 0.039 0.503 0.704 1.324-0.058-0.469-0.256-0.299 0.569-0.204-1.280 0.610 1.498-2.024 0.177-0.703 1.652-0.056 0.336 0.319 1.361-1.574 1.932 0.985 0.996 1.866 0.733 1.903 0.530-0.671-1.881-0.721 0.373-1.034 0.875 0.134 1.516 0.336-0.434-0.105 0.023 2.362 1.122-0.356-0.931 0.636 0.034 0.403 2.595 0.129-0.785-1.389 0.718-0.655 1.559 0.228 2.299 1.014-0.506 CI(3)0.637 0.217 1.877-1.334 0.744-0.329 0.490 2.311 1.834-0.469 0.006-0.280-0.604 0.752 0.851-0.402-0.150 0.471 0.260-0.678 0.586-0.580-0.574 1.812 1.686 0.675-0.154 0.248-1.291-0.519 0.029-0.615-0.937-0.735-0.548-1.379-0.633-1.479-2.717 0.892-0.881 2.080-0.017-1.005-2.220-0.464-0.154-0.309-1.144-0.044 0.039-2.178-0.029 2.313 1.018 0.708-0.864-0.935-0.309-0.489 μ(X1)0.675 0.326 0.276 0.672 0.149 0.500 0.412 0.417 0.534 0.326 0.702 0.512 0.647 0.395 0.328 0.411 0.382 0.477 0.525 0.443 0.520 0.523 0.640 0.226 0.431 0.668 0.414 0.569 0.456 0.675 0.346 0.355 0.490 0.442 0.548 0.530 0.438 0.531 0.538 0.638 0.504 0.817 0.575 0.698 0.511 0.122 0.751 0.633 0.521 0.404 0.570 0.376 0.809 0.567 0.384 0.409 0.736 0.432 0.509 0.859 μ(X2)0.508 0.605 0.677 0.708 0.804 0.590 0.527 0.560 0.553 0.687 0.568 0.401 0.693 0.831 0.287 0.626 0.491 0.854 0.591 0.651 0.649 0.809 0.356 0.898 0.751 0.753 0.887 0.712 0.893 0.681 0.496 0.309 0.488 0.657 0.439 0.734 0.620 0.833 0.651 0.532 0.583 0.603 0.964 0.773 0.544 0.455 0.697 0.605 0.661 1.000 0.619 0.478 0.385 0.710 0.498 0.840 0.634 0.954 0.756 0.521 μ(X3)0.608 0.532 0.833 0.251 0.628 0.433 0.582 0.912 0.825 0.408 0.494 0.442 0.383 0.629 0.647 0.420 0.466 0.578 0.540 0.370 0.599 0.388 0.389 0.821 0.799 0.615 0.465 0.538 0.259 0.399 0.498 0.381 0.323 0.359 0.393 0.243 0.378 0.224 0.000 0.655 0.333 0.870 0.490 0.311 0.090 0.409 0.465 0.437 0.285 0.485 0.500 0.098 0.487 0.912 0.677 0.621 0.336 0.323 0.437 0.404 0.603 0.471 0.553 0.573 0.488 0.512 0.494 0.593 0.617 0.465 0.604 0.458 0.593 0.598 0.398 0.484 0.439 0.626 0.550 0.491 0.583 0.581 0.482 0.601 0.632 0.682 0.582 0.608 0.547 0.605 0.434 0.347 0.445 0.490 0.472 0.522 0.482 0.549 0.434 0.608 0.485 0.761 0.679 0.621 0.412 0.306 0.659 0.572 0.505 0.619 0.568 0.336 0.586 0.704 0.498 0.605 0.598 0.574 0.571 0.629排名Order 35 92 62 52 83 73 79 42 28 94 34 95 43 39 109 85 99 22 64 81 47 49 87 37 18 7 48 31 67 33 100 115 98 82 91 70 86 65 101 30 84 18 25 105 118 11 54 74 27 56 117 45 3 76 32 40 51 55 21

3 讨 论

耐盐材料鉴定是西瓜耐盐育种的基础工作。前人多采用表型指标结合生长指标的鉴定方法,如地上部分鲜质量[14-15]、地上部分干质量[14,16]、茎粗[17]、根长[16,18-19]、根表面积[19]等指标来评价植物苗期耐盐性。SPAD作为一种快速衡量植物叶绿素含量的方法,具有操作简单、无损叶片的优点,也被广泛用于豇豆、小麦、苜蓿等作物的苗期耐盐鉴定研究中[20-22]。张蕾琛等[15]认为地上部鲜质量、茎粗、根长、SPAD 等指标是南瓜苗期耐盐性鉴定的重要指标。本研究表明在150 mmol·L-1 NaCl 处理下西瓜幼苗的各指标均表现出不同程度的耐盐差异。运用主成分分析,将6个指标进行正交变换转化为3个彼此独立的新变量,根据其载荷大小筛选到地上部分鲜质量、地上部分干质量、根长3个重要的耐盐指标。结合相关悉数分析的结果,地上部分鲜质量和地上部分干质量的相关系数达到0.828,为简化评价流程,确定地上部分鲜质量和根长作为西瓜耐盐鉴定的关键指标,为筛选和培育耐盐西瓜材料奠定理论基础。

植物的耐盐性是受多种因素影响的复杂性状[23]。任意单项指标的耐盐性排序各不相同。因此需要运用多元统计分析的方法来研究植物多个耐盐相关指标间的相关关系和内在规律。邹德堂等[24]通过相关性分析、主成分分析和聚类分析将60个水稻材料划分为3 个耐盐级别;马帅国等[23]运用主成分分析和聚类分析将165份粳稻种质划分为4类,并通过相关性分析和逐步回归分析确定其苗期耐盐性鉴定的重要指标;董志刚等[25]采用隶属函数分析和聚类分析将20 个番茄品种分为耐盐、中等耐盐、不耐盐3 类;任富莉等[26]基于隶属函数分析、主成分分析、聚类分析建立了一套高粱全生育期耐盐评价方法。笔者在本研究中采用水培法在150 mmol·L-1 NaCl处理下测定121份西瓜种质材料的6个耐盐相关指标,并运用多元统计分析对其进行耐盐评价。利用相关性分析,明确各指标间的相关性强弱。结合主成分分析,获得地上部分鲜质量和根长两个耐盐指标。在此基础上,结合隶属函数分析得到可以综合反映材料耐盐性的D 值,并以此将121 份西瓜材料进行耐盐级别划分:PI186489、PI494532、大红籽为重度盐敏感材料,火洲1 号、2002D80、琼露、Calhoun Gray、尉氏西瓜等81 份材料为轻度盐敏感材料,罗菲林、奎克塔吾孜、Black diamond、北京野生、PI532722、透心红等34份材料为中间型材料,早花、PI490377、中石红为耐盐材料,为后期耐盐基因的挖掘提供理论依据。

在本研究中笔者仅对西瓜苗期的耐盐性进行鉴定,无法代表西瓜全生育期的耐盐特性。水培与大田鉴定的结果也因温度、光照、水分等环境因素存在一定差异。因此,今后应加强对西瓜种质伸蔓期、成熟期等方向的耐盐研究,建立全套的西瓜耐盐评价体系。

4 结 论

在150 mmol·L-1 NaCl 处理下,西瓜苗期的耐盐鉴定指标包括地上部分鲜质量和根长,筛选获得了PI186489、PI494532、大红籽等重度盐敏感材料和中石红、PI490377、早花等耐盐材料。

参考文献References:

[1] 李建国,濮励杰,朱明,张润森.土壤盐渍化研究现状及未来研究热点[J].地理学报,2012,67(9):1233-1245.LI Jianguo,PU Lijie,ZHU Ming,ZHANG Runsen.The present situation and hot issues in the salt-affected soil reaearch[J].Acta Geographica Sinica,2012,67(9):1233-1245.

[2] VINCENT D,ERGüL A,BOHLMAN M C,TATTERSALL E A R,TILLETT R L,WHEATLEY M D,WOOLSEY R,QUILICI D R,JOETS J,SCHLAUCH K,SCHOOLEY D A,CUSHMAN J C,CRAMER G R.Proteomic analysis reveals differences between Vitis vinifera L.cv.Chardonnay and cv.Cabernet Sauvignon and their responses to water deficit and salinity[J].Journal of Experimental Botany,2007,58(7):1873-1892.

[3] 王晓君,杨玉莹,孙立新,吴敬学,毛世平.新冠肺炎疫情对我国西瓜甜瓜产业的影响及后疫情时期发展建议[J].中国瓜菜,2021,34(5):125-131.WANG Xiaojun,YANG Yuying,SUN Lixin,WU Jingxue,MAO Shiping.Influence of the COVID-19 epidemic on China’s watermelon and melon industry and its development countermeasures in the post-epidemic period[J].China Cucurbits and Vegetables,2021,34(5):125-131.

[4] TANJI K K,KIELEN N C.Agricultural drainage water management in arid and semi-arid areas[M].Rome:Fao Irrigation &Drainage Paper Rome,2002.

[5] 张云起.设施西瓜耐盐砧木筛选及其耐盐机理研究[D].泰安:山东农业大学,2004.ZHANG Yunqi.Study on the screening of salt-tolerant watermelon stock and mechanism of salt-tolerance[D].Tai’an:Shandong Agricultural University,2004.

[6] 崔聪聪.西瓜耐盐砧木的筛选及其在盐胁迫下的生理响应[D].南京:南京农业大学,2008.CUI Congcong.Studies on the screening and physiological response under salt stress of salt-tolerant watermelon stock[D].Nanjing:Nanjing Agricultural University,2008.

[7] 王硕硕.西瓜砧木筛选及其嫁接对西瓜幼苗盐胁迫耐受性的影响[D].泰安:山东农业大学,2015.WANG Shuoshuo.Screening of rootstocks and effects on the grafted watermelon tolerance to salt stress[D].Tai’an:Shandong Agricultural University,2015.

[8] YAN Y Y,WANG S S,WEI M,GONG B,SHI Q H.Effect of different rootstocks on the salt stress tolerance in watermelon seedlings[J].Horticultural Plant Journal,2018,4(6):239-249.

[9] YE L,ZHAO X,BAO E C,CAO K,ZOU Z R.Effects of arbuscular mycorrhizal fungi on watermelon growth,elemental uptake,antioxidant,and photosystem Ⅱactivities and stress-response gene expressions under salinity- alkalinity stresses[J].Frontiers in Plant Science,2019,10:863.

[10] AYYUB C M,ALI M,SHAHEEN M R,QADRI R W K,KHAN I,JAHANGIR M M,ABBASI K Y,KAMAL S,ZAIN M.Enhancing the salt tolerance potential of watermelon(Citrullus lanatus)by exogenous application of salicylic acid[J].American Journal of Plant Sciences,2015,6(19):3267-3271.

[11] LI H,CHANG J J,CHEN H J,WANG Z Y,GU X R,WEI C H,ZHANG YONG,MA J X,YANG J Q,ZHANG X.Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis[J].Frontiers in Plant Science,2017,8:295.

[12] 韩志平,郭世荣,李娟.设施栽培西瓜品种对盐胁迫的响应[J].江苏农业学报,2008,24(6):888-895.HAN Zhiping,GUO Shirong,LI Juan.Response of watermelon cultivars to salinity stress in protected culture[J].Jiangsu Journal of Agricultural Sciences,2008,24(6):888-895.

[13] 陈新,张宗文,吴斌.裸燕麦萌发期耐盐性综合评价与耐盐种质筛选[J].中国农业科学,2014,47(10):2038-2046.CHEN Xin,ZHANG Zongwen,WU Bin.Comprehensive evaluation of salt tolerance and screening for salt tolerant accessions of naked oat (Avena nuda L.) at germination stage[J].Scientia Agricultura Sinica,2014,47(10):2038-2046.

[14] 慈敦伟,张智猛,丁红,宋文武,符方平,康涛,戴良香.花生苗期耐盐性评价及耐盐指标筛选[J].生态学报,2015,35(3):805-814.CI Dunwei,ZHANG Zhimeng,DING Hong,SONG Wenwu,FU Fangping,KANG Tao,DAI Liangxiang.Evaluation and selection indices of salinity tolerance in peanut seedling[J].Acta Ecologica Sinica,2015,35(3):805-814.

[15] 张蕾琛,邢乃林,应泉盛,王迎儿,张慧波,王毓洪,黄芸萍.不同类型南瓜耐盐材料的筛选[J].中国瓜菜,2017,30(6):9-13.ZHANG Leichen,XING Nailin,YING Quansheng,WANG Yinger,ZHANG Huibo,WANG Yuhong,HUANG Yunping.Influences of salt stress on seedling growth of different pumpkin varieties[J].China Cucurbits and Vegetables,2017,30(6):9-13.

[16] MARIUM A,KAUSAR A,ALI SHAH S M,ASHRAF M Y,AKHTAR N,AKRAM M,RIAZ M.Assessment of cucumber genotypes for salt tolerance based on germination and physiological indices[J].Dose-Response,2019,17(4):1-8.

[17] 陆怡.玉米苗期耐盐自交系的筛选及其耐盐机制分析[D].扬州:扬州大学,2016.LU Yi.Salinity tolerance screening of maize inbreds and study on salinity tolerance mechanism[D].Yangzhou:Yangzhou University,2016.

[18] 姚金晓,朱家骝,杨飞,彭红坤,殷武平,王国华.海水胁迫下冬瓜幼芽期和幼苗期耐盐性评价及耐盐指标筛选[J].西北农业学报,2016,25(4):612-618.YAO Jinxiao,ZHU Jialiu,YANG Fei,PENG Hongkun,YING Wuping,WANG Guohua.Evaluation for sea water tolerance of wax gourd at germinating and seedling stages and selection of salt tolerance indices[J].Acta Agriculturae Boreali-Occidentalis Sinica,2016,25(4):612-618.

[19] 时晓磊,严勇亮,石书兵,王继庆,谢磊,张金波,耿洪伟.小麦根部耐盐性状全基因组关联分析[J].植物遗传资源学报,2021,22(1):57-73.SHI Xiaolei,YAN Yongliang,SHI Shubing,WANG Jiqing,XIE Lei,WANG Jinbo,GENG Hongwei.Genome-wide association study of salt tolerance related root traits in wheat[J].Journal of Plant Genetic Resources,2021,22(1):57-73.

[20] RAVELOMBOLA W,DONG L,BARICKMAN T C,XIONG H,OLAOYE D,BHATTARAI G,ZIA B,ALSHAYA H,ALATAWI I,SHI A.Evaluation of salt tolerance in cowpea at seedling stage[J].Euphytica,2021,217(6):116.

[21] EL-HENDAWY S E,HU Y,SCHMIDHALTER U.Assessing the suitability of various physiological traits to screen wheat genotypes for salt tolerance[J].Journal of Integrative Plant Biology,2007,49(9):1352-1360.

[22] 张则宇,李雪,王焱,常巍,高雪芹,伏兵哲.59 份苜蓿种质材料苗期耐盐性评价及耐盐指标筛选[J].草地学报,2020,28(1):112-121.ZHANG Zeyu,LI Xue,WANG Yan,CHANG Wei,GAO Xueqin,FU Bingzhe.Salt tolerance evaluation and salt tolerance index screening of 59 Alfalfa germplasm materials at seedling stage[J].Acta Agrestis Sinica,2020,28(1):112-121.

[23] 马帅国,田蓉蓉,胡慧,吕建东,田蕾,罗成科,张银霞,李培富.粳稻种质资源苗期耐盐性综合评价与筛选[J].植物遗传资源学报,2020,21(5):1089-1101.MA Shuaiguo,TIAN Rongrong,HU Hui,LÜ Jiandong,TIAN Lei,LUO Chengke,ZHANG Yinxia,LI Peifu.Comprehensive evaluation and selection of rice(Oryza sativa japonica)germplasm for saline tolerance at seedling stage[J].Journal of Plant Genetic Resources,2020,21(5):1089-1101.

[24] 邹德堂,郭微,孙健,王敬国,刘化龙,郑洪亮,赵宏伟,谢冬微.水稻不同基因型耐盐相关性状主成分分析及综合评价[J].东北农业大学学报,2018,49(8):1-9.ZOU Detang,GUO Wei,SUN Jian,WANG Jingguo,LIU Hualong,ZHENG Hongliang,ZHAO Hongwei,XIE Dongwei.Principal component analysis and comprehensive evaluation of salt tolerance related traits in different rice (Oryza sativa L.) genotypes[J].Journal of Northeast Agricultural University,2018,49(8):1-9.

[25] 董志刚,程智慧.番茄品种资源芽苗期和幼苗期的耐盐性及耐盐指标评价[J].生态学报,2009,29(3):1348-1355.DONG Zhigang,CHENG Zhihui.Salt tolerance and assessment of salt tolerance indices of tomato varieties in sprout stage and seedling stage[J].Acta Ecologica Sinica,2009,29(3):1348-1355.

[26] 任富莉,潘映红,张笑笑,蒲伟军,牟永莹,李玉斌,张桦,朱莉.基于多重表型的高粱耐盐性综合评价方法[J].中国农业科技导报,2019,21(6):152-162.REN Fuli,PAN Yinghong,ZHANG Xiaoxiao,PU Weijun,MOU Yongying,LI Yubin,ZHANG Hua,ZHU Li.Comprehensive evaluation method for sorghum salt tolerance based on multilevel phenotypic analysis[J].Journal of Agricultural Science and Technology,2019,21(6):152-162.

Identification of salt tolerance of 121 watermelon (Citrullus lanatus L.)germplasm resources

GAO Bowen,SUN Dexi,YUAN Gaopeng,AN Guolin,LI Weihua,LIU Junpu*,ZHU Yingchun*
(Zhengzhou Fruit Research Institute,Chinese Academy of Agricultural Sciences,Zhengzhou 450009,Henan,China)

Abstract:【Objective】The aims of this study were to identify the salt tolerance of watermelon germplasm resources at the seedling stage and select salt tolerant types.Watermelon is an important vegetable crop in China, and its yield and quality decline seriously under salt stress.At present, the research mainly focuses on the identification of salt-tolerant rootstocks and the application of exogenous substances.However,there are few reports on the screening of salt-tolerant germplasm at seedling stage of watermelon.In this study, 121 watermelon germplasm resources were screened for salt tolerance at seedling stage by the multivariate statistical method,in order to provide abundant parental materials for improvement and breeding of watermelon salt-tolerant varieties.【Methods】121 watermelon germplasm materials were cultured until cotyledon expansion, and then transferred into Hoagland's nutrient solution for culture with 15 plants in each pot, and the nutrient solution was changed once every two days.There were two treatments,control group(CK,Hoagland’s nutrient solution)and salt stress group(Hoagland’s nutrient solution was added with 150 mmol·L-1 NaCl), which had 3 replicates for each treatment with 15 plants in each replicate.During salt stress, the nutrient solution and NaCl were replaced once every 2 days,and the indexes were determined 8 days after treatment.The indexes included shoot fresh weight,shoot dry weight,stem diameter,root length,root surface area and SPAD value.And watermelon accessions were evaluated with correlation analysis, principal component analysis and membership function analysis.【Results】Compared with the control, these indexes of all materials under NaCl stress revealed abundant genetic diversity.The relative value of fresh weight of overground part was 0.132-0.979, with an average value of 0.509.The relative value of dry weight of overground part was 0.156-0.967, with an average value of 0.611.The relative value of stem diameter was 0.721-1.103,with an average value of 0.917.The relative value of root length was 0.193-0.989,with an average value of 0.745.The relative value of root surface area was 0.204-0.985 with an average value of 0.646.The relative value of SPAD was 1.052-1.494,with an average of 1.201.The results showed that the variation range of each index with 121 watermelon materials was different, so single index could not be used to evaluate the salt tolerance of watermelon.Under NaCl stress, salt tolerance indexes of watermelon seedlings had different degrees of correlation.There existed significantly positive correlations with shoot dry weight,in comparison with shoot fresh weight and stem diameter.Root surface area showed significantly positive correlations with shoot fresh weight, shoot dry weight and root length.The principal component analysis showed that the contribution rates of the first three principal components were 30.685%, 24.245% and 19.490%, respectively, and the cumulative contribution rates reached 74.420%,and the eigenvalues were all greater than 1,indicating that the original six related single indicators could be converted into three independent principal components, which covered most of the information of the original indicators.The fresh weight and dry weight of overground part were the most important variables of principal component,which reflected the overground biomass of watermelon seedlings under salt stress.The load (absolute value) of the second principal component in root length and root surface area was larger,reflecting the growth of watermelon seedlings under salt stress,while the load(absolute value)of the third principal component in SPAD was larger,reflecting the physiological changes of watermelon seedlings under salt stress.Principal component analysis showed that the feature vectors of fresh weight of overground part and root length were larger among the three principal components, which could be used as indexes for evaluation of salt tolerance of watermelon seedlings.The membership function value,weight value and weighted membership function value(D value)were calculated according to the formula.The D value range of test materials was 0.165-0.566,indicating that there were extensive differences in salt tolerance among test materials.According to D value,121 watermelon materials were divided into 4 salt-resistance types:Three accessions were high salt-sensitive materials (D value <0.3), including PI186489, PI494532 and Dahongzi; 81 accessions were week salt-sensitive materials(0.3 ≤D value <0.6),including Zhengzhou YCL,Huozhou 1,Yanshi 1,Zhengzhou 1, PI482322, Zhengzhouzigua and so on; 34 accessions were medium materials (0.6 ≤D value <0.7), including Luofeilin, Grif16135, Kuiketawuzi, Xiaoma Seed, PI161375, 27150, Tomato seed,Meili,etc;3 accessions were salt tolerant materials(D value ≥0.7),including Zaohua,PI490377,Zhongshihong.【Conclusion】Vine fresh weight, and root length were considered as the best indexes to identify salt resistance of watermelon at the seedling stage.High salt-sensitive materials, (PI186489,PI494532, Dahongzi) and salt tolerant materials (Zhongshihong, PI490377, Zaohua) can be used for breeding salt-tolerant cultivars and identification of salt-tolerant gene.

Key words:Watermelon;Seedling;Identification of salt tolerance

中图分类号:S651

文献标志码:A

文章编号:1009-9980(2022)09-1597-10

DOI:10.13925/j.cnki.gsxb.20210701

收稿日期2022-01-10

接受日期:2022-04-08

基金项目现代农业产业技术体系(CARS-26);中国农业科学院科技创新工程(CAAS-ASTIP-2021-ZFRI);中央级公益性科研院所基本科研业务费专项(1610192021308、Y2019XK16-03、Y2021XK14);中国农业科学院郑州果树研究所协同创新专项计划(ZGS202102);郑州市管城回族区财政项目(20131415)

作者简介高博文,女,硕士,主要从事二倍体西瓜遗传育种研究。Tel:18515167366,E-mail:gaobowen0514@163.com

*通信作者Author for correspondence.Tel:13607671550,E-mail:zhuyingchun@caas.cn;Tel:13607662298,E-mail:liujunpu@caas.cn